JP2007064518A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2007064518A
JP2007064518A JP2005248511A JP2005248511A JP2007064518A JP 2007064518 A JP2007064518 A JP 2007064518A JP 2005248511 A JP2005248511 A JP 2005248511A JP 2005248511 A JP2005248511 A JP 2005248511A JP 2007064518 A JP2007064518 A JP 2007064518A
Authority
JP
Japan
Prior art keywords
heat
cogeneration
temperature
circulation path
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005248511A
Other languages
Japanese (ja)
Other versions
JP4685553B2 (en
Inventor
Koichi Miura
浩一 三浦
Hiroshi Yamamoto
啓 山本
Shin Iwata
伸 岩田
Takeshi Tomio
剛至 富尾
Masahiko Yagi
政彦 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Chofu Seisakusho Co Ltd
Original Assignee
Osaka Gas Co Ltd
Chofu Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Chofu Seisakusho Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005248511A priority Critical patent/JP4685553B2/en
Publication of JP2007064518A publication Critical patent/JP2007064518A/en
Application granted granted Critical
Publication of JP4685553B2 publication Critical patent/JP4685553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system for stably and highly effectively supplying heat quantity corresponding to demand of a heat load irrespective of a degree of output of a generator. <P>SOLUTION: The cogeneration system 1 comprises a gas engine 101 for power generation for supplying power to a power load, an exhaust heat system 10 for recovering exhaust heat of the gas engine 101 for power generation and supplying to the heat load, a hot water storage system 20, a water heating system 40, and an auxiliary heat source machine 5 for supplying short heat quantity to the heat load when the heat quantity recovered by the heat exhaust system 10 runs short with respect to heat demand of the heat load. The system 1 is provided with a surplus power recovering heater 102 for converting a part of power output by the gas engine 101 for power generation into the short heat quantity and supplying to the heat exhaust system 10 when the short heat quantity does not meet a minimum output of the auxiliary heat source device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は熱機関等によって発電した電力を電力負荷に供給するとともに、前記熱機関等の排熱を熱負荷に供給するコージェネレーションシステムに関する。   The present invention relates to a cogeneration system that supplies electric power generated by a heat engine or the like to an electric load and supplies exhaust heat from the heat engine or the like to the heat load.

電力負荷に電力を供給する熱電併給手段と、熱交換器と、貯熱槽と、前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路と、前記熱交換器の2次側管路と前記貯熱槽の間で前記第2の熱媒が循環する第2の循環路を備えて、前記貯熱槽から熱負荷に熱を供給するコージェネレーションシステムが知られている。   A first heat medium circulates between the heat and power supply means for supplying power to the power load, the heat exchanger, the heat storage tank, and the primary side pipe line of the heat and power supply means and the heat exchanger. And a second circulation path through which the second heat medium circulates between a secondary side pipe of the heat exchanger and the heat storage tank, and heat is applied from the heat storage tank to the heat load. Cogeneration systems that supply power are known.

このようなコージェネレーションシステムにおいては、熱電併給手段から得られる電力と熱電併給手段の排熱量の間には一定の関係があるので、両者を独立して増減することはできない。一方、電力需要と熱需要はそれぞれ別個に増減するから、電力需要に合わせて運転すれば、熱供給が過剰になり、熱需要に合わせて運転すれば、電力供給が過剰になる場合が生じる。   In such a cogeneration system, since there is a certain relationship between the electric power obtained from the combined heat and power supply means and the amount of exhaust heat from the combined heat and power supply means, the two cannot be increased or decreased independently. On the other hand, since the electric power demand and the heat demand increase and decrease separately, if the operation is performed according to the electric power demand, the heat supply becomes excessive, and if the operation is performed according to the heat demand, the electric power supply may be excessive.

そこで、現在実用されているコージェネレーションシステムには補助熱源器と余剰電力回収ヒータが備えられている。補助熱源器は貯熱槽から熱負荷に第2の熱媒体を送出する管路に取り付けられて、熱負荷の需要を熱電併給手段の排熱量で賄えない場合に、第2の熱媒体を加熱して不足する熱量を補う加熱器である。また、余剰電力回収ヒータは、第1の循環路の熱交換器の手前側に取り付けられて、第1の熱媒体を余剰電力で加熱する加熱器であり、余剰電力を熱に変換して熱負荷に熱を供給する(特許文献1〜3)。
特開2003−21392号公報 特開2004−257364号公報 特開2005−009456号公報
Therefore, the cogeneration system currently in practical use is equipped with an auxiliary heat source and a surplus power recovery heater. The auxiliary heat source is attached to a pipe that sends the second heat medium from the heat storage tank to the heat load. When the demand for the heat load cannot be covered by the amount of exhaust heat from the heat and power supply means, the second heat medium is supplied. It is a heater that compensates for the heat quantity that is deficient by heating. The surplus power recovery heater is a heater that is attached to the front side of the heat exchanger in the first circulation path and heats the first heat medium with surplus power, and converts the surplus power into heat to generate heat. Heat is supplied to the load (Patent Documents 1 to 3).
JP 2003-21392 A JP 2004-257364 A JP 2005-009456 A

通常、補助熱源器にはガスあるいは灯油を燃料とする燃焼機が用いられるが、ガス等を燃料とする燃焼機は最低出力(燃焼機の出力は1リットルの水を1分間に25℃加温する能力を1号とする号数で表示されるので、最低号数ともいう。)以下での燃焼ができないという問題がある。出力を絞ると燃焼が不安定になり、立ち消えするからである。そのため、不足する熱量が補助熱源器の最低出力に満たない場合は補助熱源器を運転できないという問題がある。   Normally, a combustor that uses gas or kerosene as fuel is used as the auxiliary heat source. Since it is displayed as a number with the ability to perform No. 1, it is also called the lowest number.) There is a problem that combustion below cannot be performed. This is because if the output is reduced, the combustion becomes unstable and disappears. Therefore, there is a problem that the auxiliary heat source device cannot be operated when the insufficient heat quantity is less than the minimum output of the auxiliary heat source device.

補助熱源器を断続的に運転すれば、この問題を簡単に解決できるが、コージェネレーションシステムから熱負荷に送出される第2の熱媒の温度が変動するので、使いにくいという問題がある。また、断続運転をすれば、補助熱源器の缶体は昇温・降温を繰り返し、燃料の燃焼熱の一部は補助熱源器の缶体の昇温のために消費されるので、補助熱源器の熱
効率が低下するという問題がある。
If the auxiliary heat source device is operated intermittently, this problem can be solved easily, but there is a problem that it is difficult to use because the temperature of the second heat medium sent from the cogeneration system to the heat load fluctuates. In addition, if the intermittent operation is carried out, the can body of the auxiliary heat source device repeatedly rises and falls, and part of the combustion heat of the fuel is consumed for raising the temperature of the can body of the auxiliary heat source device. There is a problem that the thermal efficiency of the is reduced.

また、熱機関の排熱量が低下すると、熱交換器の1次側管路に流入する第1の熱媒の温度が低下するという問題がある。第1の熱媒の温度が低下すると、前記熱交換器の2次側管路から流出する第2の熱媒の温度(排熱回収温度)が低下するので、熱負荷が要求する温度の第2の熱媒を供給できない場合がある。   Further, when the amount of exhaust heat from the heat engine is reduced, there is a problem that the temperature of the first heat medium flowing into the primary side pipe of the heat exchanger is lowered. When the temperature of the first heat medium decreases, the temperature of the second heat medium flowing out from the secondary side pipe of the heat exchanger (exhaust heat recovery temperature) decreases. 2 heat medium may not be supplied.

本発明はこのような課題を解決するためになされたものであり、発電機の出力の高低にかかわらず、熱負荷の需要に応じた熱量を安定的かつ高効率に供給できるコージェネレーションシステムを提供することを目的とする。   The present invention has been made to solve such a problem, and provides a cogeneration system capable of stably and efficiently supplying the amount of heat according to the demand of the heat load regardless of the output level of the generator. The purpose is to do.

本発明に係るコージェネレーションシステムの第1の構成は、電力と熱を発生する熱電併給手段と、前記熱電併給手段の排熱を回収して外部の熱負荷に供給する熱回収供給システムと、前記熱回収供給システムが供給する熱量が前記熱負荷の熱需要に対して不足する場合に、不足熱量を前記熱負荷に供給する補助熱源装置とを有するコージェネレーションシステムにおいて、前記熱電併給手段が出力する電力の一部を熱量に変換して前記熱回収供給システムに供給する電熱変換装置;及び、前記不足熱量が前記補助熱源装置の最低出力に満たない場合に、前記熱電併給手段の出力増加により前記熱電併給手段の排熱を増加させるとともに、前記熱電併給手段の出力増加分を前記電熱変換装置に入力して熱量に変換することにより前記不足熱量を補う制御装置;を備えていることを特徴とする。   A first configuration of a cogeneration system according to the present invention includes a cogeneration unit that generates electric power and heat, a heat recovery supply system that recovers exhaust heat of the cogeneration unit and supplies it to an external heat load, and In a cogeneration system having an auxiliary heat source device that supplies a deficient amount of heat to the heat load when the amount of heat supplied by the heat recovery and supply system is insufficient with respect to the heat demand of the heat load, the cogeneration unit outputs An electrothermal converter that converts a part of electric power into heat and supplies it to the heat recovery and supply system; and when the insufficient heat is less than the minimum output of the auxiliary heat source device, the output of the cogeneration means increases the output While increasing the exhaust heat of the combined heat and power means, the increase in output of the combined heat and power means is input to the electrothermal conversion device and converted into the amount of heat, so that the insufficient heat amount Characterized in that it comprises a; controller to compensate.

この構成によれば、補助熱源装置の最低出力に満たない不足熱量を、熱電併給手段が出力する電力で補うので、熱需要に応じた熱量を過不足なく安定して供給することができる。また補助熱源装置の断続運転を回避できるので、コージェネレーションシステムの総合効率が向上する。なお、ここで熱電併給手段とは、電力を発生するとともに副産物として排熱を発生させる装置をいい、熱機関駆動の発電機のみならず、燃料電池のような電気化学的な熱電併給手段も含むものである。   According to this configuration, since the shortage of heat that is less than the minimum output of the auxiliary heat source device is supplemented by the power output from the combined heat and power supply means, the amount of heat according to the heat demand can be stably supplied without excess or deficiency. Moreover, since the intermittent operation of the auxiliary heat source device can be avoided, the overall efficiency of the cogeneration system is improved. Here, the combined heat and power means means a device that generates electric power and generates waste heat as a by-product, and includes not only a heat engine driven generator but also an electrochemical combined heat and power means such as a fuel cell. It is a waste.

本発明に係るコージェネレーションシステムの第2の構成は、電力と熱を発生する熱電併給手段と、前記熱電併給手段の排熱を回収して外部の熱負荷に供給する熱回収供給システムと、前記熱回収供給システムが供給する熱量が前記熱負荷の熱需要に対して不足する場合に、不足熱量を前記熱負荷に供給する補助熱源装置とを有するコージェネレーションシステムにおいて、前記熱電併給手段が出力する電力の一部を熱量に変換して前記熱回収供給システムに供給する電熱変換装置;及び、前記不足熱量を前記補助熱源装置の運転で賄う場合の燃料消費量と、前記不足熱量を前記熱電併給手段の出力増加による排熱量の増加と前記熱電併給手段の出力増加分の電力を前記電熱変換装置で変換して得た熱量で賄う場合の燃料消費量を比較して、後者が前者に比べて小さい場合は前記熱電併給手段の出力を増加させるとともに、前記熱電併給手段の出力の増加分を前記電熱変換装置に入力して熱量に変換することにより前記不足熱量を補う制御装置;を備えることを特徴とする。   A second configuration of the cogeneration system according to the present invention includes a cogeneration unit that generates electric power and heat, a heat recovery supply system that recovers exhaust heat of the cogeneration unit and supplies the exhaust heat to an external heat load, In a cogeneration system having an auxiliary heat source device that supplies a deficient amount of heat to the heat load when the amount of heat supplied by the heat recovery and supply system is insufficient with respect to the heat demand of the heat load, the cogeneration unit outputs An electrothermal converter for converting a part of electric power into heat and supplying the heat recovery and supply system; and a fuel consumption when the insufficient heat is supplied by operation of the auxiliary heat source device; and the combined heat and power for the insufficient heat Compared to the increase in exhaust heat due to the increase in the output of the means and the amount of fuel consumed when the electric power for the increase in the output of the combined heat and power supply means is covered by the amount of heat obtained by converting the electric heat conversion device, When the person is smaller than the former, the output of the combined heat and power supply means is increased, and the increase in the output of the combined heat and power supply means is input to the electric heat conversion device and converted into heat, thereby compensating for the insufficient heat quantity An apparatus.

この構成によれば、補助熱源装置の運転と、熱電併給手段の出力増加のいずれか燃料消費量の少ない方法で不足熱量を賄うので、コージェネレーションシステムの総合効率がさらに向上する。   According to this configuration, the shortage of heat is covered by either the operation of the auxiliary heat source device or the increase in the output of the combined heat and power supply means, which reduces the fuel consumption, so that the overall efficiency of the cogeneration system is further improved.

本発明に係るコージェネレーションシステムの第3の構成は、前記第1又は第2の構成において、前記熱回収供給システムは、熱交換器と、貯熱槽と、前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路と、前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路と、前記貯熱槽から前記熱負荷に前記第2の熱媒を送出する熱供給管路を備えるとともに、前記電熱変換装置は前記第1の循環路において前記第1の熱媒を加熱する電熱ヒータであることを特徴とする。   A third configuration of the cogeneration system according to the present invention is the first or second configuration, wherein the heat recovery and supply system includes a heat exchanger, a heat storage tank, the thermoelectric supply unit, and the heat exchanger. The first heat medium circulates between the primary side pipes and the second heat medium circulates between the secondary side pipes of the heat exchanger and the heat storage tank. A second circulation path and a heat supply pipe for sending the second heat medium from the heat storage tank to the heat load; and the electrothermal conversion device includes the first heat in the first circulation path. It is an electric heater that heats the medium.

この構成も、補助熱源装置の最低出力に満たない不足熱量を、熱電併給手段が出力する電力で補うので、熱需要に応じた熱量を過不足なく安定して供給することができる   This configuration also compensates for the shortage of heat that is less than the minimum output of the auxiliary heat source device with the power output by the combined heat and power supply means, so that the amount of heat according to the heat demand can be stably supplied without excess or deficiency.

本発明に係るコージェネレーションシステムの第4の構成は、前記第1又は第2の構成において、前記熱回収供給システムは、熱交換器と、貯熱槽と、前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路と、前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路と、前記貯熱槽から前記熱負荷に前記第2の熱媒を送出する熱供給管路を備えるとともに、前記電熱変換装置は、前記第2の循環路において前記第2の熱媒を加熱する電熱ヒータであることを特徴とする。   According to a fourth configuration of the cogeneration system of the present invention, in the first or second configuration, the heat recovery supply system includes a heat exchanger, a heat storage tank, the combined heat and power supply unit, and the heat exchanger. The first heat medium circulates between the primary side pipes and the second heat medium circulates between the secondary side pipes of the heat exchanger and the heat storage tank. A second circulation path, and a heat supply pipe for sending the second heat medium from the heat storage tank to the thermal load, and the electrothermal conversion device includes the second circulation path in the second circulation path. It is an electric heater that heats the heat medium.

この構成によれば、第1の熱媒及び熱交換器を介することなく、第2の循環路において第2の熱媒を電熱ヒータで直接加熱するので、熱伝達経路における損失が減少する。そのため、コージェネレーションシステムの総合効率が更に向上する。   According to this configuration, since the second heat medium is directly heated by the electric heater in the second circulation path without going through the first heat medium and the heat exchanger, the loss in the heat transfer path is reduced. Therefore, the overall efficiency of the cogeneration system is further improved.

本発明に係るコージェネレーションシステムの第5の構成は、前記第1又は第2の構成において、前記熱回収供給システムは、熱交換器と、貯熱槽と、前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路と、前記熱交換器の2次側管路と前記貯熱槽の間で前記第2の熱媒が循環する第2の循環路と、前記貯熱槽から前記熱負荷に前記第2の熱媒を送出する熱供給管路を備えるとともに、前記電熱変換装置は前記熱供給管路において前記第2の熱媒を加熱する電熱ヒータであることを特徴とする。   A fifth configuration of the cogeneration system according to the present invention is the first or second configuration, wherein the heat recovery and supply system includes a heat exchanger, a heat storage tank, the thermoelectric supply unit, and the heat exchanger. The first heat medium circulates between the primary side pipes, and the second heat medium circulates between the secondary side pipes of the heat exchanger and the heat storage tank. And a heat supply pipe that sends the second heat medium from the heat storage tank to the heat load, and the electrothermal converter is configured to supply the second heat in the heat supply pipe. It is an electric heater that heats the medium.

この構成も、第1の熱媒及び熱交換器を介することなく、熱供給管路において第2の熱媒を電熱ヒータで直接加熱するので、熱伝達経路における損失が減少する。そのため、コージェネレーションシステムの総合効率が更に向上する。   Also in this configuration, since the second heat medium is directly heated by the electric heater in the heat supply pipe without going through the first heat medium and the heat exchanger, the loss in the heat transfer path is reduced. Therefore, the overall efficiency of the cogeneration system is further improved.

本発明に係るコージェネレーションシステムの第6の構成は、前記第3乃至第5の構成において、前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記第1の循環路内の前記第1の熱媒の流量を増減する流量調整手段を備えることを特徴とする。   According to a sixth configuration of the cogeneration system according to the present invention, in the third to fifth configurations, the temperature of the first heat medium at the inlet of the primary side pipe line of the heat exchanger is changed. A flow rate adjusting means for increasing or decreasing the flow rate of the first heat medium in the first circulation path is provided.

この構成によれば、第1の熱媒の温度の高低に応じて第1の熱媒の流量を増減するので、熱交換器の1次側管路入口に流入する第1の熱媒の温度を所望の範囲に保つことができる。そのため、熱電併給手段の排熱の増減に係わらず、熱交換器の2次側管路出口における第2の熱媒の温度(排熱回収温度)を所望の範囲に維持することができる。   According to this configuration, since the flow rate of the first heat medium is increased or decreased according to the temperature of the first heat medium, the temperature of the first heat medium flowing into the primary side pipe inlet of the heat exchanger. Can be kept in the desired range. Therefore, the temperature (exhaust heat recovery temperature) of the second heat medium at the secondary side pipe outlet of the heat exchanger can be maintained within a desired range regardless of increase or decrease of the exhaust heat of the combined heat and power supply means.

本発明に係るコージェネレーションシステムの第7の構成は、前記第3乃至第5の構成において、前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記第2の循環路内の前記第2の熱媒の流量を増減する流量調整手段を備えることを特徴とする。   According to a seventh configuration of the cogeneration system according to the present invention, in the third to fifth configurations, the temperature of the first heat medium at the inlet of the primary side pipe line of the heat exchanger is changed. A flow rate adjusting means for increasing or decreasing the flow rate of the second heat medium in the second circulation path is provided.

この構成によれば、第1の熱媒の温度の高低に応じて第2の熱媒の流量を増減するので、熱交換器の1次側管路入口に流入する第1の熱媒の温度を所望の範囲に保つことができる。そのため、熱電併給手段の排熱の増減に係わらず、熱交換器の2次側管路出口における第2の熱媒の温度(排熱回収温度)を所望の範囲に維持することができる。   According to this configuration, since the flow rate of the second heat medium is increased or decreased according to the temperature of the first heat medium, the temperature of the first heat medium flowing into the primary side pipe inlet of the heat exchanger. Can be kept in the desired range. Therefore, the temperature (exhaust heat recovery temperature) of the second heat medium at the secondary side pipe outlet of the heat exchanger can be maintained within a desired range regardless of increase or decrease of the exhaust heat of the combined heat and power supply means.

本発明に係るコージェネレーションシステムの第8の構成は、前記第7の構成において、前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記熱電併給手段の入口における前記第1の熱媒の制御目標温度を増減する目標温度増減手段を備えるとともに、前記流量調整手段は、前記熱電併給手段の入口における前記第1の熱媒の温度の前記制御目標温度に対する高低に応じて、前記第2の循環路内の前記第2の熱媒の流量を増減することを特徴とする。   According to an eighth configuration of the cogeneration system of the present invention, in the seventh configuration, the thermoelectric generator is configured according to the temperature of the first heat medium at the inlet of the primary side conduit of the heat exchanger. The temperature control means includes target temperature increase / decrease means for increasing / decreasing the control target temperature of the first heat medium at the inlet of the combined supply means, and the flow rate adjusting means controls the temperature of the first heat medium at the inlet of the heat / electric supply means. The flow rate of the second heat medium in the second circulation path is increased or decreased according to the level with respect to the target temperature.

この構成も、第1の熱媒の温度の高低に応じて第2の熱媒の流量を増減するので、熱交換器の1次側管路入口に流入する第1の熱媒の温度を所望の範囲に保つことができる。そのため、熱電併給手段の排熱の増減に係わらず、熱交換器の2次側管路出口における第2の熱媒の温度(排熱回収温度)を所望の範囲に維持することができる。   This configuration also increases or decreases the flow rate of the second heat medium according to the temperature of the first heat medium, so that the temperature of the first heat medium flowing into the primary side pipe inlet of the heat exchanger is desired. Can be kept in the range. Therefore, the temperature (exhaust heat recovery temperature) of the second heat medium at the secondary side pipe outlet of the heat exchanger can be maintained within a desired range regardless of increase or decrease of the exhaust heat of the combined heat and power supply means.

本発明に係るコージェネレーションシステムの第9の構成は、電力と熱を発生する熱電併給手段と、熱交換器と、貯熱槽と、前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路と、前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路と、前記貯熱槽から熱負荷に熱を供給するコージェネレーションシステムにおいて、前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記第1の循環路内の前記第1の熱媒の流量を増減する流量調整手段を備えることを特徴とする。   A ninth configuration of the cogeneration system according to the present invention includes a cogeneration means for generating electric power and heat, a heat exchanger, a heat storage tank, the cogeneration means, and a primary side pipe of the heat exchanger. A first circulation path through which the first heat medium circulates, and a second circulation path through which the second heat medium circulates between the secondary pipe line of the heat exchanger and the heat storage tank, In the cogeneration system for supplying heat to the heat load from the heat storage tank, the first circulation according to the temperature of the first heat medium at the inlet of the primary side pipe of the heat exchanger A flow rate adjusting means for increasing or decreasing the flow rate of the first heat medium in the passage is provided.

この構成によれば、第1の熱媒の温度の高低に応じて第1の熱媒の流量を増減するので、熱交換器の1次側管路入口に流入する第1の熱媒の温度を所望の範囲に保つことができる。そのため、熱電併給手段の排熱の増減に係わらず、熱交換器の2次側管路出口における第2の熱媒の温度(排熱回収温度)を所望の値に維持することができる。   According to this configuration, since the flow rate of the first heat medium is increased or decreased according to the temperature of the first heat medium, the temperature of the first heat medium flowing into the primary side pipe inlet of the heat exchanger. Can be kept in the desired range. Therefore, the temperature of the second heat medium (exhaust heat recovery temperature) at the secondary side pipe outlet of the heat exchanger can be maintained at a desired value regardless of the increase or decrease of the exhaust heat of the combined heat and power supply means.

本発明に係るコージェネレーションシステムの第10の構成は、電力と熱を発生する熱電併給手段と、熱交換器と、貯熱槽と、前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路と、前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路と、前記貯熱槽から熱負荷に熱を供給するコージェネレーションシステムにおいて、前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記第2の循環路内の前記第2の熱媒の流量を増減する流量調整手段を備えることを特徴とする。   A tenth configuration of a cogeneration system according to the present invention includes a cogeneration means for generating electric power and heat, a heat exchanger, a heat storage tank, the cogeneration means, and a primary side pipe of the heat exchanger. A first circulation path through which the first heat medium circulates, and a second circulation path through which the second heat medium circulates between the secondary pipe line of the heat exchanger and the heat storage tank, In the cogeneration system for supplying heat to the heat load from the heat storage tank, the second circulation according to the temperature of the first heat medium at the inlet of the primary side pipe of the heat exchanger A flow rate adjusting means for increasing or decreasing the flow rate of the second heat medium in the passage is provided.

この構成によれば、第1の熱媒の温度の高低に応じて第2の熱媒の流量を増減するので、熱交換器の1次側管路入口に流入する第1の熱媒の温度を所望の範囲に保つことができる。そのため、熱電併給手段の排熱の増減に係わらず、熱交換器の2次側管路出口における第2の熱媒の温度(排熱回収温度)を所望の範囲に維持することができる。   According to this configuration, since the flow rate of the second heat medium is increased or decreased according to the temperature of the first heat medium, the temperature of the first heat medium flowing into the primary side pipe inlet of the heat exchanger. Can be kept in the desired range. Therefore, the temperature (exhaust heat recovery temperature) of the second heat medium at the secondary side pipe outlet of the heat exchanger can be maintained within a desired range regardless of increase or decrease of the exhaust heat of the combined heat and power supply means.

本発明に係るコージェネレーションシステムの第11の構成は、前記第10の構成において、前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記熱電併給手段の入口における前記第1の熱媒の制御目標温度を増減する目標温度増減手段を備えるとともに、前記流量調整手段は、前記熱電併給手段の入口における前記第1の熱媒の温度の前記制御目標温度に対する高低に応じて、前記第2の循環路内の前記第2の熱媒の流量を増減することを特徴とする。   According to an eleventh configuration of the cogeneration system according to the present invention, in the tenth configuration, the thermoelectric power is generated according to the temperature of the first heat medium at the inlet of the primary side pipe of the heat exchanger. The temperature control means includes target temperature increase / decrease means for increasing / decreasing the control target temperature of the first heat medium at the inlet of the combined supply means, and the flow rate adjusting means controls the temperature of the first heat medium at the inlet of the heat / electric supply means. The flow rate of the second heat medium in the second circulation path is increased or decreased according to the level with respect to the target temperature.

この構成も、第1の熱媒の温度の高低に応じて第2の熱媒の流量を増減するので、熱交換器の1次側管路入口に流入する第1の熱媒の温度を所望の範囲に保つことができる。そのため、熱電併給手段の排熱の増減に係わらず、熱交換器の2次側管路出口における第2の熱媒の温度(排熱回収温度)を所望の範囲に維持することができる。   This configuration also increases or decreases the flow rate of the second heat medium according to the temperature of the first heat medium, so that the temperature of the first heat medium flowing into the primary side pipe inlet of the heat exchanger is desired. Can be kept in the range. Therefore, the temperature (exhaust heat recovery temperature) of the second heat medium at the secondary side pipe outlet of the heat exchanger can be maintained within a desired range regardless of increase or decrease of the exhaust heat of the combined heat and power supply means.

以上のように本発明によれば、熱負荷が要求する熱量を過不足なく供給でき、かつ効率の高いコージェネレーションシステムを提供することができる。   As described above, according to the present invention, it is possible to provide an efficient cogeneration system that can supply the amount of heat required by the thermal load without excess or deficiency.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の実施例に係るコージェネレーションシステムの配管系統図である。図1に示すコージェネレーションシステム1は、熱電併給手段の排熱を回収して、暖房システム及び給湯システムに供給するシステムであり、貯湯タンク2、貯湯熱交換器3、暖房低温熱交換器4、補助熱源機5、暖房高温熱交換器6、および後述するその他の機器から構成される。なおコージェネレーションシステム1は図示しない制御用のコンピュータによって制御されている。またコージェネレーションシステム1には、この他にも、装置、管系及び弁等を備えているが、本発明の説明に不用な装置等の記載は省略している。   FIG. 1 is a piping system diagram of a cogeneration system according to an embodiment of the present invention. A cogeneration system 1 shown in FIG. 1 is a system that collects exhaust heat from a combined heat and power supply means and supplies it to a heating system and a hot water supply system. The hot water storage tank 2, a hot water storage heat exchanger 3, a heating low temperature heat exchanger 4, It is comprised from the auxiliary heat source machine 5, the heating high temperature heat exchanger 6, and the other apparatus mentioned later. The cogeneration system 1 is controlled by a control computer (not shown). In addition, the cogeneration system 1 includes other devices, pipe systems, valves, and the like, but descriptions of devices that are not necessary for the description of the present invention are omitted.

コージェネレーションシステム1は、排熱系10、貯湯系20、暖房系30、給湯系40、および給水系50の5系統に大別される。以下、系統毎に構成機器とその機能を説明する。   The cogeneration system 1 is roughly divided into five systems, that is, an exhaust heat system 10, a hot water storage system 20, a heating system 30, a hot water supply system 40, and a water supply system 50. Hereinafter, constituent devices and their functions will be described for each system.

〔排熱系〕
排熱系10は、発電用ガスエンジン101から帰還する高温の冷却水を、貯湯熱交換器3の1次側管路3aに通水し、続いて暖房低温熱交換器4の1次側管路4aに通水することによって発電用ガスエンジン101の排熱を、貯湯系20および暖房系30に供給するとともに、排熱を放出して低温になった冷却水を発電用ガスエンジン101に送出する配管系統である。
[Exhaust heat system]
The exhaust heat system 10 passes high-temperature cooling water returning from the power generation gas engine 101 to the primary side pipe 3 a of the hot water storage heat exchanger 3, and then the primary side pipe of the heating low-temperature heat exchanger 4. By passing water through the passage 4a, the exhaust heat of the power generation gas engine 101 is supplied to the hot water storage system 20 and the heating system 30, and the cooling water which has become low temperature by releasing the exhaust heat is sent to the power generation gas engine 101. It is a piping system.

排熱系10は、熱交入口サーミスタ102、余剰電力回収ヒータ103、中間サーミスタ104、熱交出口サーミスタ105、冷却水タンク106、冷却水ポンプ107及び冷却水比例弁108を備え、発電用ガスエンジン101→貯湯熱交換器3の1次側管路3a→暖房低温熱交換器4の1次側管路4a→冷却水タンク106→冷却水ポンプ107→冷却水比例弁108→発電用ガスエンジン101の冷却水循環路(第1の循環路)を形成している。   The exhaust heat system 10 includes a heat exchange inlet thermistor 102, a surplus power recovery heater 103, an intermediate thermistor 104, a heat exchange outlet thermistor 105, a cooling water tank 106, a cooling water pump 107, and a cooling water proportional valve 108, and a power generation gas engine. 101 → Primary side pipe 3a of hot water storage heat exchanger 3 → Primary side pipe 4a of heating low-temperature heat exchanger 4 → Cooling water tank 106 → Cooling water pump 107 → Cooling water proportional valve 108 → Power generation gas engine 101 The cooling water circulation path (first circulation path) is formed.

熱交入口サーミスタ102は発電用ガスエンジン101の排熱を吸収して排熱系10に戻ってきた高温の冷却水の温度を検出するセンサである。   The heat exchange inlet thermistor 102 is a sensor that detects the temperature of the high-temperature cooling water that has absorbed the exhaust heat of the power generation gas engine 101 and returned to the exhaust heat system 10.

余剰電力回収ヒータ103は、発電用ガスエンジン101の発電能力に余剰が生じた場合、及び発電用ガスエンジン101から回収する排熱の量が暖房系30及び給湯系40の需要を満たさない場合に、発電用ガスエンジン101が発電する電力の一部を熱に変換して冷却水を加熱するヒータであり、熱交入口サーミスタ102と貯湯熱交換器3の1次側管路3aの間に備えられる。   The surplus power recovery heater 103 is used when there is a surplus in the power generation capacity of the power generation gas engine 101 and when the amount of exhaust heat recovered from the power generation gas engine 101 does not satisfy the demand of the heating system 30 and the hot water supply system 40. A heater that converts a part of electric power generated by the power generation gas engine 101 into heat and heats the cooling water, and is provided between the heat exchange inlet thermistor 102 and the primary side pipe 3 a of the hot water storage heat exchanger 3. It is done.

中間サーミスタ104は、貯湯熱交換器3の1次側管路3aの出口における冷却水の温度を検出する温度センサである。   The intermediate thermistor 104 is a temperature sensor that detects the temperature of the cooling water at the outlet of the primary side pipe 3 a of the hot water storage heat exchanger 3.

熱交出口サーミスタ105は、暖房低温熱交換器4の1次側管路4aの出口における冷却水の温度を検出する温度センサである。   The heat exchange outlet thermistor 105 is a temperature sensor that detects the temperature of the cooling water at the outlet of the primary side pipe 4 a of the heating low-temperature heat exchanger 4.

冷却水タンク106は、給水系50から給水を受けて、前記冷却水循環路の途中で蒸発した冷却水を補充するとともに、冷却水の水位を一定範囲内に保つタンクである。   The cooling water tank 106 receives water from the water supply system 50, replenishes the cooling water evaporated in the middle of the cooling water circulation path, and keeps the cooling water level within a certain range.

冷却水ポンプ107は冷却水を加圧して、前記冷却水循環路で循環させるポンプである。   The cooling water pump 107 is a pump that pressurizes the cooling water and circulates it in the cooling water circulation path.

冷却水比例弁108は冷却水ポンプ107の下流側にあって、前記冷却水循環路を流れる冷却水の流量を調整する弁である。   The cooling water proportional valve 108 is a valve on the downstream side of the cooling water pump 107 and adjusts the flow rate of the cooling water flowing through the cooling water circulation path.

〔貯湯系〕
貯湯系20は、貯湯タンク2の下部から抽出した低温の湯水を、貯湯熱交換器3の2次側管路3bに通水して、排熱系10から供給される熱で加熱して、貯湯タンク2の上部に帰還させる配管系統である。
[Hot water storage system]
The hot water storage system 20 passes the low temperature hot water extracted from the lower part of the hot water storage tank 2 through the secondary side pipe 3b of the hot water storage heat exchanger 3 and heats it with the heat supplied from the exhaust heat system 10, This is a piping system that returns to the upper part of the hot water storage tank 2.

貯湯系20は、循環比例弁201、循環ポンプ202、および貯湯サーミスタ203を備えて、貯湯タンク2→循環比例弁201→貯湯熱交換器3の2次側管路3b→循環ポンプ202→貯湯タンク2の湯水循環路(第2の循環路)を形成している。   The hot water storage system 20 includes a circulation proportional valve 201, a circulation pump 202, and a hot water storage thermistor 203. The hot water storage tank 2 → the circulation proportional valve 201 → the secondary pipe 3b of the hot water storage heat exchanger 3 → the circulation pump 202 → the hot water storage tank. Two hot water circulation paths (second circulation paths) are formed.

循環比例弁201は、貯湯タンク2の下部と貯湯熱交換器3の2次側管路3bの入口の間にあって、前記湯水循環路を流れる湯水の流量を調整する弁である。   The circulation proportional valve 201 is located between the lower part of the hot water storage tank 2 and the inlet of the secondary side pipe 3b of the hot water storage heat exchanger 3, and adjusts the flow rate of hot water flowing through the hot water circulation path.

循環ポンプ202は、貯湯熱交換器3の2次側管路3bの出口から吐出する湯水を加圧して貯湯タンク2の上部まで揚水する圧送手段である。   The circulation pump 202 is a pressure feeding means that pressurizes hot water discharged from the outlet of the secondary side pipe 3 b of the hot water storage heat exchanger 3 and pumps the hot water to the upper part of the hot water storage tank 2.

貯湯サーミスタ203は、貯湯タンク2の胴体に取り付けられて、貯湯タンク2内の湯水の温度を検出する温度センサである。   The hot water storage thermistor 203 is a temperature sensor that is attached to the body of the hot water storage tank 2 and detects the temperature of the hot water in the hot water storage tank 2.

なお、貯湯タンク2の下部は、給水系50につながれていて、給水系50の給水圧は、貯湯タンク2の内部の湯水の圧力とバランスしている。つまり、貯湯タンク2内部の水圧が所定の水準にあれば、給水は停止し、貯湯タンク2内部の湯水が消費されて、水圧が低下すると給水が行われる。   The lower part of the hot water storage tank 2 is connected to the water supply system 50, and the water supply pressure of the water supply system 50 is balanced with the pressure of the hot water inside the hot water storage tank 2. That is, if the water pressure in the hot water storage tank 2 is at a predetermined level, the water supply is stopped, the hot water in the hot water storage tank 2 is consumed, and water supply is performed when the water pressure decreases.

〔暖房系〕
暖房系30は、図示しない暖房機(例えば、ファンコイルユニットや床暖房ユニット)から帰還する低温の暖房水(暖房用熱媒)を、暖房低温熱交換器4の2次側管路4bに通水して排熱系10から熱を吸収し、さらに、暖房高温熱交換器6の2次側管路6bに通水して給湯系40から熱を吸収し、高温になった暖房水を前記暖房機に送出する配管系統である。
[Heating system]
The heating system 30 passes low-temperature heating water (heating heating medium) returning from a heater (not shown) (for example, a fan coil unit or a floor heating unit) to the secondary side pipe 4 b of the heating low-temperature heat exchanger 4. Water is absorbed from the exhaust heat system 10, and further, water is passed through the secondary side pipe 6 b of the heating high-temperature heat exchanger 6 to absorb heat from the hot water supply system 40. This is a piping system that is sent to a heater.

暖房系30は、暖房水戻り口301、暖房水タンク302、リターン回路303、暖房水ポンプ304、暖房水サーミスタ305および暖房往き口306を備え、前記暖房機→暖房水戻り口301→暖房低温熱交換器4の2次側管路4b→暖房高温熱交換器6の2次側管路6b→暖房水タンク302→暖房水ポンプ304→暖房往き口306→前記暖房機の暖房水循環路を形成する。   The heating system 30 includes a heating water return port 301, a heating water tank 302, a return circuit 303, a heating water pump 304, a heating water thermistor 305, and a heating outlet 306. The secondary side pipe 4b of the exchanger 4 → the secondary side pipe 6b of the heating high-temperature heat exchanger 6 → the heating water tank 302 → the heating water pump 304 → the heating outlet 306 → the heating water circulation path of the heater is formed. .

暖房水戻り口301は、前記暖房機から帰還する低温の暖房水が流入するポートである。   The heating water return port 301 is a port into which low-temperature heating water returning from the heater flows.

暖房水タンク302は、暖房高温熱交換器6の2次側管路6bの下流にあって、給水系50から給水を受けて、前記暖房水循環路の途中で蒸発した暖房水を補充して、暖房水の水位を一定範囲内に保つタンクである。   The heating water tank 302 is downstream of the secondary side pipe 6b of the heating high-temperature heat exchanger 6, receives water from the water supply system 50, replenishes the heating water evaporated in the middle of the heating water circulation path, This tank keeps the heating water level within a certain range.

リターン回路303は、前記暖房機内部の暖房水流路が閉止された場合に暖房水ポンプ304に過大な負荷が生じるのを防止するために、暖房水を暖房往き口306側から暖房高温熱交換器6の2次側管路6b側に戻す管系である。   In order to prevent an excessive load from being generated in the heating water pump 304 when the heating water flow path inside the heater is closed, the return circuit 303 supplies the heating water from the heating outlet 306 side to the heating high temperature heat exchanger. 6 is a pipe system that returns to the secondary side pipe line 6b side.

暖房水ポンプ304は暖房水を前記暖房水循環路で循環させるポンプである。   The heating water pump 304 is a pump that circulates heating water in the heating water circulation path.

暖房水サーミスタ305は暖房水ポンプ304の下流における暖房水の温度を検出する温度センサである。   The heating water thermistor 305 is a temperature sensor that detects the temperature of the heating water downstream of the heating water pump 304.

暖房往き口306は、高温になった暖房水を前記暖房機に送出するポートである。   The heating outlet 306 is a port through which heated water having a high temperature is sent to the heater.

〔給湯系〕
給湯系40は、貯湯系20から供給される湯水を熱負荷に送出する配管系統である。ここで熱負荷とは暖房系30及び図示しないカラン・シャワーヘッドあるいは浴槽追い焚き用の熱交換器などである。なお、熱負荷には浴槽追い焚き用の熱交換器のように熱だけを消費し熱媒(ここでは湯水)そのものを消費しないものと、カラン・シャワーヘッドのように熱媒を消費するものがある。貯湯系20から給湯系40に供給された湯水は、補助熱源機5を通った後、暖房高温熱交換器6の1次側6aに入って暖房系30に熱を供給する流れと、他の図示しない熱負荷に向かう流れに分かれる。
[Hot water system]
The hot water supply system 40 is a piping system that sends hot water supplied from the hot water storage system 20 to a heat load. Here, the heat load includes the heating system 30 and a curan / shower head (not shown) or a heat exchanger for reheating the bathtub. There are two types of heat loads: one that consumes only heat, such as a heat exchanger for bathing, and one that does not consume the heat medium (in this case, hot water), and one that consumes a heat medium, such as a currant showerhead. is there. The hot water supplied from the hot water storage system 20 to the hot water supply system 40 passes through the auxiliary heat source unit 5 and then enters the primary side 6a of the heating high temperature heat exchanger 6 to supply heat to the heating system 30, and the other It is divided into a flow toward a heat load (not shown).

給湯系40は、BU水量センサ401、BU入サーミスタ402、BU出サーミスタ403、暖房弁404を備える。   The hot water supply system 40 includes a BU water amount sensor 401, a BU entry thermistor 402, a BU exit thermistor 403, and a heating valve 404.

BU水量センサ401は、貯湯系20から給湯系40に流入する湯水の流量を検出するセンサである。   The BU water amount sensor 401 is a sensor that detects the flow rate of hot water flowing into the hot water supply system 40 from the hot water storage system 20.

BU入サーミスタ402は、補助熱源機5に流入する湯水の温度を検出する温度センサである。   The BU entry thermistor 402 is a temperature sensor that detects the temperature of hot water flowing into the auxiliary heat source unit 5.

BU出サーミスタ403は、補助熱源機5から流出する湯水の温度を検出する温度センサである。   The BU outlet thermistor 403 is a temperature sensor that detects the temperature of hot water flowing out from the auxiliary heat source unit 5.

暖房弁404は、暖房高温熱交換器6の1次側管路6aに流入する湯水の流量を調整する弁である。   The heating valve 404 is a valve that adjusts the flow rate of hot water flowing into the primary side pipe 6 a of the heating high-temperature heat exchanger 6.

暖房高温熱交換器6の1次側管路6aに流入して、暖房系30に熱を与えて低温になった湯水は暖房弁404を経由して、貯湯熱交換器3の2次側管路3bと循環ポンプ202の中間の位置で貯湯系20に還流する。   The hot water that has flowed into the primary side pipe 6 a of the heating high temperature heat exchanger 6 and heated to the heating system 30 and has become low temperature passes through the heating valve 404 and then passes through the secondary side pipe of the hot water storage heat exchanger 3. It returns to the hot water storage system 20 at a position intermediate between the passage 3 b and the circulation pump 202.

また、補助熱源機5は貯湯系20から給湯系40に供給された湯水の温度(BU入サーミスタ402で検出される温度)が前記熱負荷の必要とする温度よりも低い場合に、前記湯水を加熱するバックアップ熱源である。   In addition, the auxiliary heat source unit 5 supplies the hot water when the temperature of the hot water supplied from the hot water storage system 20 to the hot water supply system 40 (temperature detected by the BU input thermistor 402) is lower than the temperature required by the heat load. It is a backup heat source to heat.

〔給水系〕
給水系50は、図示しない上水から供給される給水を、排熱系10、貯湯系20、暖房系30および給湯系40に供給する配管系である。
[Water supply system]
The water supply system 50 is a piping system that supplies water supplied from unshown tap water to the exhaust heat system 10, the hot water storage system 20, the heating system 30, and the hot water supply system 40.

給水系50は、給水口501、補給水閉止弁502、及び減圧弁503を備える。   The water supply system 50 includes a water supply port 501, a makeup water closing valve 502, and a pressure reducing valve 503.

給水口501は、図示しない上水から水道水の供給を受けるポートである。   The water supply port 501 is a port for receiving tap water from tap water (not shown).

補給水閉止弁502は、排熱系10および暖房系30への給水、つまり冷却水タンク106の冷却水の補充および暖房水タンク302の暖房水の補充を閉止する弁である。   The makeup water closing valve 502 is a valve that closes the supply of water to the exhaust heat system 10 and the heating system 30, that is, the supplementation of the cooling water in the cooling water tank 106 and the supplementation of the heating water in the heating water tank 302.

減圧弁503は、給水圧を調整する弁である。   The pressure reducing valve 503 is a valve that adjusts the supply water pressure.

次に、コージェネレーションシステム1の作用を説明する。前述したように補助熱源機5は貯湯系20から供給される湯水の温度が熱負荷の要求する温度よりも低い場合に前記湯水を加熱するが、補助熱源機5の発熱能力には上限とともに下限がある。燃焼機に供給する燃料の量を少なくすると安定した燃焼を行えず、立ち消えするおそれがあるからである。ここで、補助熱源機5の発熱量の下限、つまり最低発熱量をQlowとする。なお、最低発熱量Qlowは補助熱源機5に固有の量である。また、BU水量センサ401で検出される湯水の流量をF、熱負荷が要求する湯水の温度をT、BU入サーミスタ402で検出される湯水の温度をTとすると、補助熱源機5の燃焼によって補う熱量Qは下記の式で与えられる。但し、Cは水の比熱である。 Next, the operation of the cogeneration system 1 will be described. As described above, the auxiliary heat source unit 5 heats the hot water when the temperature of the hot water supplied from the hot water storage system 20 is lower than the temperature required by the heat load. There is. This is because if the amount of fuel supplied to the combustor is reduced, stable combustion cannot be performed and there is a risk that the fuel will disappear. Here, the lower limit of the heat generation amount of the auxiliary heat source unit 5, that is, the minimum heat generation amount is set to Q low . The minimum heat generation amount Q low is a specific amount of the auxiliary heat source unit 5. Further, assuming that the flow rate of hot water detected by the BU water amount sensor 401 is F, the temperature of hot water required by the thermal load is T d , and the temperature of hot water detected by the BU inlet thermistor 402 is T s , the auxiliary heat source unit 5 The amount of heat Q to be compensated by combustion is given by the following equation. Where C is the specific heat of water.

Q=CF(T−T) (式1) Q = CF (T d −T s ) (Formula 1)

Q≧Qlowであれば、補助熱源機5を連続燃焼させることができるから、補助熱源機5に点火して、湯水を加温する。なお、この場合、BU出サーミスタ403で検出する湯水の温度を補助熱源機5にフィードバックする。つまり、補助熱源機5の発熱量はBU出サーミスタ403で検出する湯水の温度がTになるように加減される。 If Q ≧ Q low , the auxiliary heat source unit 5 can be continuously burned. Therefore, the auxiliary heat source unit 5 is ignited to warm hot water. In this case, the hot water temperature detected by the BU outlet thermistor 403 is fed back to the auxiliary heat source unit 5. That is, the amount of heat generated by the auxiliary heat source unit 5 is adjusted so that the temperature of the hot water detected by the BU outlet thermistor 403 becomes Td .

Q<Qlowの場合は、補助熱源機5を燃焼させることができないから、補助熱源機5による加温に代えて、余剰電力回収ヒータ103による加温を行う。すなわち、Qの大きさに応じて発電用ガスエンジン101の出力を上げて排熱量を増すとともに、発電用ガスエンジン101の出力の増加分を余剰電力回収ヒータ103に通電して熱に変換して、貯湯熱交換器3の1次側管路3aに流入する冷却水を加熱する。なお、この場合、BU出サーミスタ403で検出する湯水の温度を発電用ガスエンジン101及び余剰電力回収ヒータ103にフィードバックする。つまり、発電用ガスエンジン101及び余剰電力回収ヒータ103の出力は、BU出サーミスタ403で検出する湯水の温度がTになるように加減される。 When Q <Q low , the auxiliary heat source unit 5 cannot be combusted, and therefore, heating by the surplus power recovery heater 103 is performed instead of heating by the auxiliary heat source unit 5. That is, according to the magnitude of Q, the output of the power generation gas engine 101 is increased to increase the amount of exhaust heat, and the increase in the output of the power generation gas engine 101 is supplied to the surplus power recovery heater 103 to convert it into heat. The cooling water flowing into the primary side pipe line 3a of the hot water storage heat exchanger 3 is heated. In this case, the temperature of hot water detected by the BU outlet thermistor 403 is fed back to the power generation gas engine 101 and the surplus power recovery heater 103. That is, the outputs of the power generation gas engine 101 and the surplus power recovery heater 103 are adjusted so that the temperature of the hot water detected by the BU output thermistor 403 becomes Td .

また、Q≧Qlowであっても、補助熱源機5を燃焼させるよりも、発電用ガスエンジン101の出力を上げるとともに、余剰電力回収ヒータ103に通電して熱量Qを得た方が、燃料消費量が少なくなる場合がある。このような場合は、補助熱源機5を停止して、発電用ガスエンジン101の出力を上げるとともに、余剰電力回収ヒータ103に通電して、発電用ガスエンジン101の出力上昇による排熱量の増加Q’と、前記出力上昇分の電力を余剰電力回収ヒータ103に通電して得た熱量Q”の合計Q’+Q”がQに等しくなるようにしてもよい。 In addition, even when Q ≧ Q low , it is preferable to obtain the heat quantity Q by increasing the output of the power generation gas engine 101 and energizing the surplus power recovery heater 103 rather than burning the auxiliary heat source unit 5. Consumption may be reduced. In such a case, the auxiliary heat source unit 5 is stopped, the output of the power generation gas engine 101 is increased, and the surplus power recovery heater 103 is energized to increase the amount of exhaust heat Q due to the output increase of the power generation gas engine 101. The total amount Q ′ + Q ″ of the amount of heat Q ″ obtained by energizing the surplus power recovery heater 103 with the power for the output increase may be equal to Q.

なお、燃料消費量の大小の比較は次のような手順で行えばよい。
(1)発電用ガスエンジン101の発電効率(出力電力/燃料の発熱量)η、余剰電力回収ヒータ103の変換効率(出力熱量/入力電力)η、発電用ガスエンジン101の排熱効率(排熱量/燃料の発熱量)η、貯湯熱交換器3の回収効率(貯湯熱交換器3で回収されて貯湯系20に流入する熱量/排熱系10に流入する熱量)η及び補助熱源機5の熱効率(出力熱量/燃料の発熱量)ηを、実験あるいは計算により算出し、コージェネレーションシステム1の制御用のコンピュータに記憶させておく、なお、これらの効率は必ずしも定数ではない。例えば、熱量Qの大小等によって変動する場合もある。このような場合は、熱量Qと効率の関係を示す数表あるいは近似式の形式で前記コンピュータに記憶する。
The comparison of the amount of fuel consumption may be performed according to the following procedure.
(1) Power generation efficiency of the power generation gas engine 101 (output power / fuel heat generation amount) η G , conversion efficiency of the surplus power recovery heater 103 (output heat amount / input power) η H , exhaust heat efficiency of the power generation gas engine 101 ( Waste heat amount / heat generation amount of fuel) η E , recovery efficiency of hot water storage heat exchanger 3 (heat amount recovered by hot water storage heat exchanger 3 and flowing into hot water storage system 20 / heat amount flowing into exhaust heat system 10) η R and auxiliary The thermal efficiency (output heat amount / fuel heat generation amount) η B of the heat source unit 5 is calculated by experiment or calculation, and is stored in the computer for control of the cogeneration system 1. These efficiencies are not necessarily constants. . For example, it may vary depending on the amount of heat Q. In such a case, it is stored in the computer in the form of a numerical table or an approximate expression showing the relationship between the heat quantity Q and the efficiency.

(2)発電用ガスエンジン101の出力を上げるとともに、余剰電力回収ヒータ103に通電して、熱量Qを得るときの効率η’を次式にしたがって求める。 (2) While increasing the output of the power generation gas engine 101, the surplus power recovery heater 103 is energized to obtain the efficiency η B ′ when obtaining the heat quantity Q according to the following equation.

η’=(ηη+η)η (式2) η B '= (η G η H + η E ) η R (Formula 2)

(3)前記コンピュータにおいて、ηとη’を比較してη’>ηならば、発電用ガスエンジン101余剰電力回収ヒータ103によって熱量Qを得た方が、燃料消費量が少ないので、発電用ガスエンジン101の出力を上げるとともに、余剰電力回収ヒータ103に通電して、熱量Qを得ることを選ぶ。逆に、η’≦ηならば、補助熱源機5の燃焼によって、熱量Qを得ることを選ぶ。 (3) In the computer, eta if B and eta B 'compares eta B'> eta B, is better to give the quantity Q by power generation gas engine 101 surplus power recovery heater 103, less fuel consumption Therefore, it is selected that the output of the power generation gas engine 101 is increased and the surplus power recovery heater 103 is energized to obtain the heat quantity Q. On the contrary, if η B ′ ≦ η B , it is selected to obtain the heat quantity Q by the combustion of the auxiliary heat source unit 5.

本実施例では、余剰電力回収ヒータ103を排熱系10に取り付けたが、貯湯系20あるいは給湯系40に取り付けてもよい。すなわち、貯湯系20の貯湯熱交換器3と循環ポンプ202の間の管路、あるいは給湯系40のBU入サーミスタ402と補助熱源機5の間の管路、あるいは補助熱源機5とBU出サーミスタ403の間の管路に余剰電力回収ヒータ103を取り付けて、貯湯系20・給湯系40内の湯水を直接加温してもよい。   In the present embodiment, the surplus power recovery heater 103 is attached to the exhaust heat system 10, but it may be attached to the hot water storage system 20 or the hot water supply system 40. That is, a pipe line between the hot water storage heat exchanger 3 of the hot water storage system 20 and the circulation pump 202, a pipe line between the BU inlet thermistor 402 and the auxiliary heat source machine 5 of the hot water supply system 40, or the auxiliary heat source machine 5 and the BU outlet thermistor. A surplus power recovery heater 103 may be attached to the pipe line 403 to directly heat the hot water in the hot water storage system 20 and the hot water supply system 40.

さて、発電用ガスエンジン101を低出力で運転している場合は、発電用ガスエンジン101から排熱系10に帰還する冷却水の温度が低下する。冷却水の温度が低下すると、貯湯熱交換器3において、貯湯系20の湯水を十分に加温することが出来なくなる。また、前記冷却水の温度が貯湯系20の湯水の温度より低くなると、貯湯熱交換器3において貯湯系20から排熱系10に熱が流出する。   When the power generation gas engine 101 is operated at a low output, the temperature of the cooling water returning from the power generation gas engine 101 to the exhaust heat system 10 decreases. When the temperature of the cooling water is lowered, the hot water in the hot water storage system 20 cannot be sufficiently heated in the hot water storage heat exchanger 3. When the temperature of the cooling water becomes lower than the temperature of the hot water in the hot water storage system 20, heat flows from the hot water storage system 20 to the exhaust heat system 10 in the hot water storage heat exchanger 3.

そこで、発電用ガスエンジン101の排熱を吸収して排熱系10に戻ってきた高温の冷却水の温度(熱交入口サーミスタ102で検出する温度)が低下すると、冷却水比例弁108を絞って、発電用ガスエンジン101と排熱系10の間を循環する冷却水の流量を小さくして、発電用ガスエンジン101から排熱系10に帰還する冷却水の温度を上昇させる。逆に、熱交入口サーミスタ102の検出温度が上昇すると、冷却水比例弁108を開いて、発電用ガスエンジン101と排熱系10の間を循環する冷却水の流量を増やして、発電用ガスエンジン101から排熱系10に帰還する冷却水の温度を低下させる。   Therefore, when the temperature of the high-temperature cooling water that has returned to the exhaust heat system 10 after absorbing the exhaust heat of the power generation gas engine 101 (temperature detected by the heat exchange inlet thermistor 102) decreases, the cooling water proportional valve 108 is throttled. Thus, the flow rate of the cooling water circulating between the power generation gas engine 101 and the exhaust heat system 10 is reduced, and the temperature of the cooling water returning from the power generation gas engine 101 to the exhaust heat system 10 is increased. Conversely, when the detected temperature of the heat exchange inlet thermistor 102 rises, the cooling water proportional valve 108 is opened to increase the flow rate of the cooling water circulating between the power generation gas engine 101 and the exhaust heat system 10 to generate the power generation gas. The temperature of the cooling water returning to the exhaust heat system 10 from the engine 101 is lowered.

なお、熱交入口サーミスタ102に代えて、発電用ガスエンジン101の冷却水出口に温度センサを備えて、前記冷却水出口における冷却水温度に基づいて冷却水比例弁108を開閉するようにしてもよい。   In place of the heat exchange inlet thermistor 102, a temperature sensor is provided at the cooling water outlet of the power generation gas engine 101, and the cooling water proportional valve 108 is opened and closed based on the cooling water temperature at the cooling water outlet. Good.

また、冷却水比例弁108を備える代わりに、冷却水ポンプ107を流量可変型のポンプにして、冷却水の温度が低下すると冷却水ポンプ107の流量を減少させるようにしてもよい。   Instead of providing the cooling water proportional valve 108, the cooling water pump 107 may be a variable flow rate type pump, and the flow rate of the cooling water pump 107 may be decreased when the temperature of the cooling water is lowered.

あるいは、図2に示すように、排熱系10に、冷却水タンク106をバイパスするバルブ付バイパス管109を備えて、冷却水の温度が高い時は前記バルブを閉じて、冷却水の流量を大きくし、冷却水の温度が低い時は前記バルブを開いて、流量を小さくしてもよい。   Alternatively, as shown in FIG. 2, the exhaust heat system 10 includes a bypass pipe 109 with a valve that bypasses the cooling water tank 106, and when the temperature of the cooling water is high, the valve is closed to control the flow rate of the cooling water. When the temperature of the cooling water is low, the valve may be opened to reduce the flow rate.

また、発電用ガスエンジン101の排熱を吸収して排熱系10に戻ってきた高温の冷却水の温度の高低に応じて、貯湯系20の湯水循環路(第2の循環路)を流れる湯水の流量を増減してもよい。例えば、熱交入口サーミスタ102の検出温度の高低に応じて、熱交出口サーミスタ105の制御目標温度を上昇・下降させるとともに、前記制御目標温度に対する熱交出口サーミスタ105の検出温度の高低に応じて、循環比例弁201を開閉して貯湯系20の湯水循環路(第2の循環路)を流れる湯水の流量を増減する。つまり、熱交出口サーミスタ105の検出温度が前記制御目標温度に対して高くなれば、その差に比例して循環比例弁201を開き、熱交出口サーミスタ105の検出温度が前記制御目標温度に対して低くなれば、その差に比例して循環比例弁201を閉じる。   Further, the hot water flowing through the hot water storage system 20 (second circulation path) flows in accordance with the temperature of the high-temperature cooling water that has returned to the exhaust heat system 10 by absorbing the exhaust heat from the power generation gas engine 101. The flow rate of hot water may be increased or decreased. For example, the control target temperature of the heat exchange outlet thermistor 105 is raised or lowered according to the detected temperature level of the heat exchange inlet thermistor 102, and the detected temperature of the heat exchange outlet thermistor 105 with respect to the control target temperature is raised or lowered. Then, the flow rate of hot water flowing through the hot water circulation path (second circulation path) of the hot water storage system 20 is increased or decreased by opening and closing the circulation proportional valve 201. That is, if the detected temperature of the heat exchange outlet thermistor 105 becomes higher than the control target temperature, the circulation proportional valve 201 is opened in proportion to the difference, and the detected temperature of the heat exchange outlet thermistor 105 becomes higher than the control target temperature. If it becomes lower, the circulation proportional valve 201 is closed in proportion to the difference.

図3は、熱交入口サーミスタ102の検出温度の高低に応じて、熱交出口サーミスタ105の制御目標温度を上昇・下降させる制御プログラムを示すフローチャートである。以下、ステップ番号を引用しながら、このプログラムを説明する。   FIG. 3 is a flowchart showing a control program for increasing / decreasing the control target temperature of the heat exchange outlet thermistor 105 in accordance with the detected temperature of the heat exchange inlet thermistor 102. Hereinafter, this program will be described with reference to step numbers.

(ステップ1)排熱回収運転中かどうか、冷却水ポンプ107が動作しているか否かを判断する。冷却水ポンプ107が運転されていれば、ステップ2に進む。 (Step 1) It is determined whether the exhaust heat recovery operation is in progress and whether the cooling water pump 107 is operating. If the cooling water pump 107 is in operation, the process proceeds to step 2.

(ステップ2)熱交入口サーミスタ102の検出温度Tと、検出温度Tの上限値Tmaxと下限値Tminを比較する。Tmin>T又はTmax<Tであれば、ステップ3に進み、Tmin≦T≦Tmaxであればステップ1の先頭に戻る。つまり、検出温度Tが上限値Tmaxと下限値Tminの範囲内にあれば、熱交出口サーミスタ105の制御目標温度の変更は行わず、範囲外にあれば変更を行う。また、Tmin>T又はTmax<Tの状態が所定時間以上連続して検出されることを制御目標温度の変更の条件としてもよい。外乱等による一時的な
検出温度Tの変動に対して、制御目標温度を変更すると、制御が不安定にある場合がある
からである。
(Step 2) comparing the detected temperature T of the heat交入port thermistor 102, the upper limit value T max and the lower limit value T min of the detected temperature T. If T min > T or T max <T, the process proceeds to step 3, and if T min ≦ T ≦ T max , the process returns to the top of step 1. That is, the detected temperature T is, if within the range between the upper limit value T max and the lower limit value T min, changes the control target temperature of the heat交出port thermistor 105 is not performed, make changes if out of range. Moreover, it is good also as conditions for the change of control target temperature that the state of Tmin > T or Tmax <T is detected continuously more than predetermined time. This is because if the control target temperature is changed with respect to temporary fluctuations in the detected temperature T due to disturbance or the like, the control may be unstable.

なお、上限値Tmaxと下限値Tminは貯湯熱交換器3及び発電用ガスエンジン101の設計条件に決まる定数である。例えば上限値Tmaxは、発電用ガスエンジン101のオーバーヒートの限界で決まる定数であり、下限値Tminは貯湯熱交換器3の排熱回収温度の下限で決まる定数である。 The upper limit value T max and the lower limit value T min are constants determined by the design conditions of the hot water storage heat exchanger 3 and the power generation gas engine 101. For example, the upper limit value T max is a constant determined by the limit of overheating of the power generation gas engine 101, and the lower limit value T min is a constant determined by the lower limit of the exhaust heat recovery temperature of the hot water storage heat exchanger 3.

(ステップ3)熱交出口サーミスタ105の制御目標温度Tを、下記の式(3)及び式(4)に従って変更する。ただし、T’は変更後の制御目標温度であり、TCは変更前の制御目標温度である。また、k(k>0)は比例常数である。 (Step 3) The control target temperature T C of heat交出port thermistor 105 changes according to the following equation (3) and (4). However, T C 'is a control target temperature after the change, TC is a control target temperature before the change. K (k> 0) is a proportional constant.

min>Tの場合 T’=T+k(Tmin−T) 式(3)
max<Tの場合 T’=T−k(Tmax−T) 式(4)
When T min > T T C ′ = T C + k (T min −T) Equation (3)
In the case of T max <T, T C ′ = T C −k (T max −T) Equation (4)

このように、熱交入口サーミスタ102の検出温度Tが下限値Tminを下回ると、熱交出口サーミスタ105の制御目標温度Tは高くなる。熱交出口サーミスタ105の制御目標温度Tが高くなると、循環比例弁201の開度が小さくなり、貯湯系20を流れる湯水の流量が減少するので、貯湯熱交換器3における排熱系10から貯湯系20への流熱量が低下し、その結果、熱交入口サーミスタ102の検出温度Tは上昇する。 Thus, when the detected temperature T of the heat交入port thermistor 102 is less than the lower limit T min, control target temperature T C of heat交出port thermistor 105 increases. When the control target temperature T C of heat交出port thermistor 105 increases, the opening degree of the circulating proportional valve 201 becomes small, since the hot water flow rate through the hot water storage system 20 is decreased, the exhaust heat system 10 in the hot water storage heat exchanger 3 The amount of heat flowing to the hot water storage system 20 decreases, and as a result, the detected temperature T of the heat exchange inlet thermistor 102 increases.

一方、熱交入口サーミスタ102の検出温度Tが上限値Tmaxを上回ると、熱交出口サーミスタ105の制御目標温度Tは低くなる。熱交出口サーミスタ105の制御目標温度Tが低くなると、循環比例弁201の開度が大きくなり、貯湯系20を流れる湯水の流量が増加するので、貯湯熱交換器3における排熱系10から貯湯系20への流熱量が増加し、その結果、熱交入口サーミスタ102の検出温度Tは低下する。 On the other hand, the detected temperature T of the heat交入port thermistor 102 exceeds the upper limit value T max, the control target temperature T C of heat交出port thermistor 105 is low. When the control target temperature T C of heat交出port thermistor 105 is low, the opening degree of the circulating proportional valve 201 is increased, since the hot water flow rate through the hot water storage system 20 is increased, the exhaust heat system 10 in the hot water storage heat exchanger 3 The amount of heat flowing to the hot water storage system 20 increases, and as a result, the detected temperature T of the heat exchange inlet thermistor 102 decreases.

本発明の実施例に係るコージェネレーションシステムの配管系統図である。It is a piping system diagram of a cogeneration system concerning an example of the present invention. 前記コージェネレーションシステムの変形例を示す配管系統図である。It is a piping system diagram which shows the modification of the said cogeneration system. 前記コージェネレーションシステムの制御プログラムを示すフローチャートである。It is a flowchart which shows the control program of the said cogeneration system.

符号の説明Explanation of symbols

1 コージェネレーションシステム
2 貯湯タンク(貯熱槽)
3 貯湯熱交換器
4 暖房低温熱交換器
5 補助熱源機
6 暖房高温熱交換器
10 排熱系
20 貯湯系
30 暖房系
40 給湯系
50 給水系
101 発電用ガスエンジン
102 熱交入口サーミスタ
103 余剰電力回収ヒータ(電熱変換装置)
104 中間サーミスタ
105 熱交出口サーミスタ
106 冷却水タンク
107 冷却水ポンプ
108 冷却水比例弁
109 バルブ付バイパス管
201 循環比例弁
202 循環ポンプ
203 貯湯サーミスタ
301 暖房水戻り口
302 暖房水タンク
303 リターン回路
304 暖房水ポンプ
305 暖房水サーミスタ
306 暖房往き口
401 BU水量センサ
402 BU入サーミスタ
403 BU出サーミスタ
404 暖房弁
501 給水口
502 補給水閉止弁
503 減圧弁

1 Cogeneration system 2 Hot water storage tank (heat storage tank)
DESCRIPTION OF SYMBOLS 3 Hot water storage heat exchanger 4 Heating low temperature heat exchanger 5 Auxiliary heat source machine 6 Heating high temperature heat exchanger 10 Waste heat system 20 Hot water storage system 30 Heating system 40 Hot water supply system 50 Water supply system 101 Power generation gas engine 102 Heat entrance inlet thermistor 103 Surplus power Recovery heater (electrothermal converter)
104 Intermediate thermistor 105 Heat exchange outlet thermistor 106 Cooling water tank 107 Cooling water pump 108 Cooling water proportional valve 109 Bypass pipe 201 with valve Circulating proportional valve
202 Circulation Pump 203 Hot Water Storage Thermistor 301 Heating Water Return Port 302 Heating Water Tank 303 Return Circuit 304 Heating Water Pump 305 Heating Water Thermistor 306 Heating Outlet Port 401 BU Water Quantity Sensor 402 BU Input Thermistor 403 BU Outlet Thermistor 404 Heating Valve 501 Water Supply Port 502 Replenishment Water stop valve 503 Pressure reducing valve

Claims (11)

電力と熱を発生する熱電併給手段と、
前記熱電併給手段の排熱を回収して外部の熱負荷に供給する熱回収供給システムと、
前記熱回収供給システムが供給する熱量が前記熱負荷の熱需要に対して不足する場合に、不足熱量を前記熱負荷に供給する補助熱源装置と
を有するコージェネレーションシステムにおいて、
前記熱電併給手段が出力する電力の一部を熱量に変換して前記熱回収供給システムに供給する電熱変換装置;
及び、前記不足熱量が前記補助熱源装置の最低出力に満たない場合に、前記熱電併給手段の出力増加により前記熱電併給手段の排熱を増加させるとともに、前記熱電併給手段の出力増加分を前記電熱変換装置に入力して熱量に変換することにより前記不足熱量を補う制御装置;
を備えていることを特徴とするコージェネレーションシステム。
A cogeneration means for generating electric power and heat;
A heat recovery and supply system for recovering exhaust heat of the cogeneration means and supplying it to an external heat load;
In a cogeneration system having an auxiliary heat source device that supplies a shortage of heat to the heat load when the amount of heat supplied by the heat recovery supply system is insufficient with respect to the heat demand of the heat load,
An electrothermal conversion device for converting a part of electric power output from the cogeneration means into heat and supplying the heat recovery supply system;
And when the insufficient heat quantity is less than the minimum output of the auxiliary heat source device, the exhaust heat of the combined heat and power supply means is increased by increasing the output of the combined heat and power supply means, and the increased output of the combined heat and power supply means is A control device that compensates for the shortage of heat by inputting it into a converter and converting it into heat;
Cogeneration system characterized by having
電力と熱を発生する熱電併給手段と、
前記熱電併給手段の排熱を回収して外部の熱負荷に供給する熱回収供給システムと、
前記熱回収供給システムが供給する熱量が前記熱負荷の熱需要に対して不足する場合に、不足熱量を前記熱負荷に供給する補助熱源装置と
を有するコージェネレーションシステムにおいて、
前記熱電併給手段が出力する電力の一部を熱量に変換して前記熱回収供給システムに供給する電熱変換装置;
及び、前記不足熱量を前記補助熱源装置の運転で賄う場合の燃料消費量と、前記不足熱量を前記熱電併給手段の出力増加による排熱量の増加と前記熱電併給手段の出力増加分の電力を前記電熱変換装置で変換して得た熱量で賄う場合の燃料消費量を比較して、後者が前者に比べて小さい場合は前記熱電併給手段の出力を増加させるとともに、前記熱電併給手段の出力の増加分を前記電熱変換装置に入力して熱量に変換することにより前記不足熱量を補う制御装置;
を備えることを特徴とするコージェネレーションシステム。
A cogeneration means for generating electric power and heat;
A heat recovery and supply system for recovering exhaust heat of the cogeneration means and supplying it to an external heat load;
In a cogeneration system having an auxiliary heat source device that supplies a shortage of heat to the heat load when the amount of heat supplied by the heat recovery supply system is insufficient with respect to the heat demand of the heat load,
An electrothermal conversion device for converting a part of electric power output from the cogeneration means into heat and supplying the heat recovery supply system;
And the amount of fuel consumed when the amount of insufficient heat is covered by the operation of the auxiliary heat source device, the amount of exhaust heat due to the increase in output of the heat and power supply means, and the amount of power corresponding to the increase in output of the heat and power supply means. Compared to the amount of fuel consumed when the amount of heat obtained by conversion by the electrothermal conversion device is covered, if the latter is smaller than the former, the output of the cogeneration means is increased and the output of the cogeneration means is increased. A controller that compensates for the shortage of heat by inputting the amount into the electrothermal converter and converting it into heat;
Cogeneration system characterized by comprising.
前記熱回収供給システムは、
熱交換器;
貯熱槽;
前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路;
前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路;
及び前記貯熱槽から前記熱負荷に前記第2の熱媒を送出する熱供給管路;
を備えるとともに、
前記電熱変換装置は、
前記第1の循環路において前記第1の熱媒を加熱する電熱ヒータであること
を特徴とする請求項1又は2に記載のコージェネレーションシステム。
The heat recovery supply system includes:
Heat exchanger;
Heat storage tank;
A first circulation path through which a first heat medium circulates between the cogeneration means and the primary pipe of the heat exchanger;
A second circulation path through which a second heat medium circulates between a secondary side pipe of the heat exchanger and the heat storage tank;
And a heat supply line for delivering the second heat medium from the heat storage tank to the heat load;
With
The electrothermal converter is
The cogeneration system according to claim 1, wherein the cogeneration system is an electric heater that heats the first heat medium in the first circulation path.
前記熱回収供給システムは、
熱交換器;
貯熱槽;
前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路;
前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路;
及び前記貯熱槽から前記熱負荷に前記第2の熱媒を送出する熱供給管路;
を備えるとともに、
前記電熱変換装置は、
前記第2の循環路において前記第2の熱媒を加熱する電熱ヒータであること
を特徴とする請求項1又は2に記載のコージェネレーションシステム。
The heat recovery supply system includes:
Heat exchanger;
Heat storage tank;
A first circulation path through which a first heat medium circulates between the cogeneration means and the primary pipe of the heat exchanger;
A second circulation path through which a second heat medium circulates between a secondary side pipe of the heat exchanger and the heat storage tank;
And a heat supply line for delivering the second heat medium from the heat storage tank to the heat load;
With
The electrothermal converter is
The cogeneration system according to claim 1, wherein the cogeneration system is an electric heater that heats the second heat medium in the second circulation path.
前記熱回収供給システムは、
熱交換器;
貯熱槽;
前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路;
前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路;
及び前記貯熱槽から前記熱負荷に前記第2の熱媒を送出する熱供給管路;
を備えるとともに、
前記電熱変換装置は前記熱供給管路において前記第2の熱媒を加熱する電熱ヒータであること
を特徴とする請求項1又は2に記載のコージェネレーションシステム。
The heat recovery supply system includes:
Heat exchanger;
Heat storage tank;
A first circulation path through which a first heat medium circulates between the cogeneration means and the primary pipe of the heat exchanger;
A second circulation path through which a second heat medium circulates between a secondary side pipe of the heat exchanger and the heat storage tank;
And a heat supply line for delivering the second heat medium from the heat storage tank to the heat load;
With
The cogeneration system according to claim 1 or 2, wherein the electrothermal converter is an electric heater that heats the second heat medium in the heat supply pipe.
前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記第1の循環路内の前記第1の熱媒の流量を増減する流量調整手段を備えること
を特徴とする請求項3乃至5のいずれかに記載のコージェネレーションシステム。
Flow rate adjusting means for increasing or decreasing the flow rate of the first heat medium in the first circulation path according to the temperature of the first heat medium at the inlet of the primary side pipe of the heat exchanger. The cogeneration system according to any one of claims 3 to 5, further comprising:
前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記第2の循環路内の前記第2の熱媒の流量を増減する流量調整手段を備えること
を特徴とする請求項3乃至5のいずれかに記載のコージェネレーションシステム。
Flow rate adjusting means for increasing or decreasing the flow rate of the second heat medium in the second circulation path according to the temperature of the first heat medium at the inlet of the primary side pipe of the heat exchanger. The cogeneration system according to any one of claims 3 to 5, further comprising:
前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記熱電併給手段の入口における前記第1の熱媒の制御目標温度を増減する目標温度増減手段
を備えるとともに、
前記流量調整手段は、
前記熱電併給手段の入口における前記第1の熱媒の温度の前記制御目標温度に対する高低に応じて、前記第2の循環路内の前記第2の熱媒の流量を増減すること
を特徴とする請求項7に記載のコージェネレーションシステム。
A target temperature increase / decrease for increasing / decreasing the control target temperature of the first heat medium at the inlet of the cogeneration means according to the level of the temperature of the first heat medium at the inlet of the primary side conduit of the heat exchanger. With means,
The flow rate adjusting means is
The flow rate of the second heat medium in the second circulation path is increased or decreased according to the level of the temperature of the first heat medium at the inlet of the cogeneration means with respect to the control target temperature. The cogeneration system according to claim 7.
電力と熱を発生する熱電併給手段と、
熱交換器と、
貯熱槽と、
前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路と、
前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路と
を有して前記貯熱槽から熱負荷に熱を供給するコージェネレーションシステムにおいて、
前記第1の循環路は、
前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記第1の循環路内の前記第1の熱媒の流量を増減する流量調整手段を備えること
を特徴とするコージェネレーションシステム。
A cogeneration means for generating electric power and heat;
A heat exchanger,
A heat storage tank,
A first circulation path through which a first heat medium circulates between the cogeneration means and the primary side pipe of the heat exchanger;
A cogeneration system that has a second circulation path through which a second heat medium circulates between a secondary side pipe of the heat exchanger and the heat storage tank, and supplies heat to the heat load from the heat storage tank In the system,
The first circulation path is:
Flow rate adjusting means for increasing or decreasing the flow rate of the first heat medium in the first circulation path according to the temperature of the first heat medium at the inlet of the primary side pipe of the heat exchanger. A cogeneration system characterized by comprising.
電力と熱を発生する熱電併給手段と、
熱交換器と、
貯熱槽と、
前記熱電併給手段と前記熱交換器の1次側管路の間で第1の熱媒が循環する第1の循環路と、
前記熱交換器の2次側管路と前記貯熱槽の間で第2の熱媒が循環する第2の循環路と
を有して前記貯熱槽から熱負荷に熱を供給するコージェネレーションシステムにおいて、
前記第2の循環路は、前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記第2の循環路内の前記第2の熱媒の流量を増減する流量調整手段を備えることを特徴とするコージェネレーションシステム。
A cogeneration means for generating electric power and heat;
A heat exchanger,
A heat storage tank,
A first circulation path through which a first heat medium circulates between the cogeneration means and the primary side pipe of the heat exchanger;
A cogeneration system that has a second circulation path through which a second heat medium circulates between a secondary side pipe of the heat exchanger and the heat storage tank, and supplies heat to the heat load from the heat storage tank In the system,
The second circulation path is configured so that the temperature of the first heat medium at the inlet of the primary side pipe of the heat exchanger varies depending on the temperature of the first heat medium. A cogeneration system comprising flow rate adjusting means for increasing or decreasing the flow rate.
前記熱交換器の1次側管路の入口における前記第1の熱媒の温度の高低に応じて、前記熱電併給手段の入口における前記第1の熱媒の制御目標温度を増減する目標温度増減手段
を備えるとともに、
前記流量調整手段は、
前記熱電併給手段の入口における前記第1の熱媒の温度の前記制御目標温度に対する高低に応じて、前記第2の循環路内の前記第2の熱媒の流量を増減すること
を特徴とする請求項10に記載のコージェネレーションシステム。


A target temperature increase / decrease for increasing / decreasing the control target temperature of the first heat medium at the inlet of the cogeneration means according to the level of the temperature of the first heat medium at the inlet of the primary side conduit of the heat exchanger. With means,
The flow rate adjusting means is
The flow rate of the second heat medium in the second circulation path is increased or decreased according to the level of the temperature of the first heat medium at the inlet of the cogeneration means with respect to the control target temperature. The cogeneration system according to claim 10.


JP2005248511A 2005-08-30 2005-08-30 Cogeneration system Expired - Fee Related JP4685553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248511A JP4685553B2 (en) 2005-08-30 2005-08-30 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248511A JP4685553B2 (en) 2005-08-30 2005-08-30 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2007064518A true JP2007064518A (en) 2007-03-15
JP4685553B2 JP4685553B2 (en) 2011-05-18

Family

ID=37926917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248511A Expired - Fee Related JP4685553B2 (en) 2005-08-30 2005-08-30 Cogeneration system

Country Status (1)

Country Link
JP (1) JP4685553B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292028A (en) * 2007-05-23 2008-12-04 Chofu Seisakusho Co Ltd Heat supply device
US20100205958A1 (en) * 2009-02-19 2010-08-19 Takagi Industrial Co., Ltd. Exhaust heat recovering method, exhaust heat recovering apparatus and cogeneration system
JP2014214635A (en) * 2013-04-23 2014-11-17 アイシン精機株式会社 Cogeneration system
JP5847337B2 (en) * 2013-01-10 2016-01-20 三菱電機株式会社 Multiple temperature system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157006A (en) * 1991-11-29 1993-06-22 Kubota Corp Engine exhaust heat recovery device
JPH11149930A (en) * 1997-11-19 1999-06-02 Toshiba Corp Fuel cell type power generator and waste heat utilization system
JP2002329518A (en) * 2001-04-27 2002-11-15 Toshiba Corp Fuel cell power generating system
JP2003021392A (en) * 2001-07-10 2003-01-24 Chofu Seisakusho Co Ltd Cogeneration system
JP2003161525A (en) * 2001-11-26 2003-06-06 Tokyo Gas Co Ltd Heat exchange device
JP2003282108A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell system
JP2004257364A (en) * 2003-02-27 2004-09-16 Chofu Seisakusho Co Ltd Cogeneration system
JP2004297905A (en) * 2003-03-27 2004-10-21 Osaka Gas Co Ltd Cogeneration system and operation method therefor
JP2005009456A (en) * 2003-06-20 2005-01-13 Chofu Seisakusho Co Ltd Cogeneration system
JP2005016787A (en) * 2003-06-24 2005-01-20 Chofu Seisakusho Co Ltd Cogeneration system
JP2005025986A (en) * 2003-06-30 2005-01-27 Osaka Gas Co Ltd Cogeneration system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157006A (en) * 1991-11-29 1993-06-22 Kubota Corp Engine exhaust heat recovery device
JPH11149930A (en) * 1997-11-19 1999-06-02 Toshiba Corp Fuel cell type power generator and waste heat utilization system
JP2002329518A (en) * 2001-04-27 2002-11-15 Toshiba Corp Fuel cell power generating system
JP2003021392A (en) * 2001-07-10 2003-01-24 Chofu Seisakusho Co Ltd Cogeneration system
JP2003161525A (en) * 2001-11-26 2003-06-06 Tokyo Gas Co Ltd Heat exchange device
JP2003282108A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell system
JP2004257364A (en) * 2003-02-27 2004-09-16 Chofu Seisakusho Co Ltd Cogeneration system
JP2004297905A (en) * 2003-03-27 2004-10-21 Osaka Gas Co Ltd Cogeneration system and operation method therefor
JP2005009456A (en) * 2003-06-20 2005-01-13 Chofu Seisakusho Co Ltd Cogeneration system
JP2005016787A (en) * 2003-06-24 2005-01-20 Chofu Seisakusho Co Ltd Cogeneration system
JP2005025986A (en) * 2003-06-30 2005-01-27 Osaka Gas Co Ltd Cogeneration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292028A (en) * 2007-05-23 2008-12-04 Chofu Seisakusho Co Ltd Heat supply device
US20100205958A1 (en) * 2009-02-19 2010-08-19 Takagi Industrial Co., Ltd. Exhaust heat recovering method, exhaust heat recovering apparatus and cogeneration system
US8499551B2 (en) * 2009-02-19 2013-08-06 Purpose Company Limited Exhaust heat recovering method, exhaust heat recovering apparatus and cogeneration system
JP5847337B2 (en) * 2013-01-10 2016-01-20 三菱電機株式会社 Multiple temperature system
JP2014214635A (en) * 2013-04-23 2014-11-17 アイシン精機株式会社 Cogeneration system

Also Published As

Publication number Publication date
JP4685553B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP4296200B2 (en) Hot water system
JP5300717B2 (en) Cogeneration system
JP2006214619A (en) Hot-water supply device
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP4685553B2 (en) Cogeneration system
JP6153328B2 (en) Cogeneration system and heating equipment
CN101629735A (en) Hot water supply system
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JP2012057923A (en) Hot water supply system
JP4528226B2 (en) Hybrid hot water supply system
JP5592429B2 (en) Heat supply equipment
JP4359341B2 (en) Hot water system
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP2007248008A (en) Cogeneration system and its operation method
JP4680870B2 (en) Cogeneration system
JP2005016787A (en) Cogeneration system
JP4198522B2 (en) Cogeneration system
JP4118707B2 (en) Water heater
JP5317810B2 (en) Water heater
JP2010181049A (en) Cogeneration system
JP4727680B2 (en) Water heater
JP2008292028A (en) Heat supply device
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JP2010266167A (en) Hot water storage type hot water supply device
JP4199694B2 (en) Combined hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees