JP4199694B2 - Combined hot water supply system - Google Patents

Combined hot water supply system Download PDF

Info

Publication number
JP4199694B2
JP4199694B2 JP2004113322A JP2004113322A JP4199694B2 JP 4199694 B2 JP4199694 B2 JP 4199694B2 JP 2004113322 A JP2004113322 A JP 2004113322A JP 2004113322 A JP2004113322 A JP 2004113322A JP 4199694 B2 JP4199694 B2 JP 4199694B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat source
storage tank
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004113322A
Other languages
Japanese (ja)
Other versions
JP2005299962A (en
Inventor
達也 和田
靖 飯塚
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2004113322A priority Critical patent/JP4199694B2/en
Publication of JP2005299962A publication Critical patent/JP2005299962A/en
Application granted granted Critical
Publication of JP4199694B2 publication Critical patent/JP4199694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、例えば固体高分子型燃料電池(PEFC)等の発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置と、通水の水を加熱して作成した湯を給湯先に供給する補助給湯熱源装置とが併設されている複合給湯熱源システムに関するものである。   The present invention is directed to a cogeneration hot water supply heat source device that supplies hot water accumulated in a hot water storage tank to a hot water supply destination by using exhaust heat of a power generation device such as a polymer electrolyte fuel cell (PEFC), and heats water that is passed through The present invention relates to a combined hot water supply heat source system provided with an auxiliary hot water supply heat source device for supplying hot water prepared in this manner to a hot water supply destination.

近年、省エネルギー効果を奏することが可能なシステムとして、例えば固体高分子型燃料電池等の発電装置の排熱を利用して、貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置が提案されている(例えば、特許文献1参照。)。   In recent years, as a system capable of achieving an energy saving effect, for example, a cogeneration hot water supply heat source device that supplies hot water accumulated in a hot water storage tank to a hot water supply destination using waste heat of a power generation device such as a polymer electrolyte fuel cell It has been proposed (see, for example, Patent Document 1).

図5には、コジェネレーション給湯熱源装置の一例が示されている。このコジェネレーション給湯熱源装置3は、発電装置1と貯湯槽2とを有し、貯湯槽2は、貯湯槽2内に給水を導入する給水路11と貯湯槽2の湯を送水する給湯路12を備えている。給湯路12には湯水温検出センサ100が設けられている。   FIG. 5 shows an example of a cogeneration hot water supply heat source device. The cogeneration hot water supply heat source device 3 includes a power generation device 1 and a hot water storage tank 2, and the hot water storage tank 2 introduces water into the hot water storage tank 2 and a hot water supply path 12 that supplies hot water from the hot water storage tank 2. It has. A hot water temperature detection sensor 100 is provided in the hot water supply path 12.

貯湯槽2と発電装置1との間には、冷却水導入通路13と排熱湯導入通路14とが配備されており、冷却水導入通路13は貯湯槽2内の水を発電装置1の冷却水として発電装置1側に導入し、この水を発電装置1の発電時に生じる排熱によって加熱して例えば60℃といった温度の湯とし、排熱湯導入通路14を介して貯湯槽2に蓄積する。つまり、冷却水導入通路13と排熱湯導入通路14は、貯湯槽2内の水を発電装置1の排熱により加熱して湯にする手段を形成している。   Between the hot water storage tank 2 and the power generation device 1, a cooling water introduction passage 13 and a waste hot water introduction passage 14 are provided. The cooling water introduction passage 13 uses the water in the hot water storage tank 2 as cooling water for the power generation device 1. The water is introduced into the power generation device 1 side and heated by exhaust heat generated during power generation by the power generation device 1 to form hot water having a temperature of, for example, 60 ° C., and is accumulated in the hot water storage tank 2 through the exhaust heat hot water introduction passage 14. That is, the cooling water introduction passage 13 and the exhaust hot water introduction passage 14 form a means for heating the water in the hot water storage tank 2 by the exhaust heat of the power generator 1 to make hot water.

貯湯槽2の下方側には、貯湯槽2内の水を排水する排水通路15が設けられ、該排水通路15には排水弁52が設けられている。貯湯槽2の上方側には、圧力逃がし通路16が設けられており、圧力逃がし通路16には、過圧逃がし弁50が設けられている。貯湯槽2内は、通常、湯または水によって満たされており、この図では、図を分かりやすくするために、湯が充填されている領域を斜線で示している。   A drainage passage 15 for draining the water in the hot water tank 2 is provided below the hot water tank 2, and a drain valve 52 is provided in the drainage passage 15. A pressure relief passage 16 is provided above the hot water storage tank 2, and an overpressure relief valve 50 is provided in the pressure relief passage 16. The hot water tank 2 is usually filled with hot water or water. In this figure, the region filled with hot water is indicated by hatching in order to make the drawing easy to understand.

このコジェネレーション給湯熱源装置3において、発電装置1が作動すると、貯湯槽2の下部側に貯められている水が冷却水導入通路13を通して発電装置1に導入され、発電装置1の発電時の排熱によって暖められて湯とされ、この湯が排熱湯導入通路14を通って貯湯槽2の上方側から貯湯槽2内に導入される。この動作が繰り返されると、貯湯槽2の下部側の水が発電装置1の排熱によって湯にされて貯湯槽2の上部側に導入されるので、図5の破線Aで示す、貯湯槽2内の水と湯との境界線が貯湯槽2の下部側に移動していく。   In the cogeneration hot water supply heat source device 3, when the power generation device 1 is activated, water stored in the lower part of the hot water tank 2 is introduced into the power generation device 1 through the cooling water introduction passage 13, and is discharged when the power generation device 1 generates power. The hot water is heated to be hot water, and this hot water is introduced into the hot water tank 2 from the upper side of the hot water tank 2 through the exhaust hot water introduction passage 14. When this operation is repeated, the water on the lower side of the hot water tank 2 is converted into hot water by the exhaust heat of the power generator 1 and introduced into the upper side of the hot water tank 2, so that the hot water tank 2 shown by the broken line A in FIG. The boundary line between the water and hot water inside moves to the lower side of the hot water tank 2.

なお、貯湯槽2内が全て例えば45℃以上といった発電許容温度以上の温度の湯で満たされると、発電装置1への冷却水導入を行うことができないので、発電装置1による発電は行えない。   Note that if the hot water tank 2 is entirely filled with hot water having a temperature equal to or higher than the power generation allowable temperature, for example, 45 ° C. or higher, the cooling water cannot be introduced into the power generation device 1, so that power generation by the power generation device 1 cannot be performed.

また、貯湯槽2の湯が給湯路12を通して適宜の給湯場所に送水されると、この送水によって減少した湯量だけ、給水管11から貯湯槽2内に給水が行われるので、この場合、図5の破線Aで示す、貯湯槽2内の水と湯との境界線は貯湯槽2の上部側に移動していく。なお、給湯路12から送水される湯の流量は、流量センサ70によって検出される。   Further, when the hot water in the hot water tank 2 is supplied to an appropriate hot water supply place through the hot water supply path 12, water is supplied from the water supply pipe 11 into the hot water tank 2 by the amount of hot water reduced by this water supply. A boundary line between water and hot water in the hot water tank 2 indicated by a broken line A in FIG. The flow rate of hot water fed from the hot water supply path 12 is detected by the flow sensor 70.

上記のようなコジェネレーション給湯熱源装置3は、一般に、例えば給湯器を備えた補助給湯熱源装置と併設されて用いられるものであり、補助給湯熱源装置とコジェネレーション給湯熱源装置3の併設によって、複合給湯熱源システムが形成される。   The cogeneration hot water supply heat source device 3 as described above is generally used in combination with, for example, an auxiliary hot water supply heat source device including a hot water heater, and is combined with the auxiliary hot water supply heat source device and the cogeneration hot water supply heat source device 3. A hot water supply heat source system is formed.

このような複合給湯熱源システムにおいて、コジェネレーション給湯熱源装置3の貯湯槽2から送水される湯水温(例えば湯水温検出センサ100の検出温度)が、例えば(給湯設定温度+1)℃未満になって、蓄熱が無くなったと判断された場合、給湯熱源を補助給湯熱源装置に切り替えて給湯を継続し、再度蓄熱が利用できる状態になったら(例えば湯水温検出センサ100の検出温度が、(給湯設定温度+1)以上になったら)、給湯熱源を再びコジェネレーション給湯熱源装置3の貯湯槽2に切り替えて貯湯槽2からの給湯を行うようにしている。   In such a combined hot water supply heat source system, the hot water temperature (for example, the detection temperature of the hot water temperature detection sensor 100) supplied from the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is, for example, less than (hot water supply set temperature + 1) ° C. When it is determined that the heat storage has been lost, the hot water supply heat source is switched to the auxiliary hot water supply heat source device, the hot water supply is continued, and the heat storage can be used again (for example, the detected temperature of the hot water temperature detection sensor 100 is the (hot water supply set temperature). +1) or more), the hot water supply heat source is switched again to the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 to supply hot water from the hot water storage tank 2.

特開2003―120998JP2003-120998

しかしながら、複合給湯熱源システムにおいて、上記のようにして貯湯槽2から送水される湯水温と、一つの基準値とに基づいて、貯湯槽2の蓄熱の有無を判断し、コジェネレーション給湯熱源装置3側からの給湯と補助給湯熱源装置からの給湯との切り替えを行うようにすると、給湯時に貯湯槽2内に蓄熱されている湯の蓄熱量と給湯流量と発電によって生じる蓄熱量との関係によっては、貯湯槽2内の蓄熱を使い切って(湯を使い切って)補助給湯熱源装置に切り替えた直後に、再度蓄熱が利用できる状態になり、再度、給湯熱源を貯湯槽2に切り替えた後、また、すぐに、貯湯槽2内の蓄熱を使い切ってしまって補助給湯熱源装置に切り替わるといったことが生じる。   However, in the combined hot water supply heat source system, the presence or absence of heat storage in the hot water tank 2 is determined based on the hot water temperature fed from the hot water tank 2 and one reference value as described above, and the cogeneration hot water supply heat source device 3 When switching between hot water supply from the side and hot water supply from the auxiliary hot water source, depending on the relationship between the amount of heat stored in the hot water storage tank 2 during hot water supply, the flow rate of hot water, and the amount of heat stored by power generation Immediately after using up the heat storage in the hot water tank 2 (using hot water) and switching to the auxiliary hot water supply heat source device, the heat storage becomes available again. After switching the hot water supply heat source to the hot water tank 2 again, Immediately, the stored heat in the hot water storage tank 2 is used up and the auxiliary hot water supply heat source device is switched.

そうなると、コジェネレーション給湯熱源装置3側からの給湯と補助給湯熱源装置からの給湯とが頻繁に切り替わり、出湯温度が安定せず、使用者等に不快感を与えるといった問題があった。   Then, the hot water supply from the cogeneration hot water supply heat source device 3 side and the hot water supply from the auxiliary hot water supply heat source device are frequently switched, and there is a problem that the hot water temperature is not stabilized and the user is uncomfortable.

本発明は、上記従来の課題を解決するために成されたものであり、その目的は、コジェネレーション給湯熱源装置と補助給湯熱源装置とを備えた複合給湯熱源システムにおいて、出湯温度が安定した使い勝手の良い複合給湯熱源システムを提供することにある。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a complex hot water supply heat source system including a cogeneration hot water supply heat source device and an auxiliary hot water supply heat source device, with a stable hot water temperature and ease of use. It is to provide a complex hot water supply heat source system.

上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、第1の発明は、発電装置と貯湯槽とを備え当該貯湯槽内の水を冷却水として発電装置へ導入し、当該冷却水を発電装置の発電の排熱を利用して加熱し湯にして前記貯湯槽の上部から貯湯槽内に入れて蓄積し、当該貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置と、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置とが併設されている複合給湯熱源システムにおいて、前記コジェネレーション給湯熱源装置と補助給湯熱源装置との給湯動作を制御する制御装置には貯湯槽内の残量の湯量に対応するしきい値データが上部しきい値とそれよりも小さい値であって予め与えられる設定温度範囲の貯湯槽内の湯が使い切られる状態時の湯量を示す下部しきい値で与えられ、制御装置には発電装置の稼動による単位時間当たりの湯の蓄熱量と発電装置の稼動時間に基いて求めた貯湯槽内の湯の蓄積量から流量センサにより得られる貯湯槽内の湯の給湯使用量を差し引いて貯湯槽内の湯の残存の湯量を貯湯槽内の蓄熱量に対応する値として求める蓄熱量検出部が設けられ、この蓄熱量検出部により求められた貯湯槽内の湯の残量の値が前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽から補助給湯熱源装置へ切替えて給湯を行い、貯湯槽内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽へ切替えて給湯を行う給湯熱源の選択制御部を備えている構成をもって課題を解決する手段としている。また、第2〜第5の発明は、発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置と、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置とが併設されている複合給湯熱源システムにおいて、前記コジェネレーション給湯熱源装置と補助給湯熱源装置との給湯動作を制御する制御装置には蓄熱量に対応するしきい値データが上部しきい値とそれよりも値の小さい下部しきい値で与えられ、制御装置にはコジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽内の湯の蓄熱量に対応する値を求める蓄熱量検出部が設けられ、この蓄熱量検出部により求められた蓄熱量に対応する値が前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽から補助給湯熱源装置へ切替えて給湯を行い、貯湯槽内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽へ切替えて給湯を行う給湯熱源の選択制御部を備えている構成を共通の構成としてもち、その上で、第2の発明は、前記制御装置により給湯熱源がコジェネレーション給湯熱源装置の貯湯槽から補助給湯熱源装置へ切替られたときには、その補助給湯熱源装置からの連続給湯が終了するまでは補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽への給湯熱源の切替を阻止する熱源切替阻止部が設けられている構成をもって課題を解決する手段としており、第3の発明は前記共通の構成を備えた上で、前記蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は貯湯槽への給水温度が高くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成していることをもって課題を解決する手段としており、第4の発明は前記共通の構成を備えた上で、前記蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は給湯設定温度が低くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成していることをもって課題を解決する手段としており、第5の発明は前記共通の構成を備えた上で、1日の整数倍(1以上の整数倍)を周期とする時間軸上の各時刻に対する給湯使用量を流量センサから得られる給湯流量の情報と時計機構から得られる時刻情報とに基き学習記憶する給湯使用量学習記憶部と、蓄熱量に対応するしきい値データを変更するしきい値データ変更部とを有し、該しきい値データ変更部は時計機構から時刻データを取り込み前記給湯使用量学習記憶部のデータを参照して給湯使用量が多くなる時間帯に近づいた時に上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向に変更する構成と成していることをもって課題を解決する手段としている。 In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention includes a power generation device and a hot water storage tank, introduces water in the hot water storage tank into the power generation device as cooling water, and heats the cooling water using the exhaust heat generated by the power generation device. In the hot water storage tank, the hot water stored in the hot water storage tank is accumulated and the hot water accumulated in the hot water storage tank is supplied to the hot water supply destination, and the hot water created by heating the flowing water is supplied. In a combined hot water supply heat source system provided with an auxiliary hot water supply heat source device having a function to be supplied first, a control device for controlling the hot water supply operation of the cogeneration hot water supply heat source device and the auxiliary hot water supply heat source device is provided in a hot water storage tank. and the lower shows the threshold data is upper threshold value corresponding to the quantity of water remaining amount, the amount of hot water at the time of the state in which the hot water of the hot water storage tank is used up in the set temperature range to which it previously given a small difference value than It is given by the threshold value, control Hot water usage of the hot water in the hot water tank obtained by the flow sensor from the accumulation amount of hot water running time obtained hot water storage tank based on the hot water quantity of thermal storage and power generator per unit time by the operation of the power generator to the device the subtracted heat storage amount detection unit for determining the amount of hot water remaining in the hot water in the hot water tank as a value corresponding to the amount of heat stored in the hot water tank is provided, the remaining amount of the hot water in the hot water storage tank obtained by the heat storage amount detection unit When the value of the temperature drops below the lower threshold value, the hot water supply source is switched from the hot water storage tank to the auxiliary hot water supply heat source device to perform hot water supply, and the value corresponding to the heat storage amount of hot water in the hot water storage tank is the upper threshold value. When the temperature rises above, the hot water supply source is switched from the auxiliary hot water supply heat source device to the hot water storage tank of the cogeneration hot water supply heat source device to provide a hot water supply source selection control unit for hot water supply. Moreover, the 2nd-5th invention is the hot water produced by heating the water of a cogeneration hot water supply heat source apparatus which supplies hot water accumulated in the hot water storage tank to the hot water supply destination using the exhaust heat of the power generator, In a combined hot water supply heat source system provided with an auxiliary hot water supply heat source device having a function of supplying hot water to a hot water supply destination, the control device for controlling the hot water supply operation of the cogeneration hot water supply heat source device and the auxiliary hot water supply heat source device has a heat storage amount Threshold data corresponding to the upper threshold value and lower threshold value smaller than that are given, and the control device has a hot water storage tank based on monitor information related to detection of the amount of heat stored in the operating status of the cogeneration hot water source When a value corresponding to the amount of stored heat obtained by the amount of stored heat is reduced below the lower threshold, a hot water supply heat is provided. Is switched from the hot water storage tank to the auxiliary hot water supply heat source device to perform hot water supply, and when the value corresponding to the amount of stored hot water in the hot water tank rises above the upper threshold value, the hot water supply heat source is connected from the auxiliary hot water supply heat source device. A common hot water supply heat source selection control unit that performs hot water supply by switching to a hot water storage tank of a generation hot water supply heat source device is used as a common configuration. On the second aspect of the invention, the hot water supply heat source is cogenerated by the control device. When the hot water storage tank of the hot water supply heat source device is switched to the auxiliary hot water supply heat source device, the hot water supply heat source is switched from the auxiliary hot water supply heat source device to the hot water storage tank of the cogeneration hot water supply heat source device until the continuous hot water supply from the auxiliary hot water supply heat source device is completed. The heat source switching prevention part is provided as a means for solving the problem, and the third invention includes the common structure, and the heat storage A threshold value data changing unit that changes threshold data corresponding to the threshold value data, and the threshold value data changing unit includes at least one of an upper threshold value and a lower threshold value as the water supply temperature to the hot water tank increases. The fourth aspect of the present invention is a means for solving the problem by having a configuration in which the upper threshold value is changed in a direction of decreasing, and the fourth invention has the common configuration and has a threshold corresponding to the heat storage amount. A threshold data changing unit for changing the value data, and the threshold data changing unit reduces at least the upper threshold value of the upper threshold value and the lower threshold value as the hot water supply set temperature decreases. The fifth invention is provided with the above-described common configuration, and the period is an integer multiple of one day (an integer multiple of 1 or more). For each time on the time axis A hot water use amount learning storage unit that learns and stores hot water use amount based on hot water flow rate information obtained from a flow sensor and time information obtained from a clock mechanism, and a threshold value that changes threshold data corresponding to the heat storage amount And a threshold value data changing unit that takes in time data from the clock mechanism and refers to the data in the hot water use amount learning storage unit to raise the time when the hot water use amount is approaching. It is a means for solving the problem by adopting a configuration in which at least the upper threshold value of the threshold value and the lower threshold value is changed.

また、第の発明は、上記第2乃至第5のいずれか一つの発明の構成に加え、前記コジェネレーション給湯熱源装置の貯湯槽は、該貯湯槽内に給水を導入する給水路と貯湯槽の湯を送水する給湯路を備え、貯湯槽と発電装置との間には発電装置の排熱または前記発電装置の排熱吸収流体の熱を利用して貯湯槽内の水を加熱して湯にする手段が配備され、該手段によって形成された湯を貯湯槽に蓄積し、この貯湯槽の湯を前記給湯路を通して給湯先に供給する構成と成している構成をもって課題を解決する手段としている。 In addition to the configuration of any one of the second to fifth inventions, the sixth invention provides a hot water storage tank of the cogeneration hot water supply heat source device, wherein a hot water supply path and hot water storage for introducing water supply into the hot water storage tank are provided. A hot water supply passage is provided for supplying hot water from the tank, and the water in the hot water tank is heated between the hot water storage tank and the power generator using the exhaust heat of the power generator or the heat of the exhaust heat absorbing fluid of the power generator. Means for solving the problem with a configuration in which means for forming hot water is provided, hot water formed by the means is accumulated in a hot water storage tank, and the hot water in the hot water storage tank is supplied to the hot water supply destination through the hot water supply passage. It is said.

さらに、第の発明は、上記第1乃至第6のいずれか一つの発明の構成に加え、前記コジェネレーション給湯熱源装置の貯湯槽から送水される給湯の通路は補助給湯熱源装置の給水導入口に連通され、前記貯湯槽の湯のみを熱源として給湯を行うときは、貯湯槽の湯を非加熱駆動状態の補助給湯熱源装置を経由して給湯先へ給湯する構成と成したことを特徴とする。 Furthermore, a seventh aspect of the invention is that, in addition to the configuration of any one of the first to sixth aspects of the invention, the passage of hot water supplied from the hot water storage tank of the cogeneration hot water supply heat source device is water supply introduction of the auxiliary hot water supply heat source device. When hot water is supplied using only the hot water in the hot water tank as a heat source, the hot water in the hot water tank is configured to supply hot water to the hot water destination through an auxiliary hot water supply heat source device in an unheated drive state. To do.

さらに、第の発明は、上記第1乃至第7のいずれか一つの発明の構成に加え、前記選択制御部は、貯湯槽から送水される給湯の検出温度情報を取り込み、その給湯の検出温度が給湯設定温度よりも低いときには補助給湯熱源装置を加熱駆動し、貯湯槽からの湯を補助給湯熱源装置で加熱して給湯先へ送水する構成としたことを特徴とする。 Furthermore, in an eighth aspect of the invention, in addition to the configuration of any one of the first to seventh aspects of the invention, the selection control unit takes in detected temperature information of hot water supplied from the hot water tank and detects the hot water supply. When the temperature is lower than the hot water supply set temperature, the auxiliary hot water supply heat source device is driven to heat, and the hot water from the hot water storage tank is heated by the auxiliary hot water supply heat source device and supplied to the hot water supply destination.

さらに、第の発明は、上記第1又は第3乃至第のいずれか一つの発明の構成に加え、前記制御装置により給湯熱源がコジェネレーション給湯熱源装置の貯湯槽から補助給湯熱源装置へ切替られたときには、その補助給湯熱源装置から連続湯が終了するまでは補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽への給湯熱源切替を阻止する熱源切替阻止部が設けられている構成をもって課題を解決する手段としている。 Furthermore, in the ninth aspect of the invention, in addition to the configuration of any one of the first or third to eighth aspects, the control device switches the hot water supply heat source from the hot water storage tank of the cogeneration hot water supply heat source device to the auxiliary hot water supply heat source device. when it is, that until the continuous feeding hot water from the auxiliary water heater heat source device is completed is provided with a heat source switching blocking unit for blocking the switching of the hot water supply heat source from the auxiliary hot water supply heat source apparatus to the hot water storage tank cogeneration hot water supply heat source device The structure is a means to solve the problem.

さらに、第10の発明は、上記第1又は第2又は第4乃至第のいずれか一つの発明の構成に加え、前記蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は貯湯槽への給水温度が高くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成していることを特徴とする。 Further, a tenth aspect of the invention is a threshold value data changing unit that changes threshold value data corresponding to the heat storage amount in addition to the configuration of any one of the first, second, or fourth to ninth aspects. And the threshold value data changing unit is configured to change at least the upper threshold value between the upper threshold value and the lower threshold value as the water supply temperature to the hot water tank increases. It is characterized by being.

さらに、第11の発明は、上記第1又は第2又は第3又は第5乃至第10のいずれか一つの発明の構成に加え、前記蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は給湯設定温度が低くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成している構成をもって課題を解決する手段としている。 Further, an eleventh aspect of the invention is the threshold value for changing the threshold data corresponding to the heat storage amount in addition to the configuration of any one of the first, second, third, or fifth to tenth inventions. The threshold value data changing unit is configured to change at least the upper threshold value between the upper threshold value and the lower threshold value as the hot water supply set temperature decreases. It is a means to solve the problem with the configuration.

さらに、第12の発明は、上記第1乃至第4のいずれか一つ又は第6乃至第11のいずれか一つの発明の構成に加え、1日の整数倍(1以上の整数倍)を周期とする時間軸上の各時刻に対する給湯使用量を流量センサから得られる給湯流量の情報と時計機構から得られる時刻情報とに基き学習記憶する給湯使用量学習記憶部と、蓄熱量に対応するしきい値データを変更するしきい値データ変更部とを有し、該しきい値データ変更部は時計機構から時刻データを取り込み前記給湯使用量学習記憶部のデータを参照して給湯使用量が多くなる時間帯に近づいた時に上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向に変更する構成と成していることを特徴とする。 Furthermore, in a twelfth aspect , in addition to the configuration of any one of the first to fourth aspects or the sixth to eleventh aspects , an integral multiple of one day (an integral multiple of 1 or more) A hot water use amount learning storage unit that learns and stores hot water use amount for each time on the time axis as a cycle based on information on the hot water flow rate obtained from the flow sensor and time information obtained from the clock mechanism, and corresponds to the heat storage amount A threshold data changing unit for changing threshold data, the threshold data changing unit fetching time data from a clock mechanism and referring to the data in the hot water consumption learning storage unit, It is characterized in that at the time of approaching an increasing time zone, at least the upper threshold value of the upper threshold value and the lower threshold value is changed in the direction of decreasing.

さらに、第13の発明は上記第1乃至第12のいずれか一つの発明の構成に加え、前記発電装置は水素と酸素を反応させて電気を発生する燃料電池とした構成をもって課題を解決する手段としている。 Furthermore, the thirteenth aspect of the invention is a means for solving the problems by having a configuration in which the power generation device is a fuel cell that generates electricity by reacting hydrogen and oxygen in addition to the configuration of any one of the first to twelfth aspects of the invention. It is said.

さらに、第14の発明は上記第1乃至第13のいずれか一つの発明の構成に加え、前記発電装置はガスエンジンとした構成をもって課題を解決する手段としている。 Further, the fourteenth invention is a means for solving the problems with a configuration in which the power generator is a gas engine in addition to the configuration of any one of the first to thirteenth inventions.

本発明によれば、コジェネレーション給湯熱源装置と補助給湯熱源装置との給湯動作を制御する制御装置に、蓄熱量に対応するしきい値データを上部しきい値とそれよりも値の小さい下部しきい値で与え、コジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽内の湯の蓄熱量に対応する値を求めて、この求めた蓄熱量に対応する値が前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽から補助給湯熱源装置へ切替えて給湯を行い、貯湯槽内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽へ切替えて給湯を行う。   According to the present invention, the threshold value data corresponding to the heat storage amount is set to the upper threshold value and the lower value lower than that to the control device that controls the hot water supply operation of the cogeneration hot water supply heat source device and the auxiliary hot water supply heat source device. A threshold value is given, and a value corresponding to the heat storage amount of hot water in the hot water tank is obtained based on monitor information relating to the heat storage amount detection of the operating status of the cogeneration hot water source, and the value corresponding to the obtained heat storage amount is When the temperature falls below the threshold value, the hot water supply source is switched from the hot water storage tank to the auxiliary hot water supply heat source device to supply hot water, and the value corresponding to the heat storage amount of hot water in the hot water tank rises above the upper threshold value. Performs hot water supply by switching the hot water source from the auxiliary hot water source to the hot water storage tank of the cogeneration hot water source.

つまり、本発明において、制御装置には、蓄熱量に対応するしきい値データとして上部しきい値とそれよりも値の小さい下部しきい値とを与え、これらの値と、コジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づいて求めた貯湯槽内の湯の蓄熱量に対応する値とを比較して、給湯熱源の切替えを行うので、貯湯槽内が十分な蓄熱量となってから貯湯槽内の湯を給湯源として利用できるので、従来例のように給湯熱源の切替えが頻繁に起こることを抑制し、出湯温度の安定化を図ることができる。   That is, in the present invention, the control device is provided with an upper threshold value and a lower threshold value that is smaller than the upper threshold value as threshold data corresponding to the heat storage amount, and these values and the cogeneration hot water supply heat source device Compared with the value corresponding to the heat storage amount of hot water in the hot water storage tank obtained based on the monitor information on the detection of the heat storage amount of the operating status of the hot water tank, the hot water storage source is switched. Since the hot water in the hot water tank can be used as a hot water supply source after this time, it is possible to suppress frequent switching of the hot water supply heat source as in the conventional example, and to stabilize the hot water temperature.

また、本発明において、コジェネレーション給湯熱源装置の貯湯槽と発電装置との間に配備された手段によって形成された湯を貯湯槽に蓄積し、この貯湯槽の湯を、貯湯槽に備えられた給湯路を通して給湯先に供給する構成によれば、コジェネレーション給湯熱源装置による湯の蓄積と、貯湯槽からの湯の給湯とを効率的に行うことができる。   Further, in the present invention, hot water formed by means provided between the hot water storage tank of the cogeneration hot water supply heat source device and the power generation apparatus is accumulated in the hot water storage tank, and the hot water of the hot water storage tank is provided in the hot water storage tank. According to the configuration of supplying to the hot water supply destination through the hot water supply path, hot water accumulation by the cogeneration hot water supply heat source device and hot water supply from the hot water storage tank can be performed efficiently.

さらに、本発明において、コジェネレーション給湯熱源装置の貯湯槽から送水される給湯の通路は補助給湯熱源装置の給水導入口に連通され、前記貯湯槽の湯のみを熱源として給湯を行うときは、貯湯槽の湯を非加熱駆動状態の補助給湯熱源装置を経由して給湯先へ給湯する構成によれば、コジェネレーション給湯熱源装置の貯湯槽から送水される給湯の通路と補助給湯熱源装置の給水導入口とを連通させることによりシステム構成を簡単にでき、効率的に給湯を行うことができる。   Furthermore, in the present invention, the passage of hot water supplied from the hot water storage tank of the cogeneration hot water supply heat source device is connected to the water supply inlet of the auxiliary hot water supply heat source device, and when hot water is supplied using only the hot water of the hot water storage tank as a heat source, According to the configuration in which the hot water is supplied to the hot water supply destination via the auxiliary hot water supply heat source device in the non-heated drive state, the hot water supply passage supplied from the hot water storage tank of the cogeneration hot water supply heat source device and the water supply inlet of the auxiliary hot water supply heat source device The system configuration can be simplified and hot water can be efficiently supplied.

さらに、本発明において、選択制御部は、貯湯槽から送水される給湯の検出温度情報を取り込み、その給湯の検出温度が給湯設定温度よりも低いときには補助給湯熱源装置を加熱駆動し、貯湯槽からの湯を補助給湯熱源装置で加熱して給湯先へ送水する構成によれば、例えば貯湯槽内の湯が長い間使用されずに湯温が設定温度より低下してしまった場合等に、貯湯槽から送水される湯を補助給湯熱源装置で加熱して給湯先へ送水することにより、効率的な給湯を行うことができる。   Further, in the present invention, the selection control unit takes in the detected temperature information of the hot water supplied from the hot water tank, and when the detected temperature of the hot water is lower than the hot water set temperature, the auxiliary hot water source is heated to drive the hot water from the hot water tank. According to the configuration in which the hot water is heated by the auxiliary hot water supply source and supplied to the hot water supply destination, for example, when the hot water in the hot water storage tank has not been used for a long time and the hot water temperature has dropped below the set temperature, etc. Efficient hot water supply can be performed by heating the hot water supplied from the tank with the auxiliary hot water supply heat source device and supplying the hot water to the hot water supply destination.

さらに、本発明において、制御装置により給湯熱源がコジェネレーション給湯熱源装置の貯湯槽から補助給湯熱源装置へ切替られたときには、その補助給湯熱源装置から連続湯が終了するまでは補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽への給湯熱源切替を阻止する熱源切替阻止部が設けられている構成によれば、給湯熱源の切替えが頻繁に起こることがより一層抑制されるので、出湯温度の安定化をより一層確実に図ることができる。 Further, in the present invention, when the hot water supply heat source is switched from the hot water tank cogeneration hot water supply heat source device to the auxiliary hot water supply heat source apparatus by the control unit, until a continuous supply hot water from the auxiliary water heater heat source device is ended auxiliary hot water supply heat source device According to the configuration provided with the heat source switching blocking unit that blocks the switching of the hot water source to the hot water storage tank of the cogeneration hot water source, the frequent switching of the hot water source is further suppressed. Temperature stabilization can be further ensured.

さらに、本発明において、蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は貯湯槽への給水温度が高くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成している構成によれば、貯湯槽への給水温度に応じて少なくとも上部しきい値を小さくする方向へ変更することによって、コジェネレーション給湯熱源装置の貯湯槽を給湯熱源としてより多く用いることができ、省エネ化を図ることができる。   Furthermore, in the present invention, a threshold value data changing unit for changing threshold value data corresponding to the heat storage amount is provided, the threshold value data changing unit being an upper threshold value as the water supply temperature to the hot water storage tank increases. According to the configuration in which at least the upper threshold value of the lower threshold value is changed in the direction of reducing the upper threshold value, the upper threshold value is changed at least in accordance with the feed water temperature to the hot water tank. By doing so, the hot water storage tank of the cogeneration hot water supply heat source device can be used more as a hot water supply heat source, and energy saving can be achieved.

さらに、本発明において、蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は給湯設定温度が低くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成している構成によれば、給湯設定温度に応じて少なくとも上部しきい値を小さくする方向へ変更することによって、コジェネレーション給湯熱源装置の貯湯槽を給湯熱源としてより多く用いることができ、省エネ化を図ることができる。   Further, in the present invention, a threshold value data changing unit that changes threshold value data corresponding to the heat storage amount is provided, and the threshold value data changing unit decreases from the upper threshold value as the hot water supply set temperature decreases. According to the configuration in which at least the upper threshold value of the threshold value is changed in the direction of decreasing the upper threshold value, cogeneration is performed by changing the threshold value of at least the upper threshold value in accordance with the hot water supply set temperature. More hot water storage tanks of the hot water supply heat source device can be used as the hot water supply heat source, and energy saving can be achieved.

さらに、本発明において、給湯使用量学習記憶部と、蓄熱量に対応するしきい値データを変更するしきい値データ変更部とを有し、該しきい値データ変更部は時計機構から時刻データを取り込み前記給湯使用量学習記憶部のデータを参照して給湯使用量が多くなる時間帯に近づいた時に上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向に変更する構成によれば、給湯使用量が多くなる時間帯に近づいた時に少なくとも上部しきい値を小さくする方向へ変更することによって、コジェネレーション給湯熱源装置の貯湯槽を給湯熱源としてより多く用いることができ、省エネ化を図ることができる。   Furthermore, in the present invention, a hot water supply usage learning storage unit and a threshold data changing unit that changes threshold data corresponding to the amount of stored heat, the threshold data changing unit from the clock mechanism to the time data When the hot water usage amount approaches the time zone when the hot water usage amount increases, at least the upper threshold value and the lower threshold value are changed so as to decrease the upper threshold value. According to the configuration, the hot water storage tank of the cogeneration hot water supply heat source device can be used more as a hot water supply heat source by changing at least the upper threshold value when the hot water use amount is approaching. , Energy saving can be achieved.

さらに、本発明において、発電装置は水素と酸素を反応させて電気を発生する燃料電池とした構成によれば、発電装置を燃料電池とすることによって、環境に悪影響を与える物質を排出することなく、コジェネレーション給湯熱源装置を運転できるので、環境に優しい複合給湯熱源システムを構築することができる。   Furthermore, in the present invention, according to the configuration in which the power generation device is a fuel cell that reacts hydrogen and oxygen to generate electricity, by using the power generation device as a fuel cell, a substance that adversely affects the environment is not discharged. Since the cogeneration hot water supply heat source device can be operated, an environmentally friendly composite hot water supply heat source system can be constructed.

さらに、本発明において、発電装置はガスエンジンとした構成によれば、ガスエンジンの発電装置を用いて、上記効果を発揮できる複合給湯熱源システムを構築できる。   Furthermore, in the present invention, according to the configuration in which the power generation device is a gas engine, a combined hot water supply heat source system capable of exhibiting the above-described effect can be constructed using the power generation device of the gas engine.

以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略又は簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same names as those in the conventional example, and the duplicate description is omitted or simplified.

図2には、本発明に係る複合給湯熱源システムの第1実施形態例のシステム構成図が模式的に示され、図1には、その制御構成が模式的に示されている。図2に示すように、本実施形態例の複合給湯熱源システムは、コジェネレーション給湯熱源装置3と補助給湯熱源装置4とを併設して形成されている。また、本実施形態例の複合給湯熱源システムは、コジェネレーション給湯熱源装置3と補助給湯熱源装置4との給湯動作を制御するために、図1に示す構成の制御装置44を設けている。   FIG. 2 schematically shows a system configuration diagram of the first embodiment of the combined hot water supply heat source system according to the present invention, and FIG. 1 schematically shows a control configuration thereof. As shown in FIG. 2, the combined hot water supply heat source system of this embodiment is formed with a cogeneration hot water supply heat source device 3 and an auxiliary hot water supply heat source device 4. Further, the combined hot water supply heat source system of the present embodiment is provided with a control device 44 configured as shown in FIG. 1 in order to control the hot water supply operation of the cogeneration hot water supply heat source device 3 and the auxiliary hot water supply heat source device 4.

図2に示すように、本実施形態例に適用されているコジェネレーション給湯熱源装置3は、図5に示した装置とほぼ同様に構成されており、発電装置1の排熱を利用して貯湯槽2に蓄積した湯を給湯先に給湯する装置である。貯湯槽2の容量は例えば200Lであり、貯湯槽2には、互いに間隔を介して貯湯槽内湯水温検出センサ101〜111が設けられている。給湯路12の出口側には、流量センサ70が設けられている。   As shown in FIG. 2, the cogeneration hot water supply heat source device 3 applied to the present embodiment is configured in substantially the same manner as the device shown in FIG. 5, and stores hot water using the exhaust heat of the power generation device 1. This is a device for supplying hot water accumulated in the tank 2 to a hot water supply destination. The capacity of the hot water tank 2 is, for example, 200 L, and the hot water tank 2 is provided with hot water temperature detection sensors 101 to 111 in the hot water tank at intervals. A flow rate sensor 70 is provided on the outlet side of the hot water supply passage 12.

また、本実施形態例において、発電装置1は燃料電池により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素2Hと空気中の酸素(1/2)Oとを反応させて発電する装置である。 In the present embodiment, the power generator 1 is formed of a fuel cell, and hydrogen 2H + extracted from fuel such as city gas and oxygen in the air (1/2) by the reverse reaction of water electrolysis. ) A device that generates electricity by reacting with O 2 .

コジェネレーション給湯熱源装置3と補助給湯熱源装置4とは、湯水混合ユニット10と接続通路45を介して接続されており、湯水混合ユニット10には給水管11の分岐通路11bが接続されている。   The cogeneration hot water supply heat source device 3 and the auxiliary hot water supply heat source device 4 are connected to the hot / cold water mixing unit 10 via the connection passage 45, and the hot water / water mixing unit 10 is connected to the branch passage 11 b of the water supply pipe 11.

湯水混合ユニット10は、前記給湯路12の開閉を行う湯水開閉弁54と、給湯路12から送水される湯の流量を弁開度によって可変制御する湯水比例弁55と、給水管11から給水される水の流量を弁開度によって可変制御する湯水比例弁56と、接続通路45の入り口側に設けられた流量センサ71とを有している。湯水開閉弁54は電磁弁、湯水比例弁55,56は、いずれもギアモータにより形成されている。給湯路12の出口側には湯水温検出センサ120が設けられ、接続通路45の入口側には、湯水温検出センサ118,119が設けられている。   The hot water / water mixing unit 10 is supplied with water from the hot water pipe 11, a hot water on / off valve 54 that opens and closes the hot water supply path 12, a hot water proportional valve 55 that variably controls the flow rate of hot water supplied from the hot water supply path 12, and a water supply pipe 11. And a flow rate sensor 71 provided on the inlet side of the connection passage 45. The hot water on / off valve 54 is an electromagnetic valve, and the hot water proportional valves 55 and 56 are both formed by a gear motor. A hot water temperature detection sensor 120 is provided on the outlet side of the hot water supply passage 12, and hot water temperature detection sensors 118 and 119 are provided on the inlet side of the connection passage 45.

前記補助給湯熱源装置4は、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた装置であり、給湯器5(5a,5b)を有して形成されている。給湯器5(5a,5b)は、それぞれ燃焼室23,24を有している。給湯器5aの燃焼室23内には、バーナ6と、バーナ6の燃焼の給排気を行なう燃焼ファン8と、バーナ6の燃焼により加熱される給湯熱交換器19とが設けられている。また、給湯器5bの燃焼室24内には、バーナ7と、バーナ7の燃焼の給排気を行なう燃焼ファン9と、バーナ7の燃焼により加熱される追い焚き熱交換器25とが設けられている。   The auxiliary hot water supply heat source device 4 is a device having a function of supplying hot water prepared by heating water flowing through water to a hot water supply destination, and has a hot water heater 5 (5a, 5b). The water heater 5 (5a, 5b) has combustion chambers 23, 24, respectively. In the combustion chamber 23 of the water heater 5 a, a burner 6, a combustion fan 8 that supplies and exhausts combustion of the burner 6, and a hot water supply heat exchanger 19 that is heated by the combustion of the burner 6 are provided. Further, in the combustion chamber 24 of the water heater 5b, a burner 7, a combustion fan 9 for supplying and exhausting combustion of the burner 7, and a reheating heat exchanger 25 heated by the combustion of the burner 7 are provided. Yes.

バーナ6,7には、それぞれのバーナ6,7に燃料を供給するガス管21,22が接続されており、これらのガス管21,22は、ガス管20から分岐形成されている。ガス管20には、ガス開閉弁80が介設されており、ガス管21には、ガス比例弁86とガス開閉弁81,82,83が、ガス管22には、ガス比例弁87とガス開閉弁84,85がそれぞれ介設されている。これらの弁80〜87はいずれも電磁弁により形成されており、ガス開閉弁80〜85は、対応するバーナ6,7への燃料供給・停止を制御し、ガス比例弁86,87は、対応するバーナ6,7への供給燃料量を弁開度でもって制御する。   Gas pipes 21 and 22 for supplying fuel to the burners 6 and 7 are connected to the burners 6 and 7, and these gas pipes 21 and 22 are branched from the gas pipe 20. The gas pipe 20 is provided with a gas on / off valve 80, the gas pipe 21 has a gas proportional valve 86 and gas on / off valves 81, 82, and 83, and the gas pipe 22 has a gas proportional valve 87 and a gas on the gas pipe 22. On-off valves 84 and 85 are interposed, respectively. These valves 80 to 87 are all formed by electromagnetic valves, the gas on-off valves 80 to 85 control the fuel supply / stop to the corresponding burners 6 and 7, and the gas proportional valves 86 and 87 correspond to the corresponding valves. The amount of fuel supplied to the burners 6 and 7 is controlled by the valve opening.

前記給湯熱交換器19の入口側には給水導入通路18が設けられており、この給水導入通路18は前記接続通路45に接続されている。給水導入通路18の入り口側には、給水導入通路18を流れる湯水の量を検出する流量センサ73が設けられている。   A water supply introduction passage 18 is provided on the inlet side of the hot water heat exchanger 19, and this water supply introduction passage 18 is connected to the connection passage 45. A flow rate sensor 73 that detects the amount of hot water flowing through the water supply introduction passage 18 is provided on the inlet side of the water supply introduction passage 18.

給湯熱交換器19の出口側には給湯通路26が設けられており、給湯通路26の先端側は、分岐通路90と湯水経路切替弁58を介して前記給水導入通路18に接続されている。給湯通路26には、分岐通路90の合流部よりも下流側に出湯湯温検出センサ113が設けられ、給湯熱交換器19側に出湯湯温検出センサ114が設けられている。なお、前記給湯熱交換器19の途中部には過熱防止装置(サーモスタット)115が設けられている。   A hot water supply passage 26 is provided on the outlet side of the hot water supply heat exchanger 19, and the front end side of the hot water supply passage 26 is connected to the water supply introduction passage 18 via a branch passage 90 and a hot water passage switching valve 58. The hot water supply passage 26 is provided with a hot water temperature detection sensor 113 on the downstream side of the junction of the branch passage 90, and a hot water temperature detection sensor 114 is provided on the hot water supply heat exchanger 19 side. An overheat prevention device (thermostat) 115 is provided in the middle of the hot water supply heat exchanger 19.

前記追い焚き熱交換器25の一端側には往管91の一端側が接続され、往管91の他端側は循環金具97を介して浴槽126に連通接続されている。また、追い焚き熱交換器25の他端側には通路93が接続され、通路93の他端側は循環ポンプ94の吐出口に接続されている。循環ポンプ94の吸入口には戻り管96の一端側が接続され、戻り管96の他端側は前記循環金具97を介して浴槽126に連通接続されている。戻り管96には浴槽湯水温検出センサ127が設けられている。   One end side of the forward pipe 91 is connected to one end side of the reheating heat exchanger 25, and the other end side of the forward pipe 91 is connected to the bathtub 126 via a circulation fitting 97. Further, a passage 93 is connected to the other end side of the reheating heat exchanger 25, and the other end side of the passage 93 is connected to a discharge port of the circulation pump 94. One end side of the return pipe 96 is connected to the suction port of the circulation pump 94, and the other end side of the return pipe 96 is connected to the bathtub 126 through the circulation fitting 97. The return pipe 96 is provided with a bathtub hot water temperature detection sensor 127.

往管91と追い焚き熱交換器25と通路93と循環ポンプ94と戻り管96とによって、浴槽126の湯水を循環ポンプ94の駆動により循環させて浴槽内の湯水を追い焚きするための追い焚き循環通路99が形成されている。   Reheating for recirculating hot water in the bathtub by circulating the hot water in the bathtub 126 by driving the circulation pump 94 by the outgoing pipe 91, the reheating heat exchanger 25, the passage 93, the circulation pump 94, and the return pipe 96. A circulation passage 99 is formed.

また、前記給湯通路26には、分岐通路90の形成部および出湯湯温検出センサ113の配設部よりも下流側に、給湯熱源から浴槽126への給湯の通路としての風呂用注湯導入通路95が接続され、風呂用注湯導入通路95は、前記通路93に接続されている。風呂用注湯導入通路95には、湯水開閉弁59、逆止弁92、流量センサ74、水位センサ125が設けられている。水位センサ125は、水圧により浴槽126の水位を検出する。   Also, the hot water supply passage 26 is provided downstream of the formation portion of the branch passage 90 and the arrangement portion of the tapping hot water temperature detection sensor 113, and the pouring introduction passage for bath as a hot water supply passage from the hot water supply source to the bathtub 126. 95 is connected, and the bath pouring introduction passage 95 is connected to the passage 93. A hot water on / off valve 59, a check valve 92, a flow rate sensor 74, and a water level sensor 125 are provided in the bath pouring introduction passage 95. The water level sensor 125 detects the water level of the bathtub 126 by water pressure.

前記給湯熱交換器19から給湯通路26と風呂用注湯導入通路95、通路93、追い焚き熱交換器25、往管91を順に通って浴槽126に至るまでの通路によって湯張り通路が構成されている。   A hot water filling passage is constituted by the passage from the hot water supply heat exchanger 19 through the hot water supply passage 26, the bath pouring introduction passage 95, the passage 93, the reheating heat exchanger 25, and the outgoing pipe 91 to the bathtub 126 in this order. ing.

なお、図2においては、給湯先として、台所等の給湯場所と浴槽126を示しているが、浴室のシャワー等の適宜の給湯先に湯を供給する、様々な態様の給湯システムを構成できる。   In FIG. 2, a hot water supply place such as a kitchen and a bathtub 126 are shown as hot water supply destinations, but various hot water supply systems that supply hot water to appropriate hot water supply destinations such as a bathroom shower can be configured.

本実施形態例の複合給湯熱源システムのシステム構成は以上のように構成されており、次に、図1に示す制御装置44について説明する。制御装置44は、蓄熱量検出部35、選択制御部36、熱源切替阻止部37、給湯使用量学習記憶部38、しきい値データメモリ部39、しきい値データ変更部40、時計機構41、燃焼制御部42を有している。   The system configuration of the combined hot water supply heat source system of the present embodiment is configured as described above. Next, the control device 44 shown in FIG. 1 will be described. The control device 44 includes a heat storage amount detection unit 35, a selection control unit 36, a heat source switching prevention unit 37, a hot water supply usage learning storage unit 38, a threshold data memory unit 39, a threshold data change unit 40, a clock mechanism 41, A combustion control unit 42 is provided.

本実施形態例では、制御装置44に、蓄熱量に対応するしきい値データを与え、このしきい値データに基づいて給湯熱源をコジェネレーション給湯熱源装置3の貯湯槽2と補助給湯熱源装置4との間で切替制御することを特徴としており、また、上記しきい値データを必要に応じて可変するように構成している。以下、制御装置44の制御構成について詳細を説明する。   In this embodiment, threshold data corresponding to the amount of stored heat is given to the control device 44, and hot water supply heat sources are assigned to the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 and the auxiliary hot water supply heat source device 4 based on the threshold data. Further, the threshold value data is variable as necessary. Hereinafter, the control configuration of the control device 44 will be described in detail.

給湯使用量学習記憶部38は、1日の整数倍(1以上の整数倍)を周期とする時間軸上の各時刻に対する給湯使用量を、流量センサ73から得られる給湯流量の情報と時計機構41から得られる時刻情報とに基づき学習記憶する。つまり、例えばその家庭ごとに、風呂の湯張りが行われて給湯使用量が多い時間等がそれぞれ異なるので、給湯使用量学習記憶部38は、このような情報を記憶する。   The hot water use amount learning storage unit 38 uses the hot water flow rate information obtained from the flow sensor 73 as the hot water use amount for each time on the time axis with an integer multiple of one day (an integer multiple of 1) as a cycle, and a clock mechanism. 41 based on the time information obtained from 41. That is, for example, the time when the bath is filled and the amount of hot water used is large differs for each household, and the hot water usage amount learning storage unit 38 stores such information.

しきい値データメモリ部39は、蓄熱量に対応するしきい値データを格納するものであり、このしきい値データは、上部しきい値とそれよりも値の小さい下部しきい値で与えられている。しきい値データの与え方は様々であるが、その一例として、貯湯槽2内に蓄積されている設定温度範囲(例えば43℃〜60℃)の湯の量によって与えることができる。この場合、例えば上部しきい値は40L、下部しきい値は0というような値で与えられる。   The threshold value data memory unit 39 stores threshold value data corresponding to the heat storage amount, and this threshold value data is given by an upper threshold value and a lower threshold value smaller than that. ing. There are various ways of giving the threshold data, but as an example, it can be given by the amount of hot water in the set temperature range (for example, 43 ° C. to 60 ° C.) accumulated in the hot water tank 2. In this case, for example, the upper threshold value is given as 40L, and the lower threshold value is given as 0.

しきい値データ変更部40は、前記蓄熱量に対応するしきい値データを適宜変更するものである。しきい値データ変更部40は、給水温度センサ112の検出温度を取り込み、貯湯槽2への給水温度が高くなるにつれ、上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成している。また、しきい値データ変更部40は、リモコン等の操作部(図示せず)によって入力される給湯設定温度が低くなるにつれ、上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成している。   The threshold data changing unit 40 appropriately changes threshold data corresponding to the heat storage amount. The threshold value data changing unit 40 takes in the detected temperature of the water supply temperature sensor 112 and decreases at least the upper threshold value among the upper threshold value and the lower threshold value as the water supply temperature to the hot water tank 2 increases. It has a configuration that changes in the direction. The threshold data changing unit 40 sets at least the upper threshold value among the upper threshold value and the lower threshold value as the hot water supply set temperature input by an operation unit (not shown) such as a remote controller becomes lower. It is configured to change in the direction of decreasing.

つまり、給水温度が高かったり、給湯設定温度が低かったりすると、例えば貯湯槽2から送水される湯の量に対し、給水管11から分岐通路11bを介して混合される水の量が多くなるので、貯湯槽2内に蓄積されている湯量が少なめでも、貯湯槽2を給湯熱源として、例えばシャワー等により一度に使用される給湯量は貯湯槽2に蓄積されている湯量で足りる。そこで、本実施形態例では、上記のように、給水温度や給湯設定温度に応じて前記上部しきい値を変更するようにしている。   That is, when the water supply temperature is high or the hot water supply set temperature is low, for example, the amount of water mixed from the water supply pipe 11 via the branch passage 11b increases with respect to the amount of hot water fed from the hot water tank 2. Even if the amount of hot water stored in the hot water storage tank 2 is small, the amount of hot water stored in the hot water storage tank 2 is sufficient for the hot water storage tank 2 to be used at a time, for example, by a shower or the like. Therefore, in the present embodiment, as described above, the upper threshold value is changed according to the water supply temperature or the hot water supply set temperature.

また、しきい値データ変更部40は時計機構41から時刻データを取り込み、前記給湯使用量学習記憶部38のデータを参照して、給湯使用量が多くなる時間帯に近づいた時に、上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向に変更する構成と成している。   Further, the threshold data changing unit 40 takes in the time data from the clock mechanism 41, refers to the data in the hot water supply usage learning storage unit 38, and approaches the upper threshold when the hot water usage is approaching. The configuration is such that at least the upper threshold value of the value and the lower threshold value is changed to be smaller.

蓄熱量検出部35は、コジェネレーション給湯熱源装置3の稼働状況の蓄熱量検出に関するモニタ情報に基づき、貯湯槽2内の湯の蓄熱量に対応する値を求めるものである。前記モニタ情報は、例えば貯湯槽内湯水温検出センサ101〜111による検出温度の情報や、発電装置1の稼働時間の情報等である。発電装置1の稼働時間は、例えば発電装置1のオンオフ情報と時計機構41から得られる時間情報から得ることができる。なお、排熱湯導入通路14に流量センサを設ければ、この流量センサの情報から発電装置1の稼働時間の情報を得ることもできる。   The heat storage amount detection unit 35 obtains a value corresponding to the heat storage amount of hot water in the hot water tank 2 based on monitor information related to detection of the heat storage amount of the operation status of the cogeneration hot water supply heat source device 3. The monitor information is, for example, information on the temperature detected by the hot water temperature detection sensors 101 to 111 in the hot water tank, information on the operating time of the power generator 1, and the like. The operating time of the power generator 1 can be obtained from, for example, on / off information of the power generator 1 and time information obtained from the clock mechanism 41. In addition, if a flow sensor is provided in the exhaust hot water introduction passage 14, information on the operation time of the power generation apparatus 1 can be obtained from information on the flow sensor.

ここで、貯湯槽2内の湯の蓄熱量に対応する値の求め方の一例を示す。蓄熱量検出部35は、例えば前記モニタ情報として、貯湯槽内湯水温検出センサ101〜111による検出温度の情報を取り込み、貯湯槽内湯水温検出センサ105による検出温度が約60℃であり、貯湯槽内湯水温検出センサ106による検出温度が約20℃であるとすると、図5の破線Aで示したような、貯湯槽2内の水と湯との境界線が貯湯槽内湯水温検出センサ105と貯湯槽内湯水温検出センサ106との間にあり、貯湯槽2内には、約60℃の湯が約80L蓄積されていると判断する。   Here, an example of how to obtain a value corresponding to the heat storage amount of hot water in the hot water tank 2 is shown. For example, as the monitor information, the heat storage amount detection unit 35 takes in information on the temperature detected by the hot water temperature detection sensors 101 to 111 in the hot water tank, and the temperature detected by the hot water temperature detection sensor 105 in the hot water tank is about 60 ° C. If the temperature detected by the water temperature detection sensor 106 is about 20 ° C., the boundary line between the water and hot water in the hot water tank 2 as shown by the broken line A in FIG. 5 is the hot water temperature detection sensor 105 in the hot water tank and the hot water tank. It is determined that about 80 L of hot water at about 60 ° C. is accumulated in the hot water storage tank 2 between the internal hot water temperature detection sensor 106.

なお、このように、貯湯槽内湯水温検出センサ101〜111による検出温度の情報に基づいて求められる貯湯槽2内の湯の蓄熱量に対応する値は、直接的な計測により得られる値であるので、貯湯槽2内の湯の蓄熱量と呼ぶこともできるが、本出願においては、上記のようにして求められる値も、蓄熱量に対応する値と称している。   In addition, the value corresponding to the heat storage amount of the hot water in the hot water tank 2 obtained based on the information of the detected temperature by the hot water temperature detection sensors 101 to 111 in the hot water tank is a value obtained by direct measurement. Therefore, although it can also be called the heat storage amount of the hot water in the hot water storage tank 2, in this application, the value calculated | required as mentioned above is also called the value corresponding to the heat storage amount.

また、蓄熱量検出部35に、発電装置1の稼働による単位時間ごとの湯の蓄積量を予め与えておき、この量が、例えば毎分2Lだとすると、時計機構41から得られる発電装置1の時間情報が30分経過したときに、蓄熱量検出部35は、貯湯槽2内には、約60℃の湯が60L蓄積されていると判断する。このように、蓄熱量検出部35は、時計機構41から得られる発電装置1の稼働時間情報に基づき、貯湯槽2内の湯量を時々刻々と検出することができる。   Moreover, if the amount of hot water accumulated per unit time due to the operation of the power generation device 1 is given in advance to the heat storage amount detection unit 35 and this amount is 2 L per minute, for example, the time of the power generation device 1 obtained from the clock mechanism 41 When the information has passed for 30 minutes, the heat storage amount detection unit 35 determines that 60 L of hot water at about 60 ° C. is accumulated in the hot water storage tank 2. In this manner, the heat storage amount detection unit 35 can detect the amount of hot water in the hot water tank 2 from time to time based on the operating time information of the power generation device 1 obtained from the timepiece mechanism 41.

さらに、蓄熱量検出部35は、貯湯槽2内の湯の使用量を、例えば流量センサ70の検出データから算出し、この値を貯湯槽2内に蓄積されている湯量から差し引くことにより、貯湯槽2内に残っている湯量を時々刻々と検出することができるし、湯の蓄積時からの経過時間によって貯湯槽2内に蓄積されている湯の温度を推定することができる。   Further, the heat storage amount detection unit 35 calculates the amount of hot water used in the hot water storage tank 2 from, for example, detection data of the flow rate sensor 70 and subtracts this value from the amount of hot water stored in the hot water storage tank 2, thereby The amount of hot water remaining in the tank 2 can be detected every moment, and the temperature of the hot water accumulated in the hot water storage tank 2 can be estimated from the elapsed time since the accumulation of hot water.

選択制御部36は、給湯熱源の選択制御部であり、前記蓄熱量検出部35により求められた蓄熱量に対応する値が前記下部しきい値以下に低下したときは、給湯熱源を前記貯湯槽2から補助給湯熱源装置4へ切替えて給湯を行い、蓄熱量検出部35により求められた貯湯槽2内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは、給湯熱源を前記補助給湯熱源装置4からコジェネレーション給湯熱源装置3の貯湯槽2へ切替えて給湯を行う。   The selection control unit 36 is a hot water supply heat source selection control unit, and when the value corresponding to the heat storage amount obtained by the heat storage amount detection unit 35 falls below the lower threshold value, the hot water supply heat source is changed to the hot water storage tank. When the value corresponding to the heat storage amount of hot water in the hot water storage tank 2 obtained by the heat storage amount detection unit 35 rises above the upper threshold value, Hot water is supplied by switching the heat source from the auxiliary hot water supply device 4 to the hot water storage tank 2 of the cogeneration hot water supply device 3.

本実施形態例においては、コジェネレーション給湯熱源装置3の貯湯槽2から送水される給湯の通路(給湯路12)は、接続通路45を介して補助給湯熱源装置4の給水導入口に連通されており、前記貯湯槽2の湯のみを熱源として貯湯槽2内から設定温度以上の湯を送水する時は、貯湯槽2の湯を非加熱駆動状態の補助給湯熱源装置4を経由して給湯先へ給湯する構成と成している。   In the present embodiment, the hot water supply passage (hot water supply passage 12) fed from the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is connected to the water supply inlet of the auxiliary hot water supply heat source device 4 through the connection passage 45. When hot water of a set temperature or higher is sent from the hot water tank 2 using only the hot water of the hot water tank 2 as a heat source, the hot water of the hot water tank 2 is supplied to the hot water supply destination via the auxiliary hot water supply heat source device 4 in a non-heated drive state. It consists of a hot water supply configuration.

つまり、貯湯槽2の湯のみを熱源として給湯を行うときは、選択制御部36は、湯水開閉弁54を開き、湯水比例弁55、56の開弁量を適宜調節して、貯湯槽2内の湯を、給水通路11からその分岐通路11bを介して給水される水と混合して設定温度の湯として非加熱駆動状態の補助給湯熱源装置4に送る。そして、例えば補助給湯熱源装置4に導入された設定温度の湯を、湯水経路切替弁58を切替えて分岐通路90を通して台所等の適宜の給湯先へ給湯する、または、風呂用注湯導入通路95を通して風呂の湯張りを行う。なお、風呂の湯張り時は、湯水開閉弁59を開く。   That is, when hot water is supplied using only hot water in the hot water tank 2 as a heat source, the selection control unit 36 opens the hot water on / off valve 54 and adjusts the valve opening amounts of the hot water proportional valves 55 and 56 as appropriate. Hot water is mixed with water supplied from the water supply passage 11 via the branch passage 11b and sent to the auxiliary hot water supply heat source device 4 in a non-heated drive state as hot water at a set temperature. Then, for example, hot water having a set temperature introduced into the auxiliary hot water supply heat source device 4 is switched to the hot water route switching valve 58 to supply hot water to an appropriate hot water supply destination such as a kitchen through the branch passage 90, or a bath pouring introduction passage 95. Through the bath. When the bath is filled with water, the hot water on / off valve 59 is opened.

また、選択制御部36は、給湯熱源を補助給湯熱源装置4に切り替えたときは、例えば湯水開閉弁54を閉じ、給水管11から分岐通路11bを介して湯水混合ユニット10に導入される水を、接続通路45を介して給湯器5aに導入すると共に、給湯器5aの燃焼制御部42に指令を与え、給湯器5aを稼働させて補助給湯熱源装置4による給湯を行う。   When the hot water supply heat source is switched to the auxiliary hot water supply heat source device 4, the selection control unit 36 closes the hot water on / off valve 54, for example, and supplies water introduced into the hot water mixing unit 10 from the water supply pipe 11 through the branch passage 11 b. The hot water heater 5a is introduced through the connection passage 45, and a command is given to the combustion control unit 42 of the hot water heater 5a, and the hot water heater 5a is operated to supply hot water by the auxiliary hot water supply heat source device 4.

燃焼制御部42は、流量センサ73の検出流量を参照しながら、ガス開閉弁81,82,83の少なくとも一つを開き、ガス比例弁86の開弁量を調節してバーナ6に供給されるガス量を調節すると共に、燃焼ファン8の風量調節を行い、給湯熱交換器19を通って出湯される湯が設定温度の湯となるようにバーナ6の燃焼制御を行う。   The combustion controller 42 opens at least one of the gas on-off valves 81, 82, 83 while referring to the detected flow rate of the flow sensor 73, adjusts the valve opening amount of the gas proportional valve 86, and is supplied to the burner 6. While adjusting the amount of gas, the air volume of the combustion fan 8 is adjusted, and the combustion of the burner 6 is controlled so that the hot water discharged through the hot water supply heat exchanger 19 becomes hot water of a set temperature.

熱源切替阻止部37は、制御装置44により給湯熱源がコジェネレーション給湯熱源装置3の貯湯槽2から補助給湯熱源装置4へ切替られたときには、その補助給湯熱源装置4の給湯動作が終了するまでは補助給湯熱源装置4からコジェネレーション給湯熱源装置3の貯湯槽2への熱源切替を阻止する。   When the hot water supply heat source is switched from the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 to the auxiliary hot water supply heat source device 4 by the control device 44, the heat source switching prevention unit 37 until the hot water supply operation of the auxiliary hot water supply heat source device 4 is completed. The heat source switching from the auxiliary hot water supply heat source device 4 to the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is prevented.

本実施形態例では、熱源切替阻止部37は、給湯器5aの流量センサ73によって検出される給湯流量を監視し、流量センサ70の検出流量がゼロとなり、かつ、流量センサ73の検出流量がプラスの値となったときに、給湯熱源が補助給湯熱源装置4に切替えられたと判断し、その後、流量センサ73の検出流量がゼロになって、補助給湯熱源装置4の給湯動作が終了するまでは、選択制御部36による湯水開閉弁54の開動作を阻止して、給湯熱源を補助給湯熱源装置4とする。   In the present embodiment, the heat source switching prevention unit 37 monitors the hot water flow rate detected by the flow rate sensor 73 of the water heater 5a, the detected flow rate of the flow rate sensor 70 becomes zero, and the detected flow rate of the flow rate sensor 73 is positive. It is determined that the hot water supply heat source has been switched to the auxiliary hot water supply heat source device 4 until the detected flow rate of the flow rate sensor 73 becomes zero and the hot water supply operation of the auxiliary hot water supply heat source device 4 ends. Then, the hot water on / off valve 54 is prevented from being opened by the selection control unit 36, and the hot water supply heat source is the auxiliary hot water supply heat source device 4.

なお、本実施形態例において、選択制御部36が、給湯熱源を補助給湯熱源装置4に切替えて運転する場合、通常は、上記のように、給水源から給湯管11とその分岐通路11bを通って補助給湯熱源装置4に供給される水を補助給湯熱源装置4によって加熱するが、必要に応じて、貯湯槽2から送水される水を補助給湯熱源装置4によって加熱する制御も行う。   In the present embodiment, when the selection control unit 36 is operated by switching the hot water supply heat source to the auxiliary hot water supply heat source device 4, normally, as described above, the hot water supply pipe 11 and its branch passage 11b are passed from the water supply source. Then, the water supplied to the auxiliary hot water supply heat source device 4 is heated by the auxiliary hot water supply heat source device 4, and the water supplied from the hot water storage tank 2 is also controlled to be heated by the auxiliary hot water supply heat source device 4 as necessary.

つまり、排熱湯導入通路14から貯湯槽2内に導入される湯の温度は約60℃であるが、貯湯槽2内の湯が長い間使用されない状態が続くと、貯湯槽2内の湯の温度が低下してしまい、この場合、貯湯槽2内に蓄積されている設定温度範囲(例えば43℃〜60℃)の湯の量は0と判断されてしまって使用されなくなってしまう。そうなると、貯湯槽2内の湯が補助給湯熱源装置4側に送られないことになるが、より効率的に作動させるためには、貯湯槽2内の湯を加熱して用いることが好ましい場合もある。   That is, the temperature of the hot water introduced into the hot water tank 2 from the exhaust hot water introduction passage 14 is about 60 ° C. If the hot water in the hot water tank 2 is not used for a long time, the hot water in the hot water tank 2 The temperature drops, and in this case, the amount of hot water in the set temperature range (for example, 43 ° C. to 60 ° C.) accumulated in the hot water tank 2 is determined to be 0 and cannot be used. Then, the hot water in the hot water storage tank 2 is not sent to the auxiliary hot water supply heat source device 4 side, but in order to operate more efficiently, it may be preferable to heat and use the hot water in the hot water storage tank 2. is there.

本実施形態例では、選択制御部36は、貯湯槽内湯水温検出センサ101〜111の検出温度を監視し、前記設定温度範囲の湯の量がゼロでも、湯温が25度以上の湯が設定量以上あるときは、この貯湯槽2内の湯水を給湯路12から送出し、この湯水を補助給湯熱源装置4で加熱して給湯先へ送水する構成としている。つまり、この場合、貯湯槽2から送水される給湯の検出温度情報を湯水温検出センサ100から取り込むと、その給湯の検出温度が給湯設定温度よりも低いので、補助給湯熱源装置4を加熱駆動し、貯湯槽2からの湯を補助給湯熱源装置4で加熱して給湯先へ送水する構成としており、この構成により、より効率的な給湯を行うことができる。   In the present embodiment example, the selection control unit 36 monitors the detection temperatures of the hot water temperature detection sensors 101 to 111 in the hot water tank, and even when the amount of hot water in the set temperature range is zero, hot water having a hot water temperature of 25 degrees or more is set. When there is more than the amount, the hot water in the hot water storage tank 2 is sent out from the hot water supply passage 12, and this hot water is heated by the auxiliary hot water supply heat source device 4 and supplied to the hot water supply destination. That is, in this case, when the detected temperature information of the hot water supplied from the hot water storage tank 2 is taken in from the hot water temperature detection sensor 100, the detected temperature of the hot water is lower than the set hot water temperature. The hot water from the hot water storage tank 2 is heated by the auxiliary hot water supply heat source device 4 and supplied to the hot water supply destination. With this configuration, more efficient hot water supply can be performed.

本実施形態例は以上のように構成されており、制御装置44に、蓄熱量に対応するしきい値データを上部しきい値とそれよりも値の小さい下部しきい値で与え、コジェネレーション給湯熱源装置3の稼働状況の蓄熱量検出に関するモニタ情報に基づいて求めた貯湯槽2内の蓄熱量に対応する値が、前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽2から補助給湯熱源装置4へ切替えて給湯を行い、貯湯槽2内の湯の蓄熱量に対応する値が、前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置4からコジェネレーション給湯熱源装置3の貯湯槽2へ切替えて給湯を行うので、給湯熱源の切替えが頻繁に起こることを抑制でき、出湯温度の安定化を図ることができる。   The present embodiment is configured as described above, and the threshold value data corresponding to the heat storage amount is given to the control device 44 by the upper threshold value and the lower threshold value which is smaller than that, and the cogeneration hot water supply When the value corresponding to the heat storage amount in the hot water storage tank 2 obtained based on the monitor information related to the detection of the heat storage amount of the operation status of the heat source device 3 falls below the lower threshold value, the hot water supply heat source is removed from the hot water storage tank 2. When the value corresponding to the heat storage amount of hot water in the hot water storage tank 2 rises above the upper threshold value, the hot water supply source is co-generated from the auxiliary hot water supply source 4 Since the hot water supply is performed by switching to the hot water storage tank 2 of the hot water supply heat source device 3, frequent switching of the hot water supply heat source can be suppressed, and the temperature of the hot water can be stabilized.

また、本実施形態例によれば、制御装置44に熱源切替阻止部37を設け、給湯熱源がコジェネレーション給湯熱源装置3の貯湯槽2から補助給湯熱源装置4へ切替られたときには、その補助給湯熱源装置4の給湯動作が終了するまでは補助給湯熱源装置4からコジェネレーション給湯熱源装置3の貯湯槽2への熱源切替を阻止する構成としているので、給湯熱源の切替えが頻繁に起こることをより一層抑制し、出湯温度の安定化をより一層確実に図ることができる。   Further, according to the present embodiment example, the control device 44 is provided with the heat source switching prevention unit 37, and when the hot water supply heat source is switched from the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 to the auxiliary hot water supply heat source device 4, the auxiliary hot water supply is provided. Until the hot water supply operation of the heat source device 4 is completed, the heat source switching from the auxiliary hot water supply heat source device 4 to the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is prevented. It is possible to further suppress and stabilize the tapping temperature even more reliably.

さらに、本実施形態例によれば、蓄熱量に対応するしきい値データを変更するしきい値データ変更部40を設け、貯湯槽2への給水温度が高くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更したり、給湯設定温度が低くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更したりする構成としているので、給水温度や給湯設定温度に応じて少なくとも上部しきい値を小さくする方向へ変更することによって、コジェネレーション給湯熱源装置3の貯湯槽2を給湯熱源としてより多く用いることができ、省エネ化を図ることができる。   Furthermore, according to the present embodiment example, the threshold value data changing unit 40 for changing the threshold value data corresponding to the heat storage amount is provided, and the upper threshold value is lowered as the water supply temperature to the hot water tank 2 becomes higher. Change the threshold to at least lower the upper threshold, or change the threshold to decrease at least the upper threshold of the upper and lower thresholds as the hot water set temperature decreases. Since it is configured, it is possible to use the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 more as a hot water supply heat source by changing at least the upper threshold value according to the water supply temperature or the hot water supply set temperature, Energy saving can be achieved.

さらに、本実施形態例によれば、給湯使用量学習記憶部38を設け、前記しきい値データ変更部40が時計機構41から時刻データを取り込んで、給湯使用量学習記憶部のデータ38を参照して給湯使用量が多くなる時間帯に近づいた時に上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向に変更するので、コジェネレーション給湯熱源装置3の貯湯槽2を給湯熱源としてより多く用いることができ、省エネ化を図ることができる。   Further, according to the present embodiment, the hot water use amount learning storage unit 38 is provided, and the threshold value data changing unit 40 takes in the time data from the clock mechanism 41 and refers to the data 38 of the hot water use amount learning storage unit. When the hot water consumption amount approaches the time zone when the amount of hot water used increases, at least the upper threshold value of the upper threshold value and the lower threshold value is changed so as to reduce the upper threshold value. It can be used more as a hot water supply heat source, and energy saving can be achieved.

さらに、本実施形態例によれば、コジェネレーション給湯熱源装置3の貯湯槽2と発電装置1との間に配備された手段によって形成された湯を貯湯槽2に蓄積し、この貯湯槽2の湯を、貯湯槽2に備えられた給湯路12を通して給湯先に供給する構成としているので、コジェネレーション給湯熱源装置3による湯の蓄積と、貯湯槽2からの湯の給湯とを効率的に行うことができる。   Furthermore, according to this embodiment, the hot water formed by the means provided between the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 and the power generation apparatus 1 is accumulated in the hot water storage tank 2, and the hot water storage tank 2 Since the hot water is supplied to the hot water supply destination through the hot water supply path 12 provided in the hot water storage tank 2, hot water accumulation by the cogeneration hot water supply heat source device 3 and hot water supply from the hot water storage tank 2 are efficiently performed. be able to.

さらに、本実施形態例によれば、コジェネレーション給湯熱源装置3の貯湯槽2から送水される給湯の通路(給湯路12)を、補助給湯熱源装置4の給水導入口に連通し、前記貯湯槽2の設定温度以上の湯を熱源として給湯を行うときは、貯湯槽2の湯を非加熱駆動状態の補助給湯熱源装置4を経由して給湯先へ給湯する構成としているので、システム構成を簡単にでき、効率的に給湯を行うことができる。   Furthermore, according to the present embodiment, the hot water supply passage (hot water supply path 12) fed from the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is communicated with the water supply inlet of the auxiliary hot water supply heat source device 4, and the hot water storage tank When hot water is supplied using hot water at a set temperature of 2 or more as a heat source, the hot water in the hot water storage tank 2 is supplied to the hot water supply destination via the auxiliary hot water supply heat source device 4 in a non-heated drive state, so that the system configuration is simplified. The hot water can be efficiently supplied.

さらに、本実施形態例によれば、発電装置1は水素と酸素を反応させて電気を発生する燃料電池としているので、環境に悪影響を与える物質を排出することなく、コジェネレーション給湯熱源装置を運転でき、環境に優しい複合給湯熱源システムを構築することができる。   Furthermore, according to this embodiment, the power generation device 1 is a fuel cell that generates electricity by reacting hydrogen and oxygen, so that the cogeneration hot water supply heat source device can be operated without discharging substances that adversely affect the environment. It is possible to construct an environmentally friendly combined hot water supply heat source system.

なお、本発明は上記実施形態例に限定されることはなく、様々な態様を採り得る。例えば、上記実施形態例では、発電装置1は燃料電池としたが、発電装置1の燃料や構成は特に限定されるものでなく、適宜設定されるものである。つまり、発電装置1はガスエンジンとしてもよく、ガスタービン発電装置やディーゼルエンジン発電装置等も適用することができ、本発明は、このような発電装置1を用いて形成した発電システムの排熱を用いて貯湯槽2内への蓄熱を行ってもよいものである。   In addition, this invention is not limited to the said embodiment, It can take various aspects. For example, in the embodiment described above, the power generation device 1 is a fuel cell, but the fuel and configuration of the power generation device 1 are not particularly limited, and are appropriately set. That is, the power generation device 1 may be a gas engine, and a gas turbine power generation device, a diesel engine power generation device, or the like can be applied. The present invention uses the heat generated by the power generation system formed using such a power generation device 1. The heat storage tank 2 may be used to store heat.

また、上記実施形態例では、コジェネレーション給湯熱源装置3の貯湯槽2と発電装置1との間には発電装置1の排熱を利用して貯湯槽2内の水を加熱して湯にする手段を配備したが、図3(a)、(b)に示すように、発電装置1の排熱吸収流体の熱を利用して貯湯槽2内の水を加熱して湯にする手段を配備して、該手段によって形成された湯を貯湯槽2に蓄積してもよい。   Moreover, in the said embodiment, between the hot water storage tank 2 of the cogeneration hot-water supply heat source apparatus 3, and the electric power generating apparatus 1, the water in the hot water storage tank 2 is heated into hot water using the exhaust heat of the electric power generating apparatus 1. As shown in FIGS. 3 (a) and 3 (b), the means for heating the water in the hot water storage tank 2 by using the heat of the exhaust heat absorbing fluid of the power generator 1 is used. Then, the hot water formed by the means may be accumulated in the hot water tank 2.

図3(a)に示す構成は、発電装置1の排熱吸収流体を循環させる循環管路66を貯湯槽2内に通し、排熱吸収流体と貯湯槽2内の水との間で熱交換を行って、貯湯槽2内の水を湯にする。また、このとき、排熱吸収流体の熱を貯湯槽2内の水に与えることにより、冷却され、排熱吸収流体は冷却流体となって発電装置1に送られるものである。   In the configuration shown in FIG. 3A, the circulation pipe 66 for circulating the exhaust heat absorbing fluid of the power generation device 1 is passed through the hot water storage tank 2, and heat is exchanged between the exhaust heat absorbing fluid and the water in the hot water storage tank 2. To make the water in the hot water tank 2 into hot water. At this time, the heat of the exhaust heat absorbing fluid is given to the water in the hot water storage tank 2 to be cooled, and the exhaust heat absorbing fluid is sent to the power generator 1 as a cooling fluid.

また、図3(b)に示す構成は、貯湯槽2と発電装置1との間に、例えば銅板等によって形成した熱交換部材67を設け、発電装置1の排熱吸収流体を循環させる循環管路66を熱交換部材67に通し、また、熱交換部材67には、貯湯槽2内の水を循環させる循環管路68を設け、熱交換部材67を介し、循環管路66を通る排熱吸収流体と循環管路68を通る水との間で熱交換させる。つまり、熱交換部材67を介し、排熱吸収流体の熱を、循環管路68を通る貯湯槽2内の水に与えて貯湯槽2内の水を湯にし、このとき、排熱吸収流体を冷却して冷却流体とするものである。   The configuration shown in FIG. 3B is a circulation pipe in which a heat exchange member 67 formed of, for example, a copper plate is provided between the hot water tank 2 and the power generator 1 to circulate the exhaust heat absorbing fluid of the power generator 1. The passage 66 is passed through the heat exchange member 67, and the heat exchange member 67 is provided with a circulation pipe 68 for circulating the water in the hot water tank 2, and the heat exhausted through the circulation pipe 66 through the heat exchange member 67. Heat exchange is performed between the absorbing fluid and the water passing through the circulation line 68. That is, the heat of the exhaust heat absorbing fluid is given to the water in the hot water storage tank 2 passing through the circulation pipe 68 through the heat exchange member 67 to turn the water in the hot water storage tank 2 into hot water. It cools to make a cooling fluid.

また、上記実施形態例では、給水管路11を、湯水混合ユニット10を介して補助給湯熱源装置4の給水導入通路18に接続したが、図4(a)に示すように、給水管路11を、弁69を介して給湯通路26側に接続してもよいし、図4(b)に示すように、給水管路11を、弁69を介して、給水導入通路18と給湯通路26の両方に接続してもよい。   Moreover, in the said embodiment, although the water supply pipe 11 was connected to the water supply introduction path 18 of the auxiliary hot water supply heat source apparatus 4 via the hot water mixing unit 10, as shown to Fig.4 (a), the water supply pipe 11 is shown. May be connected to the hot water supply passage 26 side through the valve 69, or as shown in FIG. 4B, the water supply pipe 11 is connected to the hot water supply passage 18 and the hot water supply passage 26 through the valve 69. You may connect to both.

さらに、上記実施形態例では、制御装置44は、熱源切替阻止部37を設けたが、熱源切替阻止部37は省略することもできる。なお、この場合、例えばしきい値データ変更部40が前記給湯使用量学習記憶部38のデータを参照して、給湯使用量が多くなる時間帯に近づいた時に上部しきい値を小さくする方向に変更すると、給湯熱源の切替が多少多めに起こる可能性がある。   Furthermore, in the above embodiment, the control device 44 includes the heat source switching prevention unit 37, but the heat source switching prevention unit 37 may be omitted. In this case, for example, the threshold value data changing unit 40 refers to the data in the hot water supply usage learning storage unit 38 and decreases the upper threshold when the hot water usage is approaching. If it is changed, there is a possibility that the hot water supply heat source is switched slightly more.

しかし、給湯使用量は例えば湯張り時に非常に多くなり、このような場合、多少の湯温変動があっても、使用者が不快な思いをすることは少なく、上部しきい値を小さくして、貯湯槽2を給湯源とする割合を多くすることにより、より一層の省エネ化を図ることができる。   However, the amount of hot water used is very large when the hot water is filled, for example. In such a case, even if there is a slight fluctuation in hot water temperature, the user is less likely to feel uncomfortable, and the upper threshold value is reduced. Further, by increasing the ratio of the hot water storage tank 2 as a hot water supply source, further energy saving can be achieved.

さらに、上記実施形態例では、しきい値データ変更部40を設け、貯湯槽2への給水温度と給湯設定温度とを監視し、さらに、給湯使用量学習記憶部38のデータを参照して、上部しきい値を小さくなる方向に変更するようにしたが、しきい値データ変更部40は、貯湯槽2への給水温度の監視と給湯設定温度の監視と給湯使用量学習記憶部38のデータ参照の少なくとも一つに応じて上部しきい値を小さくなる方向に変更してもよい。なお、しきい値データ変更部40が給湯使用量学習記憶部38のデータ参照しない場合、給湯使用量学習記憶部38は省略することもできる。   Furthermore, in the above embodiment example, the threshold data changing unit 40 is provided to monitor the hot water supply temperature and the hot water set temperature to the hot water storage tank 2, and further refer to the data in the hot water use amount learning storage unit 38, Although the upper threshold value is changed in a decreasing direction, the threshold value data changing unit 40 monitors the hot water supply temperature to the hot water storage tank 2, monitors the hot water supply set temperature, and the data in the hot water supply usage learning storage unit 38. The upper threshold value may be changed in a direction of decreasing according to at least one of the references. In addition, when the threshold value data changing unit 40 does not refer to data in the hot water supply usage amount learning storage unit 38, the hot water supply usage amount learning storage unit 38 may be omitted.

また、しきい値データ変更部4は、上記上部しきい値と下部しきい値の両方を変更してもよい。さらに、しきい値データ変更部40を省略し、選択制御部36は、予め与えた上部しきい値と下部しきい値に基づいて、給湯熱源を、コジェネレーション給湯熱源装置3の貯湯槽2と補助給湯熱源装置4のいずれかに切替えてもよい。   Further, the threshold data changing unit 4 may change both the upper threshold value and the lower threshold value. Further, the threshold data changing unit 40 is omitted, and the selection control unit 36 selects the hot water supply heat source as the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 based on the upper threshold value and the lower threshold value given in advance. It may be switched to any one of the auxiliary hot water supply heat source devices 4.

さらに、給湯使用量学習記憶部38を省略し、かつ、蓄熱量検出部35による蓄熱量検出を発電装置1の稼働時間に基づいて行わない場合は、時計機構41を省略することもできる。   Furthermore, when the hot water supply usage learning storage unit 38 is omitted and the heat storage amount detection by the heat storage amount detection unit 35 is not performed based on the operation time of the power generation device 1, the clock mechanism 41 can be omitted.

さらに、上記実施形態例では、補助給湯熱源装置4は、給湯、風呂の追い焚き、温水暖房が可能な補助給湯熱源装置としたが、補助給湯熱源装置4の構成は上記実施形態例に適用した構成に示す構成に限らず、通水の水を加熱して作成した湯を給湯先に供給できる装置であれば、例えば給湯器のみでもよく、また、燃焼方式をガス燃焼式とせずに石油燃焼式としてもよく、様々な構成を適用できる。   Further, in the above embodiment, the auxiliary hot water supply heat source device 4 is an auxiliary hot water supply heat source device capable of hot water supply, bathing, and hot water heating, but the configuration of the auxiliary hot water supply heat source device 4 is applied to the above embodiment example. As long as it is a device that can supply hot water created by heating water flow to the hot water supply destination, for example, only a hot water heater may be used, and oil combustion is not performed as a gas combustion type. It may be a formula and various configurations can be applied.

さらに、上記実施形態例では、コジェネレーション給湯熱源装置3の貯湯槽2の給湯路12を、湯水混合ユニット10と接続通路45を介して補助給湯熱源装置4の給水導入口に連通したが、本発明は、コジェネレーション給湯熱源装置3と補助給湯熱源装置4とを別個に設けて併設してもよい。   Further, in the above embodiment, the hot water supply path 12 of the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is communicated with the water supply inlet of the auxiliary hot water supply heat source device 4 via the hot water mixing unit 10 and the connection passage 45. In the invention, the cogeneration hot water supply heat source device 3 and the auxiliary hot water supply heat source device 4 may be provided separately and provided side by side.

本発明に係る複合給湯熱源システムの一実施形態例の制御構成を示す要部構成図である。It is a principal part block diagram which shows the control structure of one Embodiment of the composite hot-water supply heat source system which concerns on this invention. 本発明に係る複合給湯熱源システムの一実施形態例のシステム構成を模式的に示す要部構成図である。It is a principal part block diagram which shows typically the system configuration | structure of one Embodiment of the composite hot-water supply heat source system which concerns on this invention. 本発明に係る複合給湯熱源システムの他の実施形態例に適用されるコジェネレーション給湯熱源装置の構成を模式的に示す要部説明図である。It is principal part explanatory drawing which shows typically the structure of the cogeneration hot water supply heat source apparatus applied to the other embodiment example of the composite hot water supply heat source system which concerns on this invention. 本発明に係る複合給湯熱源システムの他の実施形態例に適用される補助給湯熱源装置とのコジェネレーション給湯熱源装置の給水管との接続構成を模式的に示す要部説明図である。It is principal part explanatory drawing which shows typically the connection structure with the water supply pipe | tube of the cogeneration hot-water supply heat source apparatus with the auxiliary hot-water supply heat source apparatus applied to the other embodiment of the composite hot-water supply heat source system which concerns on this invention. コジェネレーション給湯熱源装置の構成例とその動作を模式的に示す説明図である。It is explanatory drawing which shows typically the structural example and its operation | movement of a cogeneration hot-water supply heat source apparatus.

符号の説明Explanation of symbols

1 発電装置
2 貯湯槽
3 コジェネレーション給湯熱源装置
4 補助給湯熱源装置
5 給湯器
35 蓄熱量検出部
36 選択制御部
37 熱源切替阻止部
38 給湯使用量学習記憶部
39 しきい値データメモリ部
40 しきい値データ変更部
41 時計機構
42 燃焼制御部
44 制御装置
101〜111 貯湯槽内湯水温検出センサ
DESCRIPTION OF SYMBOLS 1 Power generator 2 Hot water storage tank 3 Cogeneration hot water supply heat source device 4 Auxiliary hot water supply heat source device 5 Water heater 35 Heat storage amount detection part 36 Selection control part 37 Heat source switching prevention part 38 Hot water supply usage learning memory part 39 Threshold data memory part 40 Threshold data changing unit 41 Clock mechanism 42 Combustion control unit 44 Controller 101-111 Hot water temperature detection sensor in hot water tank

Claims (14)

発電装置と貯湯槽とを備え当該貯湯槽内の水を冷却水として発電装置へ導入し、当該冷却水を発電装置の発電の排熱を利用して加熱し湯にして前記貯湯槽の上部から貯湯槽内に入れて蓄積し、当該貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置と、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置とが併設されている複合給湯熱源システムにおいて、前記コジェネレーション給湯熱源装置と補助給湯熱源装置との給湯動作を制御する制御装置には貯湯槽内の残量の湯量に対応するしきい値データが上部しきい値とそれよりも小さい値であって予め与えられる設定温度範囲の貯湯槽内の湯が使い切られる状態時の湯量を示す下部しきい値で与えられ、制御装置には発電装置の稼動による単位時間当たりの湯の蓄熱量と発電装置の稼動時間に基いて求めた貯湯槽内の湯の蓄積量から流量センサにより得られる貯湯槽内の湯の給湯使用量を差し引いて貯湯槽内の湯の残存の湯量を貯湯槽内の蓄熱量に対応する値として求める蓄熱量検出部が設けられ、この蓄熱量検出部により求められた貯湯槽内の湯の残量の値が前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽から補助給湯熱源装置へ切替えて給湯を行い、貯湯槽内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽へ切替えて給湯を行う給湯熱源の選択制御部を備えていることを特徴とする複合給湯熱源システム。 A power generation device and a hot water storage tank are provided, water in the hot water storage tank is introduced into the power generation device as cooling water, and the cooling water is heated using the exhaust heat generated by the power generation device to form hot water from above the hot water storage tank. put accumulate in the hot water storage tank, comprising: a cogeneration hot water supply heat source apparatus for hot-water supply the hot water accumulated in the hot water storage tank for hot water supply destination, a function of supplying hot water prepared by heating water in the water passing to the hot water destination In a combined hot water supply heat source system provided with an auxiliary hot water supply heat source device, the controller for controlling the hot water supply operation of the cogeneration hot water supply heat source device and the auxiliary hot water supply heat source device corresponds to the remaining amount of hot water in the hot water storage tank. and threshold data upper threshold, a small difference value than that given by a lower threshold value that indicates the amount of hot water at the time of the state in which the hot water of the hot water storage tank is used up in the set temperature range given in advance, the control operation of power generation equipment in the apparatus According Yu per unit time heat storage capacity and power generator operation of the time obtained hot water storage tank based on the accumulated amount of hot water in the hot water tank obtained by the flow rate sensor of the hot water hot water usage the subtracted by the hot water tank heat storage amount detection unit is provided to determine the amount of hot water in the hot water remaining as a value corresponding to the amount of heat stored in the hot water tank, the value is the lower threshold of the remaining amount of the hot water in the hot water storage tank obtained by the heat storage amount detection unit When the temperature falls below the value, the hot water supply source is switched from the hot water storage tank to the auxiliary hot water supply heat source device to perform hot water supply, and when the value corresponding to the heat storage amount of the hot water in the hot water tank rises above the upper threshold value, A combined hot water supply heat source system, comprising: a hot water supply heat source selection control unit that performs hot water supply by switching the heat source from the auxiliary hot water supply heat source device to the hot water storage tank of the cogeneration hot water supply heat source device. 発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置と、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置とが併設されている複合給湯熱源システムにおいて、前記コジェネレーション給湯熱源装置と補助給湯熱源装置との給湯動作を制御する制御装置には蓄熱量に対応するしきい値データが上部しきい値とそれよりも値の小さい下部しきい値で与えられ、制御装置にはコジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽内の湯の蓄熱量に対応する値を求める蓄熱量検出部が設けられ、この蓄熱量検出部により求められた蓄熱量に対応する値が前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽から補助給湯熱源装置へ切替えて給湯を行い、貯湯槽内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽へ切替えて給湯を行う給湯熱源の選択制御部を備えており、前記制御装置により給湯熱源がコジェネレーション給湯熱源装置の貯湯槽から補助給湯熱源装置へ切替られたときには、その補助給湯熱源装置から連続湯が終了するまでは補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽への給湯熱源切替を阻止する熱源切替阻止部が設けられていることを特徴とする複合給湯熱源システム。 A cogeneration hot water source that supplies hot water accumulated in the hot water storage tank using the waste heat of the power generator to the hot water supply, and an auxiliary function that supplies hot water created by heating the water to the hot water supply In the combined hot water supply heat source system provided with a hot water supply heat source device, the control device for controlling the hot water supply operation of the cogeneration hot water supply heat source device and the auxiliary hot water supply heat source device has an upper threshold value corresponding to the amount of stored heat. Value and a lower threshold value that is smaller than that, and the control device has a value corresponding to the heat storage amount of hot water in the hot water storage tank based on the monitor information on the heat storage amount detection of the operating status of the cogeneration hot water supply heat source device. A heat storage amount detection unit to be obtained is provided, and when a value corresponding to the heat storage amount obtained by the heat storage amount detection unit falls below the lower threshold value, a hot water supply heat source is supplied from the hot water storage tank to the auxiliary hot water supply. When the value corresponding to the amount of heat stored in the hot water tank rises above the upper threshold value, the hot water source is changed from the auxiliary hot water source to the cogeneration hot water source. When the hot water source is switched from the hot water storage tank of the cogeneration hot water source device to the auxiliary hot water source device by the control device, the hot water source is switched from the auxiliary hot water source. double if the hot water supply heat source system that is characterized in that the heat source switching blocking portion to continuously supply hot water is finished to prevent the switching of the hot water supply heat source from the auxiliary hot water supply heat source apparatus to the hot water storage tank cogeneration hot water supply heat source device is provided . 発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置と、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置とが併設されている複合給湯熱源システムにおいて、前記コジェネレーション給湯熱源装置と補助給湯熱源装置との給湯動作を制御する制御装置には蓄熱量に対応するしきい値データが上部しきい値とそれよりも値の小さい下部しきい値で与えられ、制御装置にはコジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽内の湯の蓄熱量に対応する値を求める蓄熱量検出部が設けられ、この蓄熱量検出部により求められた蓄熱量に対応する値が前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽から補助給湯熱源装置へ切替えて給湯を行い、貯湯槽内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽へ切替えて給湯を行う給湯熱源の選択制御部を備えており、また、前記蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は貯湯槽への給水温度が高くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成していることを特徴とする複合給湯熱源システム。 A cogeneration hot water source that supplies hot water accumulated in the hot water storage tank using the waste heat of the power generator to the hot water supply, and an auxiliary function that supplies hot water created by heating the water to the hot water supply In the combined hot water supply heat source system provided with a hot water supply heat source device, the control device for controlling the hot water supply operation of the cogeneration hot water supply heat source device and the auxiliary hot water supply heat source device has an upper threshold value corresponding to the amount of stored heat. Value and a lower threshold value that is smaller than that, and the control device has a value corresponding to the heat storage amount of hot water in the hot water storage tank based on the monitor information on the heat storage amount detection of the operating status of the cogeneration hot water supply heat source device. A heat storage amount detection unit to be obtained is provided, and when a value corresponding to the heat storage amount obtained by the heat storage amount detection unit falls below the lower threshold value, a hot water supply heat source is supplied from the hot water storage tank to the auxiliary hot water supply. When the value corresponding to the amount of heat stored in the hot water tank rises above the upper threshold value, the hot water source is changed from the auxiliary hot water source to the cogeneration hot water source. A hot water supply heat source selection control unit that performs hot water supply by switching to, and further includes a threshold data change unit that changes threshold data corresponding to the heat storage amount, the threshold data change unit double if the hot water supply heat source system that is characterized in that forms a structure for changing the direction of reducing at least the upper threshold of the upper threshold and the lower threshold value as the water temperature to the hot water storage tank is high . 発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置と、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置とが併設されている複合給湯熱源システムにおいて、前記コジェネレーション給湯熱源装置と補助給湯熱源装置との給湯動作を制御する制御装置には蓄熱量に対応するしきい値データが上部しきい値とそれよりも値の小さい下部しきい値で与えられ、制御装置にはコジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽内の湯の蓄熱量に対応する値を求める蓄熱量検出部が設けられ、この蓄熱量検出部により求められた蓄熱量に対応する値が前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽から補助給湯熱源装置へ切替えて給湯を行い、貯湯槽内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽へ切替えて給湯を行う給湯熱源の選択制御部を備えており、また、前記蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は給湯設定温度が低くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成していることを特徴とする複合給湯熱源システム。 A cogeneration hot water source that supplies hot water accumulated in the hot water storage tank using the waste heat of the power generator to the hot water supply, and an auxiliary function that supplies hot water created by heating the water to the hot water supply In the combined hot water supply heat source system provided with a hot water supply heat source device, the control device for controlling the hot water supply operation of the cogeneration hot water supply heat source device and the auxiliary hot water supply heat source device has an upper threshold value corresponding to the amount of stored heat. Value and a lower threshold value that is smaller than that, and the control device has a value corresponding to the heat storage amount of hot water in the hot water storage tank based on the monitor information on the heat storage amount detection of the operating status of the cogeneration hot water supply heat source device. A heat storage amount detection unit to be obtained is provided, and when a value corresponding to the heat storage amount obtained by the heat storage amount detection unit falls below the lower threshold value, a hot water supply heat source is supplied from the hot water storage tank to the auxiliary hot water supply. When the value corresponding to the amount of heat stored in the hot water tank rises above the upper threshold value, the hot water source is changed from the auxiliary hot water source to the cogeneration hot water source. A hot water supply heat source selection control unit that performs hot water supply by switching to, and further includes a threshold data change unit that changes threshold data corresponding to the heat storage amount, the threshold data change unit double if the hot water supply heat source system that is characterized in that hot water set temperature forms a structure for changing the direction of reducing at least the upper threshold of the upper threshold and the lower threshold value as the lower. 発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置と、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置とが併設されている複合給湯熱源システムにおいて、前記コジェネレーション給湯熱源装置と補助給湯熱源装置との給湯動作を制御する制御装置には蓄熱量に対応するしきい値データが上部しきい値とそれよりも値の小さい下部しきい値で与えられ、制御装置にはコジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽内の湯の蓄熱量に対応する値を求める蓄熱量検出部が設けられ、この蓄熱量検出部により求められた蓄熱量に対応する値が前記下部しきい値以下に低下したときは給湯熱源を前記貯湯槽から補助給湯熱源装置へ切替えて給湯を行い、貯湯槽内の湯の蓄熱量に対応する値が前記上部しきい値以上に上昇したときは給湯熱源を前記補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽へ切替えて給湯を行う給湯熱源の選択制御部を備えており、さらに、1日の整数倍(1以上の整数倍)を周期とする時間軸上の各時刻に対する給湯使用量を流量センサから得られる給湯流量の情報と時計機構から得られる時刻情報とに基き学習記憶する給湯使用量学習記憶部と、蓄熱量に対応するしきい値データを変更するしきい値データ変更部とを有し、該しきい値データ変更部は時計機構から時刻データを取り込み前記給湯使用量学習記憶部のデータを参照して給湯使用量が多くなる時間帯に近づいた時に上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向に変更する構成と成していることを特徴とする複合給湯熱源システム。 A cogeneration hot water source that supplies hot water accumulated in the hot water storage tank using the waste heat of the power generator to the hot water supply, and an auxiliary function that supplies hot water created by heating the water to the hot water supply In the combined hot water supply heat source system provided with a hot water supply heat source device, the control device for controlling the hot water supply operation of the cogeneration hot water supply heat source device and the auxiliary hot water supply heat source device has an upper threshold value corresponding to the amount of stored heat. Value and a lower threshold value that is smaller than that, and the control device has a value corresponding to the heat storage amount of hot water in the hot water storage tank based on the monitor information on the heat storage amount detection of the operating status of the cogeneration hot water supply heat source device. A heat storage amount detection unit to be obtained is provided, and when a value corresponding to the heat storage amount obtained by the heat storage amount detection unit falls below the lower threshold value, a hot water supply heat source is supplied from the hot water storage tank to the auxiliary hot water supply. When the value corresponding to the amount of heat stored in the hot water tank rises above the upper threshold value, the hot water source is changed from the auxiliary hot water source to the cogeneration hot water source. A hot water supply source selection control unit that supplies hot water by switching to, and obtains the amount of hot water used for each time on the time axis with an integer multiple of one day (an integer multiple of 1) as a cycle. A hot water supply usage learning storage unit that learns and stores based on information on the hot water flow rate and time information obtained from the clock mechanism, and a threshold data change unit that changes threshold data corresponding to the heat storage amount, The threshold value data changing unit takes in time data from the clock mechanism and refers to the data in the hot water supply usage learning storage unit so that the upper threshold value and the lower threshold value are set when the hot water usage amount approaches. Little Double if the hot water supply heat source system that is characterized in that forms a structure for changing the direction of reducing the upper threshold with. コジェネレーション給湯熱源装置の貯湯槽は、該貯湯槽内に給水を導入する給水路と貯湯槽の湯を送水する給湯路を備え、貯湯槽と発電装置との間には該発電装置の排熱または前記発電装置の排熱吸収流体の熱を利用して貯湯槽内の水を加熱して湯にする手段が配備され、該手段によって形成された湯を貯湯槽に蓄積し、この貯湯槽の湯を前記給湯路を通して給湯先に供給する構成と成していることを特徴とする請求項2乃至請求項5のいずれか1つに記載の複合給湯熱源システム。 The hot water storage tank of the cogeneration hot water supply heat source device includes a water supply path for introducing water into the hot water storage tank and a hot water supply path for supplying hot water from the hot water storage tank, and the exhaust heat of the power generation apparatus is interposed between the hot water storage tank and the power generation apparatus. Alternatively, a means for heating the water in the hot water storage tank using the heat of the exhaust heat absorbing fluid of the power generator to make hot water is provided, and the hot water formed by the means is accumulated in the hot water storage tank. The combined hot water supply heat source system according to any one of claims 2 to 5 , wherein hot water is supplied to a hot water supply destination through the hot water supply passage. コジェネレーション給湯熱源装置の貯湯槽から送水される給湯の通路は補助給湯熱源装置の給水導入口に連通され、前記貯湯槽の湯のみを熱源として給湯を行うときは、貯湯槽の湯を非加熱駆動状態の補助給湯熱源装置を経由して給湯先へ給湯する構成と成したことを特徴とする請求項1乃至請求項6のいずれか1つに記載の複合給湯熱源システム。 The passage of hot water supplied from the hot water storage tank of the cogeneration hot water supply heat source device is connected to the water supply inlet of the auxiliary hot water supply heat source device, and when hot water is supplied using only the hot water of the hot water storage tank, the hot water of the hot water storage tank is driven without heating. The combined hot water supply heat source system according to any one of claims 1 to 6, wherein the hot water supply system is configured to supply hot water to a hot water supply destination via an auxiliary hot water supply heat source device in a state. 選択制御部は、貯湯槽から送水される給湯の検出温度情報を取り込み、その給湯の検出温度が給湯設定温度よりも低いときには補助給湯熱源装置を加熱駆動し、貯湯槽からの湯を補助給湯熱源装置で加熱して給湯先へ送水する構成とした請求項1乃至請求項7のいずれか1つに記載の複合給湯熱源システム。 The selection control unit takes in the detected temperature information of the hot water supplied from the hot water storage tank, and when the detected temperature of the hot water supply is lower than the set hot water temperature, the auxiliary hot water supply heat source device is heated to drive the hot water from the hot water storage tank to the auxiliary hot water supply heat source. The combined hot water supply heat source system according to any one of claims 1 to 7, wherein the system is configured to heat by an apparatus and supply water to a hot water supply destination. 制御装置により給湯熱源がコジェネレーション給湯熱源装置の貯湯槽から補助給湯熱源装置へ切替られたときには、その補助給湯熱源装置から連続湯が終了するまでは補助給湯熱源装置からコジェネレーション給湯熱源装置の貯湯槽への給湯熱源切替を阻止する熱源切替阻止部が設けられていることを特徴とする請求項1又は請求項3乃至請求項のいずれか1つに記載の複合給湯熱源システム。 When the hot water supply heat source by the control device is switched to the auxiliary hot water supply heat source apparatus from the hot water tank cogeneration hot water supply heat source device, the auxiliary hot-water supply to a continuous feeding hot water from the heat source device is completed auxiliary hot water supply heat source device from cogeneration hot water supply heat source device combined hot water supply heat source system according to any one of claims 1 or claims 3 to 8 heat source switching blocking unit for blocking the switching of the hot-water supply heat source to the hot water storage tank and being provided. 蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は貯湯槽への給水温度が高くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成していることを特徴とする請求項1又は請求項2又は請求項4乃至請求項のいずれか1つに記載の複合給湯熱源システム。 A threshold value data changing unit for changing threshold data corresponding to the heat storage amount, and the threshold value data changing unit changes the upper threshold value and the lower threshold value as the water supply temperature to the hot water tank increases; of the composite hot water supply heat source according to any one of claims 1 or claim 2 or claim 4 to claim 9, characterized in that it forms a structure for changing the direction of reducing at least the upper threshold system. 蓄熱量に対応するしきい値データを変更するしきい値データ変更部を有し、該しきい値データ変更部は給湯設定温度が低くなるにつれ上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向へ変更する構成と成していることを特徴とする請求項1又は請求項2又は請求項3又は請求項5乃至請求項10のいずれか1つに記載の複合給湯熱源システム。 A threshold value data changing unit for changing threshold value data corresponding to the heat storage amount, and the threshold value data changing unit is at least an upper threshold value or a lower threshold value as the hot water supply set temperature decreases; The combined hot water supply according to any one of claims 1 or 2, or 3 or claims 5 to 10 , wherein the threshold value is changed in a direction to decrease. Heat source system. 1日の整数倍(1以上の整数倍)を周期とする時間軸上の各時刻に対する給湯使用量を流量センサから得られる給湯流量の情報と時計機構から得られる時刻情報とに基き学習記憶する給湯使用量学習記憶部と、蓄熱量に対応するしきい値データを変更するしきい値データ変更部とを有し、該しきい値データ変更部は時計機構から時刻データを取り込み前記給湯使用量学習記憶部のデータを参照して給湯使用量が多くなる時間帯に近づいた時に上部しきい値と下部しきい値のうち少なくとも上部しきい値を小さくする方向に変更する構成と成していることを特徴とする請求項1乃至請求項4のいずれか1つ又は請求項6乃至請求項11のいずれか1つに記載の複合給湯熱源システム。 The hot water use amount for each time on the time axis having a cycle of an integer multiple of one day (an integer multiple of 1 or more) is learned and stored based on the information on the hot water flow rate obtained from the flow sensor and the time information obtained from the clock mechanism. A hot water supply usage learning storage unit and a threshold data changing unit that changes threshold data corresponding to the amount of stored heat, the threshold data changing unit taking in time data from a clock mechanism, By referring to the data in the learning storage unit, it is configured to change at least the upper threshold value between the upper threshold value and the lower threshold value in the direction of decreasing the time when the hot water use amount increases. The combined hot water supply heat source system according to any one of claims 1 to 4, or any one of claims 6 to 11 . 発電装置は水素と酸素を反応させて電気を発生する燃料電池とした請求項1乃至請求項12のいずれか1つに記載の複合給湯熱源システム。 The combined hot water supply system according to any one of claims 1 to 12 , wherein the power generator is a fuel cell that generates electricity by reacting hydrogen and oxygen. 発電装置はガスエンジンとした請求項1乃至請求項13のいずれか1つに記載の複合給湯熱源システム。 The combined hot water supply heat source system according to any one of claims 1 to 13 , wherein the power generation device is a gas engine.
JP2004113322A 2004-04-07 2004-04-07 Combined hot water supply system Expired - Fee Related JP4199694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113322A JP4199694B2 (en) 2004-04-07 2004-04-07 Combined hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113322A JP4199694B2 (en) 2004-04-07 2004-04-07 Combined hot water supply system

Publications (2)

Publication Number Publication Date
JP2005299962A JP2005299962A (en) 2005-10-27
JP4199694B2 true JP4199694B2 (en) 2008-12-17

Family

ID=35331711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113322A Expired - Fee Related JP4199694B2 (en) 2004-04-07 2004-04-07 Combined hot water supply system

Country Status (1)

Country Link
JP (1) JP4199694B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108720B2 (en) * 2008-11-06 2012-12-26 積水化学工業株式会社 Control system for distributed energy generator
JP5593142B2 (en) * 2010-06-30 2014-09-17 パナソニック株式会社 Hot water system

Also Published As

Publication number Publication date
JP2005299962A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP2007032904A (en) Cogeneration system
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP4294545B2 (en) Water heater with water level sensor
JP5158745B2 (en) Fuel cell cogeneration system
JP5281327B2 (en) Hot water storage water heater
JP4199694B2 (en) Combined hot water supply system
JP4295655B2 (en) Combined hot water supply system
JP4203431B2 (en) Water heater with learning function
JP5113709B2 (en) Combined hot water supply system
JP7260352B2 (en) energy supply system
JP2013040762A (en) Storage type water heater
JP4685553B2 (en) Cogeneration system
JP4154363B2 (en) Hot water supply system
JP4487140B2 (en) Hot water supply system
JP4688430B2 (en) Hot water supply system
JP4639059B2 (en) Hot water supply system
JP4146387B2 (en) Hot water supply system
JP4154367B2 (en) Water heater with learning function
JP4523809B2 (en) Water heater
JP4295683B2 (en) Hot water supply system
JP5106567B2 (en) Hot water storage hot water supply system
JP5317810B2 (en) Water heater
JP4369278B2 (en) Hot water supply system
JP4223499B2 (en) Cogeneration system
JP4295701B2 (en) Hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4199694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees