JP4369278B2 - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP4369278B2
JP4369278B2 JP2004113321A JP2004113321A JP4369278B2 JP 4369278 B2 JP4369278 B2 JP 4369278B2 JP 2004113321 A JP2004113321 A JP 2004113321A JP 2004113321 A JP2004113321 A JP 2004113321A JP 4369278 B2 JP4369278 B2 JP 4369278B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
power generation
generation device
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004113321A
Other languages
Japanese (ja)
Other versions
JP2005299961A (en
Inventor
達也 和田
靖 飯塚
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2004113321A priority Critical patent/JP4369278B2/en
Publication of JP2005299961A publication Critical patent/JP2005299961A/en
Application granted granted Critical
Publication of JP4369278B2 publication Critical patent/JP4369278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、例えば固体高分子型の燃料電池(PEFC)等の、発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置を備えた給湯熱源システムに関するものである。   The present invention relates to a hot water supply heat source system including a cogeneration hot water supply heat source device that supplies hot water accumulated in a hot water storage tank to a hot water supply destination using exhaust heat of a power generation device such as a polymer electrolyte fuel cell (PEFC). It is about.

近年、省エネルギー効果を奏することが可能なシステムとして、例えば固体高分子型燃料電池等の発電装置の排熱を利用して、貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置が提案されている(例えば、特許文献1参照。)。   In recent years, as a system capable of achieving an energy saving effect, for example, a cogeneration hot water supply heat source device that supplies hot water accumulated in a hot water storage tank to a hot water supply destination using waste heat of a power generation device such as a polymer electrolyte fuel cell It has been proposed (see, for example, Patent Document 1).

図4には、コジェネレーション給湯熱源装置の一例が示されている。このコジェネレーション給湯熱源装置3は、発電装置1と貯湯槽2とを有し、貯湯槽2は、貯湯槽2内に給水を導入する給水路11と貯湯槽2の湯を送水する給湯路12を備えている。給湯路12には湯水温検出センサ100が設けられている。   FIG. 4 shows an example of a cogeneration hot water supply heat source device. The cogeneration hot water supply heat source device 3 includes a power generation device 1 and a hot water storage tank 2, and the hot water storage tank 2 introduces water into the hot water storage tank 2 and a hot water supply path 12 that supplies hot water from the hot water storage tank 2. It has. A hot water temperature detection sensor 100 is provided in the hot water supply path 12.

貯湯槽2と発電装置1との間には、冷却水導入通路13と排熱湯導入通路14とが配備されており、冷却水導入通路13は貯湯槽2内の水を発電装置1の冷却水として発電装置1側に導入し、この水を発電装置1の発電時に生じる排熱によって加熱して例えば60℃といった温度の湯とし、排熱湯導入通路14を介して貯湯槽2に蓄積する。   Between the hot water storage tank 2 and the power generation device 1, a cooling water introduction passage 13 and a waste hot water introduction passage 14 are provided. The cooling water introduction passage 13 uses the water in the hot water storage tank 2 as cooling water for the power generation device 1. The water is introduced into the power generation device 1 side and heated by exhaust heat generated during power generation by the power generation device 1 to form hot water having a temperature of, for example, 60 ° C., and is accumulated in the hot water storage tank 2 through the exhaust heat hot water introduction passage 14.

つまり、冷却水導入通路13と排熱湯導入通路14は、貯湯槽2の水を発電装置1に導入してその水を発電装置1の排熱利用により加熱して前記貯湯槽2に導く経路を順方向とした排熱回収湯水循環通路47として機能するものであり、この排熱回収湯水循環通路47には循環ポンプ46が設けられている。コジェネレーション給湯熱源装置3は、発電装置1の排熱回収時に、排熱回収湯水循環通路47を順方向に通して形成された湯を貯湯槽2に蓄積する構成と成している。   That is, the cooling water introduction passage 13 and the exhaust hot water introduction passage 14 are paths through which the water in the hot water storage tank 2 is introduced into the power generation device 1 and the water is heated by using the exhaust heat of the power generation device 1 and led to the hot water storage tank 2. The exhaust heat recovery hot water circulation passage 47 functions in the forward direction, and the exhaust heat recovery hot water circulation passage 47 is provided with a circulation pump 46. The cogeneration hot water supply heat source device 3 is configured to accumulate hot water formed through the exhaust heat recovery hot water circulation passage 47 in the forward direction in the hot water storage tank 2 when recovering the exhaust heat of the power generation device 1.

貯湯槽2の下方側には、貯湯槽2内の水を排水する排水通路15が設けられ、該排水通路15には排水弁52が設けられている。貯湯槽2の上方側には、圧力逃がし通路16が設けられており、圧力逃がし通路16には、過圧逃がし弁50が設けられている。貯湯槽2内は、通常、湯または水によって満たされており、この図では、図を分かりやすくするために、湯が充填されている領域を斜線で示している。   A drainage passage 15 for draining the water in the hot water tank 2 is provided below the hot water tank 2, and a drain valve 52 is provided in the drainage passage 15. A pressure relief passage 16 is provided above the hot water storage tank 2, and an overpressure relief valve 50 is provided in the pressure relief passage 16. The hot water tank 2 is usually filled with hot water or water. In this figure, the region filled with hot water is indicated by hatching in order to make the drawing easy to understand.

このコジェネレーション給湯熱源装置3において、発電装置1が作動すると、貯湯槽2の下部側に貯められている水が冷却水導入通路13を通して発電装置1に導入され、発電装置1の発電時の排熱によって暖められて湯とされ、この湯が排熱湯導入通路14を通って貯湯槽2の上方側から貯湯槽2内に導入される。この動作が繰り返されると、貯湯槽2の下部側の水が発電装置1の排熱によって湯にされて貯湯槽2の上部側に導入されるので、図4の破線Aで示す、貯湯槽2内の水と湯との境界線が貯湯槽2の下部側に移動していく。   In the cogeneration hot water supply heat source device 3, when the power generation device 1 is activated, water stored in the lower part of the hot water tank 2 is introduced into the power generation device 1 through the cooling water introduction passage 13, and is discharged when the power generation device 1 generates power. The hot water is heated to be hot water, and this hot water is introduced into the hot water tank 2 from the upper side of the hot water tank 2 through the exhaust hot water introduction passage 14. When this operation is repeated, the water on the lower side of the hot water tank 2 is converted into hot water by the exhaust heat of the power generator 1 and introduced into the upper side of the hot water tank 2, so that the hot water tank 2 shown by the broken line A in FIG. The boundary line between the water and hot water inside moves to the lower side of the hot water tank 2.

なお、貯湯槽2内が全て湯で満たされると、発電装置1への冷却水導入を行うことができないので、発電装置1による発電は行えない。   Note that if the hot water tank 2 is completely filled with hot water, the cooling power cannot be introduced into the power generation device 1, so that the power generation by the power generation device 1 cannot be performed.

また、貯湯槽2の湯が給湯路12を通して適宜の給湯場所に送水されると、この送水によって減少した湯量だけ、給水路11から貯湯槽2内に給水が行われるので、この場合、図4の破線Aで示す、貯湯槽2内の水と湯との境界線は貯湯槽2の上部側に移動していく。   Further, when the hot water in the hot water tank 2 is supplied to an appropriate hot water supply place through the hot water supply path 12, water is supplied from the water supply path 11 into the hot water tank 2 by the amount of hot water reduced by this water supply. A boundary line between water and hot water in the hot water tank 2 indicated by a broken line A in FIG.

上記のようなコジェネレーション給湯熱源装置3は、例えば給湯器を備えた補助給湯熱源装置と併設されて用いられることが多い。補助給湯熱源装置とコジェネレーション給湯熱源装置3とを併設すると、複合的な給湯熱源システムが形成される。   The cogeneration hot water supply heat source device 3 as described above is often used in combination with, for example, an auxiliary hot water supply heat source device including a hot water heater. When the auxiliary hot water supply heat source device and the cogeneration hot water supply heat source device 3 are provided side by side, a complex hot water supply heat source system is formed.

特開2003―120998JP2003-120998

ところで、上記のような燃料電池の発電装置1を備えたコジェネレーション給湯熱源装置3においては、燃料電池内が、ある一定の温度(発電開始可能温度)に達するまでは、発電が行えないので、その間、貯湯槽2内に蓄熱(湯の蓄積)を行うことができず、システムとして起動するために時間がかかるといった問題があった。   By the way, in the cogeneration hot water supply heat source device 3 provided with the power generation device 1 of the fuel cell as described above, power generation cannot be performed until the inside of the fuel cell reaches a certain temperature (power generation start possible temperature). In the meantime, heat storage (hot water accumulation) cannot be performed in the hot water tank 2, and there is a problem that it takes time to start up the system.

本発明は、上記従来の課題を解決するために成されたものであり、その目的は、燃料電池の発電装置を備えたコジェネレーション給湯熱源装置を有する給湯熱源システムにおいて、短時間で起動可能な給湯熱源システムを提供することにある。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to start up in a short time in a hot water supply heat source system having a cogeneration hot water supply heat source device equipped with a power generation device for a fuel cell. It is to provide a hot water supply heat source system.

本発明は上記目的を達成するために次のような構成をもって課題を解決する手段と成している。すなわち、第1の発明は、発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置を備えた給湯熱源システムにおいて、前記発電装置は予熱を与えることにより起動時間が短縮できる構成を有し、前記貯湯槽と前記発電装置との間には、前記貯湯槽の水を前記発電装置に導入する冷却水導入通路と、前記発電装置に導入されて該発電装置の排熱利用により加熱された湯を前記貯湯槽に導く排熱湯導入通路とが設けられ、前記冷却水導入通路には循環ポンプが設けられており、前記発電装置の排熱回収時には前記循環ポンプの駆動により前記貯湯槽の水を前記冷却水導入通路を通して発電装置に導入し、その水を発電装置の排熱利用により加熱し前記排熱湯導入通路を通して前記貯湯槽に導く構成とし、前記循環ポンプの吸い込み口側の前記冷却水導入通路と前記排熱湯導入通路とをバイパスするバイパス通路が設けられ、該バイパス通路と前記排熱湯導入通路との連通部には該排熱湯導入通路を通る湯の流路を前記貯湯槽側と前記バイパス通路側のいずれか一方に選択的に切り替える三方弁が設けられており、前記コジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽内の湯の蓄熱量に対応する値を求める蓄熱量検出部と、前記発電装置の起動タイミングを検知する発電装置起動検知部と、前記発電装置の起動時に予熱を供給する発電装置起動時予熱供給手段とが設けられ、該発電装置起動時予熱供給手段は、前記貯湯槽内に湯を蓄積する前のシステムの最初の稼動時に前記発電装置を起動させるときには、前記三方弁を前記バイパス通路側に切り替え、かつ、前記循環ポンプを駆動し、前記排熱湯導入通路を通る湯を前記バイパス通路と前記冷却水導入通路とを通して前記発電装置に導入することにより該発電装置に予熱を供給する構成とした構成をもって課題を解決する手段としている。 In order to achieve the above object, the present invention is a means for solving the problems with the following configuration. That is, the first invention is a hot water supply heat source system including a cogeneration hot water supply heat source device for supplying hot water accumulated in a hot water storage tank to a hot water supply destination using exhaust heat of the power generation device, wherein the power generation device provides preheating. The start-up time can be shortened by a cooling water introduction passage that introduces water from the hot water storage tank into the power generation device, and is introduced into the power generation device between the hot water storage tank and the power generation device. An exhaust hot water introduction passage for guiding hot water heated by the use of exhaust heat of the power generation device to the hot water storage tank is provided, and a circulation pump is provided in the cooling water introduction passage, and when the exhaust heat of the power generation device is recovered, A structure in which water in the hot water storage tank is introduced into the power generation device through the cooling water introduction passage by driving a circulation pump, the water is heated by using the exhaust heat of the power generation device, and is led to the hot water storage tank through the waste heat water introduction passage; A bypass passage that bypasses the cooling water introduction passage and the exhaust hot water introduction passage on the suction port side of the circulation pump is provided, and the exhaust hot water introduction passage is provided at a communication portion between the bypass passage and the exhaust hot water introduction passage. Is provided with a three-way valve that selectively switches the hot water flow path passing through either the hot water storage tank side or the bypass passage side to monitor information related to detection of the amount of heat stored in the operating status of the cogeneration hot water supply heat source device. a heat storage amount detection unit for obtaining a value corresponding to the amount of stored heat of the hot water in the hot water tank on the basis of a power generator activation detection unit for detecting a timing of starting the power generator, the power generation device for supplying pre-heated at the start of pre-Symbol power generator startup preheating supply means and is provided, power-generating device startup preheating supply means, activating the power generating device when the first operation of the system before accumulating hot water in said hot water storage tank In this case, the three-way valve is switched to the bypass passage side, the circulation pump is driven, and hot water passing through the exhaust hot water introduction passage is introduced into the power generator through the bypass passage and the cooling water introduction passage. Thus, the configuration is configured to supply preheating to the power generation device, and is used as a means for solving the problem.

また、第2の発明は、第1の発明の構成に加え、前記発電装置起動時予熱供給手段は、蓄熱量検出部により求めた蓄熱量に対応する値が湯送り閾値以上の時に発電装置起動検知部により発電装置の起動が検知されたときには、三方弁を貯湯槽側に切り替え、かつ、発電装置の排熱回収時とは逆方向に循環ポンプを駆動させることにより、前記貯湯槽の湯を予め定められた湯送り設定時間だけ排熱湯導入通路を通して前記発電装置に導入することにより該発電装置に予熱を供給する構成としたことをもって課題を解決する手段としている。さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記冷却水導入通路は貯湯槽の底部から貯湯槽内に貯湯されている湯水を引き出して該湯水を貯湯槽から発電装置へ直接的に導き、排熱湯導入通路は前記発電装置の排熱利用により加熱された湯を貯湯槽の上部側から貯湯槽内に直接的に導入する構成をもって前記課題を解決する手段と成している。 Further, in the second invention, in addition to the configuration of the first invention, the preheating supply means at the time of starting the power generator starts the power generator when the value corresponding to the heat storage amount obtained by the heat storage amount detection unit is equal to or greater than a hot water feed threshold. When the activation of the power generation device is detected by the detector, the three-way valve is switched to the hot water storage tank side, and the hot water in the hot water storage tank is removed by driving the circulation pump in the direction opposite to that during the exhaust heat recovery of the power generation device. This is a means for solving the problem by adopting a configuration in which preheating is supplied to the power generation device by introducing it into the power generation device through the exhaust hot water introduction passage for a predetermined hot water feed setting time . Furthermore, in the third invention, in addition to the configuration of the first or second invention, the cooling water introduction passage draws hot water stored in the hot water storage tank from the bottom of the hot water storage tank and removes the hot water from the hot water storage tank. Means for solving the above problems with a configuration that directly leads to the power generation apparatus, and the exhaust hot water introduction passage directly introduces the hot water heated by using the exhaust heat of the power generation apparatus into the hot water storage tank from the upper side of the hot water storage tank. It is made.

さらに、第の発明は、上記第1または第2または第3の発明の構成に加え、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置がコジェネレーション給湯熱源装置と併設されており、該コジェネレーション給湯熱源装置の貯湯槽は貯湯槽の湯を送水する給湯路を有して該給湯路が前記補助給湯熱源装置の給水導入口に連通され、前記貯湯槽の湯のみを熱源として給湯を行うときは、貯湯槽の湯を非加熱駆動状態の補助給湯熱源装置を経由して給湯先へ給湯する構成をもって課題を解決する手段としている。 Further, the fourth invention is an auxiliary hot water supply heat source device having a function of supplying hot water prepared by heating the water flow to the hot water supply destination in addition to the configuration of the first, second or third invention. A hot water storage tank of the cogeneration hot water supply heat source device has a hot water supply passage for supplying hot water from the hot water storage tank, and the hot water supply passage communicates with a water supply inlet of the auxiliary hot water supply heat source device. When hot water is supplied using only the hot water in the hot water storage tank as a heat source, the hot water in the hot water storage tank is supplied to the hot water supply destination via an auxiliary hot water supply heat source device in a non-heated drive state as means for solving the problem.

さらに、第の発明は、上記第1乃至第4のいずれか一つの発明の構成に加え、前記発電装置は水素と酸素を反応させて電気を発生する燃料電池とした構成をもって課題を解決する手段としている。 Further, the fifth invention solves the problem with the structure of any one of the first to fourth inventions, in which the power generation device is a fuel cell that generates electricity by reacting hydrogen and oxygen. As a means to do.

本発明によれば、貯湯槽と発電装置との間に、貯湯槽から発電装置への冷却水導入通路と、発電装置の排熱利用により加熱された湯を貯湯槽に導く排熱湯導入通路とを設け、冷却水導入通路に設けた循環ポンプの駆動により、貯湯槽の水を冷却水導入通路を通して発電装置に導入し、その水を発電装置の排熱利用により加熱し排熱湯導入通路を通して前記貯湯槽に導く構成としているが、前記循環ポンプの吸い込み口側の前記冷却水導入通路と前記排熱湯導入通路とをバイパスするバイパス通路を設けており、貯湯槽内の湯の蓄熱量に対応する値が予め定められた湯送り閾値未満の時に発電装置の起動が検知されたときには、前記バイパス通路と前記排熱湯導入通路との連通部に設けた三方弁を切り替え、かつ、前記循環ポンプを駆動させて、前記排熱湯導入通路を通る湯を前記バイパス通路と前記冷却水導入通路とを通して発電装置側に送水するので、この湯の導入によって発電装置内を暖めることができる。本発明に適用されている発電装置は予熱を与えると起動時間が短縮するので、本発明は、短時間で起動可能な給湯熱源システムを実現できる。 According to the present invention, between the hot water storage tank and the power generation apparatus, a cooling water introduction path from the hot water storage tank to the power generation apparatus, and a waste heat hot water introduction path that guides the hot water heated by using the exhaust heat of the power generation apparatus to the hot water storage tank. By driving a circulation pump provided in the cooling water introduction passage, the water in the hot water storage tank is introduced into the power generation device through the cooling water introduction passage, and the water is heated by using the exhaust heat of the power generation device, and the water is introduced through the waste water introduction passage. Although it is configured to lead to the hot water storage tank, a bypass passage that bypasses the cooling water introduction passage and the exhaust hot water introduction passage on the suction port side of the circulation pump is provided , corresponding to the amount of heat stored in the hot water in the hot water storage tank When activation of the power generation device is detected when the value is less than a predetermined hot water feed threshold , the three-way valve provided in the communicating portion between the bypass passage and the exhaust hot water introduction passage is switched, and the circulation pump is driven Let me Since water in the generator unit side the hot water through the exhaust hot water inlet passage through said cooling water introducing passage and the bypass passage, it is possible to heat the inside power generator by the introduction of the hot water. Since the power generation device applied to the present invention shortens the startup time when preheating is applied, the present invention can realize a hot water supply heat source system that can be started in a short time.

また、本発明において、蓄熱量検出部により求めた蓄熱量に対応する値が湯送り閾値以上の時に発電装置起動検知部により発電装置の起動が検知されたときには、三方弁を貯湯槽側に切り替え、かつ、発電装置の排熱回収時とは逆方向に循環ポンプを駆動させることにより、前記貯湯槽の湯を予め定められた湯送り設定時間だけ排熱湯導入通路を通して前記発電装置に導入することにより該発電装置に予熱を供給する構成によれば、蓄熱量に対応する値が湯送り閾値以上の時には、排熱回収用に設けた排熱回収湯水循環通路を利用して貯湯槽の湯を発電装置に供給し、発電装置の起動時間短縮を行えるので、システム構成の簡略化を図ることができ、上記効果を効率的に発揮できる給湯熱源システムを実現できる。 Further, in the present invention, when the start of the power generation device is detected by the power generation device start detection unit when the value corresponding to the heat storage amount obtained by the heat storage amount detection unit is equal to or greater than the hot water feed threshold, the three-way valve is switched to the hot water tank side. In addition, the hot water in the hot water storage tank is introduced into the power generation device through the exhaust heat hot water introduction passage for a predetermined hot water feed setting time by driving the circulation pump in a direction opposite to that at the time of exhaust heat recovery of the power generation device. According to the configuration for supplying the preheating power-generating apparatus by, when the value corresponding to the heat storage amount is equal to or larger than the water feed threshold, hot water of the hot water storage tank exhaust heat recovery hot water circulation passage to take advantage provided for exhaust heat recovery Can be supplied to the power generator and the startup time of the power generator can be shortened, so that the system configuration can be simplified and a hot water supply heat source system that can efficiently exhibit the above-described effects can be realized.

さらに、本発明において、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置がコジェネレーション給湯熱源装置と併設されており、該コジェネレーション給湯熱源装置の貯湯槽は貯湯槽の湯を送水する給湯路を有して該給湯路が前記補助給湯熱源装置の給水導入口に連通され、前記貯湯槽の湯のみを熱源として給湯を行うときは、貯湯槽の湯を非加熱駆動状態の補助給湯熱源装置を経由して給湯先へ給湯する構成によれば、コジェネレーション給湯熱源装置の貯湯槽から送水される給湯の通路と補助給湯熱源装置の給水導入口とを連通させることによりシステム構成が簡単な複合的な給湯システムを実現でき、効率的に給湯を行うことができる。   Further, in the present invention, an auxiliary hot water supply heat source device having a function of supplying hot water created by heating water to be supplied to a hot water supply destination is provided together with the cogeneration hot water supply heat source device. The hot water storage tank has a hot water supply path for supplying hot water from the hot water storage tank, and the hot water supply path is connected to the water supply introduction port of the auxiliary hot water supply heat source device, and when hot water supply is performed using only the hot water of the hot water storage tank as a heat source, According to the configuration in which hot water is supplied to the hot water supply destination via the auxiliary hot water supply heat source device in the non-heated drive state, the hot water supply passage supplied from the hot water storage tank of the cogeneration hot water supply heat source device, the water supply inlet of the auxiliary hot water supply heat source device, By connecting the two, a complex hot water supply system with a simple system configuration can be realized, and hot water can be supplied efficiently.

さらに、本発明において、発電装置は水素と酸素を反応させて電気を発生する燃料電池とした構成によれば、発電装置を燃料電池とすることによって、環境に悪影響を与える物質を排出することなく、コジェネレーション給湯熱源装置を運転できるので、環境に優しい給湯熱源システムを構築することができる。   Furthermore, in the present invention, according to the configuration in which the power generation device is a fuel cell that reacts hydrogen and oxygen to generate electricity, by using the power generation device as a fuel cell, a substance that adversely affects the environment is not discharged. Since the cogeneration hot water supply heat source device can be operated, an environmentally friendly hot water supply heat source system can be constructed.

以下、本発明の実施の形態を、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2には、本発明に係る給湯装置の一実施形態例のシステム構成が示されており、図1には、その制御構成が示されている。図2に示すように、本実施形態例は、発電装置1の排熱を利用して貯湯槽2に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置3と、通水の水を加熱して作成した湯を給湯先に供給する補助給湯熱源装置4とを併設した複合的な給湯システムである。なお、コジェネレーション給湯熱源装置3において、図4と同様の構成についての重複説明は省略または簡略化する。   FIG. 2 shows a system configuration of an embodiment of a hot water supply apparatus according to the present invention, and FIG. 1 shows a control configuration thereof. As shown in FIG. 2, the present embodiment heats the water of the cogeneration hot water supply heat source device 3 that supplies the hot water accumulated in the hot water storage tank 2 to the hot water supply destination using the exhaust heat of the power generation device 1, and the water that passes through the water. This is a combined hot water supply system with an auxiliary hot water supply heat source device 4 for supplying hot water prepared in this manner to a hot water supply destination. In addition, in the cogeneration hot water supply heat source apparatus 3, the overlapping description about the same structure as FIG. 4 is abbreviate | omitted or simplified.

本実施形態例で適用している発電装置1は、例えば固体高分子型燃料電池(PEFC)等の燃料電池により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素2Hと空気中の酸素(1/2)Oとを反応させて発電する装置である。 The power generator 1 applied in the present embodiment is formed by a fuel cell such as a polymer electrolyte fuel cell (PEFC), for example, and is extracted from a fuel such as city gas by the reverse reaction of water electrolysis. This is a device for generating electricity by reacting the generated hydrogen 2H + with oxygen (1/2) O 2 in the air.

コジェネレーション給湯熱源装置3を有するシステムは、省エネルギー効果を奏することが可能なシステムとして注目されており、特に、発電装置1を燃料電池により形成することによって、環境に悪影響を与える物質を排出することなく、コジェネレーション給湯熱源装置3を運転でき、環境に優しい給湯装置を構築することができる。   The system having the cogeneration hot water supply heat source device 3 is attracting attention as a system capable of producing an energy saving effect. In particular, by forming the power generation device 1 with a fuel cell, a substance that adversely affects the environment is discharged. In addition, the cogeneration hot water supply heat source device 3 can be operated, and an environmentally friendly hot water supply device can be constructed.

本実施形態例において、貯湯槽2の容量は例えば200Lであり、貯湯槽2には、互いに間隔を介して貯湯槽内湯水温検出センサ101〜111が設けられている。また、貯湯槽2の下方側に設けられた排水弁52は排水電磁弁である。   In the present embodiment, the capacity of the hot water tank 2 is, for example, 200 L, and the hot water tank 2 is provided with hot water temperature detection sensors 101 to 111 in the hot water tank at intervals. The drain valve 52 provided on the lower side of the hot water tank 2 is a drain solenoid valve.

本実施形態例では、コジェネレーション給湯熱源装置3と補助給湯熱源装置4とは、湯水混合ユニット10と接続通路45を介して接続されており、コジェネレーション給湯熱源装置3の給湯路12の出口側には、給湯路12から送水される湯の流量を検出する流量センサ70が設けられている。また、湯水混合ユニット10には給水路11の分岐通路11bが接続されている。給水路11には給水温度センサ112が設けられている。   In the present embodiment example, the cogeneration hot water supply heat source device 3 and the auxiliary hot water supply heat source device 4 are connected to the hot water mixing unit 10 via the connection passage 45, and the outlet side of the hot water supply path 12 of the cogeneration hot water supply heat source device 3. Is provided with a flow rate sensor 70 for detecting the flow rate of hot water fed from the hot water supply passage 12. Further, a branch passage 11 b of the water supply passage 11 is connected to the hot water / mixing unit 10. A water supply temperature sensor 112 is provided in the water supply path 11.

湯水混合ユニット10は、前記給湯路12の開閉を行う湯水開閉弁54と、給湯路12から送水される湯の流量を弁開度によって可変制御する湯水比例弁55と、給水路11から給水される水の流量を弁開度によって可変制御する湯水比例弁56と、接続通路45の入り口側に設けられた流量センサ71とを有している。湯水開閉弁54は電磁弁、湯水比例弁55,56はギアモータにより形成されている。給湯路12の出口側には湯水温検出センサ120が設けられ、接続通路45の入口側には、湯水温検出センサ118が設けられている。   The hot water mixing unit 10 is supplied with water from the water supply path 11, a hot water on / off valve 54 that opens and closes the hot water supply path 12, a hot water proportional valve 55 that variably controls the flow rate of hot water supplied from the hot water supply path 12 according to the valve opening degree. And a flow rate sensor 71 provided on the inlet side of the connection passage 45. The hot water on / off valve 54 is formed by an electromagnetic valve, and the hot water proportional valves 55 and 56 are formed by a gear motor. A hot water temperature detection sensor 120 is provided on the outlet side of the hot water supply passage 12, and a hot water temperature detection sensor 118 is provided on the inlet side of the connection passage 45.

補助給湯熱源装置4は、通水の水を加熱して作成した湯を給湯先に供給する機能を備えた装置であり、給湯器5(5a,5b)を有して形成されている。給湯器5(5a,5b)は、それぞれ燃焼室23,24を有している。給湯器5aの燃焼室23内には、バーナ6と、バーナ6の燃焼の給排気を行なう燃焼ファン8と、バーナ6の燃焼により加熱される給湯熱交換器19とが設けられている。また、給湯器5bの燃焼室24内には、バーナ7と、バーナ7の燃焼の給排気を行なう燃焼ファン9と、バーナ7の燃焼により加熱される追い焚き熱交換器25とが設けられている。   The auxiliary hot water supply heat source device 4 is a device having a function of supplying hot water prepared by heating water flowing through water to a hot water supply destination, and has a hot water heater 5 (5a, 5b). The water heater 5 (5a, 5b) has combustion chambers 23, 24, respectively. In the combustion chamber 23 of the water heater 5 a, a burner 6, a combustion fan 8 that supplies and exhausts combustion of the burner 6, and a hot water supply heat exchanger 19 that is heated by the combustion of the burner 6 are provided. Further, in the combustion chamber 24 of the water heater 5b, a burner 7, a combustion fan 9 for supplying and exhausting combustion of the burner 7, and a reheating heat exchanger 25 heated by the combustion of the burner 7 are provided. Yes.

バーナ6,7には、それぞれのバーナ6,7に燃料を供給するガス管21,22が接続されており、これらのガス管21,22は、ガス管20から分岐形成されている。ガス管20には、ガス開閉弁80が介設されており、ガス管21には、ガス比例弁86とガス開閉弁81,82,83が、ガス管22には、ガス比例弁87とガス開閉弁84,85がそれぞれ介設されている。これらの弁80〜87はいずれも電磁弁により形成されており、ガス開閉弁80〜85は、対応するバーナ6,7への燃料供給・停止を制御し、ガス比例弁86,87は、対応するバーナ6,7への供給燃料量を弁開度でもって制御する。   Gas pipes 21 and 22 for supplying fuel to the burners 6 and 7 are connected to the burners 6 and 7, and these gas pipes 21 and 22 are branched from the gas pipe 20. The gas pipe 20 is provided with a gas on / off valve 80, the gas pipe 21 has a gas proportional valve 86 and gas on / off valves 81, 82, and 83, and the gas pipe 22 has a gas proportional valve 87 and a gas on the gas pipe 22. On-off valves 84 and 85 are interposed, respectively. These valves 80 to 87 are all formed by electromagnetic valves, the gas on-off valves 80 to 85 control the fuel supply / stop to the corresponding burners 6 and 7, and the gas proportional valves 86 and 87 correspond to the corresponding valves. The amount of fuel supplied to the burners 6 and 7 is controlled by the valve opening.

前記給湯熱交換器19の入口側には給水導入通路18が設けられており、この給水導入通路18は前記接続通路45に接続されている。給水導入通路18の入り口側には、給水導入通路18を流れる湯水の量を検出する流量センサ73が設けられている。   A water supply introduction passage 18 is provided on the inlet side of the hot water heat exchanger 19, and this water supply introduction passage 18 is connected to the connection passage 45. A flow rate sensor 73 that detects the amount of hot water flowing through the water supply introduction passage 18 is provided on the inlet side of the water supply introduction passage 18.

給湯熱交換器19の出口側には給湯通路26が設けられており、給湯通路26の先端側は、分岐通路90と湯水経路切替弁58を介して前記給水導入通路18に接続されている。給湯通路26には、分岐通路90の合流部よりも下流側に出湯湯温検出センサ113が設けられ、給湯熱交換器19側に出湯湯温検出センサ114が設けられている。なお、前記給湯熱交換器19の途中部には過熱防止装置(サーモスタット)115が設けられている。   A hot water supply passage 26 is provided on the outlet side of the hot water supply heat exchanger 19, and the front end side of the hot water supply passage 26 is connected to the water supply introduction passage 18 via a branch passage 90 and a hot water passage switching valve 58. The hot water supply passage 26 is provided with a hot water temperature detection sensor 113 on the downstream side of the junction of the branch passage 90, and a hot water temperature detection sensor 114 is provided on the hot water supply heat exchanger 19 side. An overheat prevention device (thermostat) 115 is provided in the middle of the hot water supply heat exchanger 19.

前記追い焚き熱交換器25の一端側には往管91の一端側が接続され、往管91の他端側は循環金具97を介して浴槽126に連通接続されている。また、追い焚き熱交換器25の他端側には通路93が接続され、通路93の他端側は循環ポンプ94の吐出口に接続されている。循環ポンプ94の吸入口には戻り管96の一端側が接続され、戻り管96の他端側は前記循環金具97を介して浴槽126に連通接続されている。戻り管96には浴槽湯水温検出センサ127が設けられている。   One end side of the forward pipe 91 is connected to one end side of the reheating heat exchanger 25, and the other end side of the forward pipe 91 is connected to the bathtub 126 via a circulation fitting 97. Further, a passage 93 is connected to the other end side of the reheating heat exchanger 25, and the other end side of the passage 93 is connected to a discharge port of the circulation pump 94. One end side of the return pipe 96 is connected to the suction port of the circulation pump 94, and the other end side of the return pipe 96 is connected to the bathtub 126 through the circulation fitting 97. The return pipe 96 is provided with a bathtub hot water temperature detection sensor 127.

往管91と追い焚き熱交換器25と通路93と循環ポンプ94と戻り管96とによって、浴槽126の湯水を循環ポンプ94の駆動により循環させて浴槽内の湯水を追い焚きするための追い焚き循環通路99が形成されている。   Reheating for recirculating hot water in the bathtub by circulating the hot water in the bathtub 126 by driving the circulation pump 94 by the outgoing pipe 91, the reheating heat exchanger 25, the passage 93, the circulation pump 94, and the return pipe 96. A circulation passage 99 is formed.

また、前記給湯通路26には、分岐通路90の形成部および出湯湯温検出センサ113の配設部よりも下流側に、給湯熱源から浴槽126への給湯の通路としての風呂用注湯導入通路95が接続され、風呂用注湯導入通路95は、前記通路93に接続されている。風呂用注湯導入通路95には、湯水開閉弁59、逆止弁62、流量センサ74、水位センサ125が設けられている。水位センサ125は、水圧により浴槽126の水位を検出する。   Also, the hot water supply passage 26 is provided downstream of the formation portion of the branch passage 90 and the arrangement portion of the tapping hot water temperature detection sensor 113, and the pouring introduction passage for bath as a hot water supply passage from the hot water supply source to the bathtub 126. 95 is connected, and the bath pouring introduction passage 95 is connected to the passage 93. The bath pouring introduction passage 95 is provided with a hot water on / off valve 59, a check valve 62, a flow rate sensor 74, and a water level sensor 125. The water level sensor 125 detects the water level of the bathtub 126 by water pressure.

前記給湯熱交換器19から給湯通路26と風呂用注湯導入通路95、通路93、追い焚き熱交換器25、往管91を順に通って浴槽126に至るまでの通路によって湯張り通路が構成されている。   A hot water filling passage is constituted by the passage from the hot water supply heat exchanger 19 through the hot water supply passage 26, the bath pouring introduction passage 95, the passage 93, the reheating heat exchanger 25, and the outgoing pipe 91 to the bathtub 126 in this order. ing.

なお、図2においては、給湯先として、台所等の給湯場所と浴槽126を示しているが、浴室のシャワー等の適宜の給湯先に湯を供給する、様々な態様の給湯システムを構成できる。   In FIG. 2, a hot water supply place such as a kitchen and a bathtub 126 are shown as hot water supply destinations, but various hot water supply systems that supply hot water to appropriate hot water supply destinations such as a bathroom shower can be configured.

本実施形態例のシステム構成は以上のように構成されており、次に、図1に示す制御装置44の制御構成について説明する。制御装置44は、蓄熱量検出部35、選択制御部36、燃焼制御部42、時計機構41、発電装置起動検出部37、発電装置起動時湯送り手段38、を有している。   The system configuration of this embodiment is configured as described above. Next, the control configuration of the control device 44 shown in FIG. 1 will be described. The control device 44 includes a heat storage amount detection unit 35, a selection control unit 36, a combustion control unit 42, a clock mechanism 41, a power generation device activation detection unit 37, and a power generation device activation hot water feed unit 38.

蓄熱量検出部35は、コジェネレーション給湯熱源装置3の稼働状況の蓄熱量検出に関するモニタ情報に基づき、貯湯槽2内の湯の蓄熱量に対応する値を求めるものである。前記モニタ情報は、例えば貯湯槽内湯水温検出センサ101〜111による検出温度の情報や、発電装置1の稼働時間の情報等である。発電装置1の稼働時間は、例えば発電装置1のオンオフ情報と時計機構41から得られる時間情報とにより得ることができる。なお、排熱湯導入通路14に流量センサを設ければ、この流量センサの情報から発電装置1の稼働時間の情報を得ることもできる。   The heat storage amount detection unit 35 obtains a value corresponding to the heat storage amount of hot water in the hot water tank 2 based on monitor information related to detection of the heat storage amount of the operation status of the cogeneration hot water supply heat source device 3. The monitor information is, for example, information on the temperature detected by the hot water temperature detection sensors 101 to 111 in the hot water tank, information on the operating time of the power generator 1, and the like. The operating time of the power generation device 1 can be obtained from, for example, on / off information of the power generation device 1 and time information obtained from the timepiece mechanism 41. In addition, if a flow sensor is provided in the exhaust hot water introduction passage 14, information on the operation time of the power generation apparatus 1 can be obtained from information on the flow sensor.

ここで、貯湯槽2内の湯の蓄熱量に対応する値の求め方の一例を示す。蓄熱量検出部35は、例えば前記モニタ情報として、貯湯槽内湯水温検出センサ101〜111による検出温度の情報を取り込み、貯湯槽内湯水温検出センサ105による検出温度が約60℃であり、貯湯槽内湯水温検出センサ106による検出温度が約20℃であるとすると、図4の破線Aで示したような、貯湯槽2内の水と湯との境界線が貯湯槽内湯水温検出センサ105と貯湯槽内湯水温検出センサ106との間にあり、貯湯槽2内には、約60℃の湯が約80L蓄積されていると判断する。   Here, an example of how to obtain a value corresponding to the heat storage amount of hot water in the hot water tank 2 is shown. For example, as the monitor information, the heat storage amount detection unit 35 takes in information on the temperature detected by the hot water temperature detection sensors 101 to 111 in the hot water tank, and the temperature detected by the hot water temperature detection sensor 105 in the hot water tank is about 60 ° C. If the temperature detected by the water temperature detection sensor 106 is about 20 ° C., the boundary line between the water and hot water in the hot water tank 2 as shown by the broken line A in FIG. 4 indicates the hot water temperature detection sensor 105 in the hot water tank and the hot water tank. It is determined that about 80 L of hot water at about 60 ° C. is accumulated in the hot water storage tank 2 between the internal hot water temperature detection sensor 106.

なお、このように、貯湯槽内湯水温検出センサ101〜111による検出温度の情報に基づいて求められる貯湯槽2内の湯の蓄熱量に対応する値は、直接的な計測により得られる値であるので、貯湯槽2内の湯の蓄熱量と呼ぶこともできるが、本出願においては、上記のようにして求められる値も、蓄熱量に対応する値と称している。   In addition, the value corresponding to the heat storage amount of the hot water in the hot water tank 2 obtained based on the information of the detected temperature by the hot water temperature detection sensors 101 to 111 in the hot water tank is a value obtained by direct measurement. Therefore, although it can also be called the heat storage amount of the hot water in the hot water storage tank 2, in this application, the value calculated | required as mentioned above is also called the value corresponding to the heat storage amount.

また、蓄熱量検出部35に、発電装置1の稼働による単位時間ごとの湯の蓄積量を予め与えておき、この量が、例えば毎分2Lだとすると、時計機構41から得られる発電装置1の稼働時間情報が30分経過したときに、蓄熱量検出部35は、貯湯槽2内には、約60℃の湯が60L蓄積されていると判断する。このように、蓄熱量検出部35は、時計機構41から得られる発電装置1の稼働時間情報に基づき、貯湯槽2内の湯量を時々刻々と検出することができ、蓄熱量に対応する値を求めることができる。   Moreover, if the amount of hot water accumulated per unit time due to the operation of the power generation device 1 is given in advance to the heat storage amount detection unit 35 and this amount is, for example, 2 L per minute, the operation of the power generation device 1 obtained from the timepiece mechanism 41 is performed. When the time information has passed 30 minutes, the heat storage amount detection unit 35 determines that 60 L of hot water at about 60 ° C. has been accumulated in the hot water storage tank 2. As described above, the heat storage amount detection unit 35 can detect the amount of hot water in the hot water storage tank 2 from time to time based on the operating time information of the power generation device 1 obtained from the timepiece mechanism 41, and obtain a value corresponding to the heat storage amount. Can be sought.

さらに、蓄熱量検出部35は、貯湯槽2内の湯の使用量を、例えば流量センサ70の検出データから算出し、この値を貯湯槽2内に蓄積されている湯量から差し引くことにより、貯湯槽2内に残っている湯量を時々刻々と検出することができるし、湯の蓄積時からの経過時間によって貯湯槽2内に蓄積されている湯の温度を推定することができ、蓄熱量に対応する値を求めることができる。   Further, the heat storage amount detection unit 35 calculates the amount of hot water used in the hot water storage tank 2 from, for example, detection data of the flow rate sensor 70 and subtracts this value from the amount of hot water stored in the hot water storage tank 2, thereby The amount of hot water remaining in the tank 2 can be detected from moment to moment, and the temperature of the hot water accumulated in the hot water storage tank 2 can be estimated from the elapsed time since the accumulation of hot water. The corresponding value can be determined.

選択制御部36は、給湯熱源の選択制御部であり、例えば前記蓄熱量検出部35により求められた蓄熱量に対応する値が、給湯熱源選択のために予め定めた下部しきい値以下に低下したときは、給湯熱源を前記貯湯槽2から補助給湯熱源装置4へ切替えて給湯を行う。また、選択制御部36は、蓄熱量検出部35により求められた貯湯槽2内の湯の蓄熱量に対応する値が、給湯熱源選択のために予め定めた上部しきい値以上に上昇したときは、給湯熱源を前記補助給湯熱源装置4からコジェネレーション給湯熱源装置3の貯湯槽2へ切替えて給湯を行う。   The selection control unit 36 is a hot water supply heat source selection control unit. For example, a value corresponding to the heat storage amount obtained by the heat storage amount detection unit 35 falls below a predetermined lower threshold for hot water supply heat source selection. When hot water is supplied, the hot water supply heat source is switched from the hot water storage tank 2 to the auxiliary hot water supply heat source device 4 to perform hot water supply. Further, the selection control unit 36, when the value corresponding to the heat storage amount of the hot water in the hot water storage tank 2 obtained by the heat storage amount detection unit 35 rises above a predetermined upper threshold value for hot water supply heat source selection Switches the hot water supply heat source from the auxiliary hot water supply heat source device 4 to the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 to perform hot water supply.

なお、選択制御部36による給湯熱源の選択制御は、特に限定されるものでなく、適宜設定されるものである。   In addition, the selection control of the hot water supply heat source by the selection control unit 36 is not particularly limited, and is appropriately set.

本実施形態例においては、コジェネレーション給湯熱源装置3の貯湯槽2から送水される給湯の通路(給湯路12)は補助給湯熱源装置4の給水導入口に連通されており、前記貯湯槽2の湯のみを熱源として貯湯槽2内から設定温度以上の湯を送水する時は、貯湯槽2の湯を非加熱駆動状態の補助給湯熱源装置4を経由して給湯先へ給湯する構成と成している。   In the present embodiment, a hot water supply passage (hot water supply path 12) fed from the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is communicated with a water supply inlet of the auxiliary hot water supply heat source device 4. When only hot water is used as a heat source and hot water of a set temperature or higher is sent from the hot water storage tank 2, the hot water of the hot water storage tank 2 is supplied to the hot water supply destination via the auxiliary hot water supply heat source device 4 in a non-heated drive state. Yes.

つまり、貯湯槽2の湯のみを熱源として給湯を行うときは、選択制御部36は、湯水開閉弁54を開き、湯水比例弁55、56の開弁量を適宜調節して、貯湯槽2内の湯を、給水通路11からその分岐通路11bを介して給水される水と混合して設定温度の湯として非加熱駆動状態の補助給湯熱源装置4に送る。そして、例えば補助給湯熱源装置4に導入された設定温度の湯を、湯水経路切替弁58を切替えて分岐通路90を通して台所等の適宜の給湯先へ給湯したり、湯水開閉弁59を開き、風呂用注湯導入通路95と前記湯張り通路を通して湯張りを行ったりする。   That is, when hot water is supplied using only hot water in the hot water tank 2 as a heat source, the selection control unit 36 opens the hot water on / off valve 54 and adjusts the valve opening amounts of the hot water proportional valves 55 and 56 as appropriate. Hot water is mixed with water supplied from the water supply passage 11 via the branch passage 11b and sent to the auxiliary hot water supply heat source device 4 in a non-heated drive state as hot water at a set temperature. Then, for example, hot water having a set temperature introduced into the auxiliary hot water supply heat source device 4 is switched to the hot water path switching valve 58 to supply hot water to an appropriate hot water supply destination such as a kitchen through the branch passage 90, or the hot water open / close valve 59 is opened. Hot water filling is performed through the hot water introduction passage 95 and the hot water filling passage.

また、選択制御部36は、給湯熱源を補助給湯熱源装置4に切り替えたときは、例えば湯水開閉弁54を閉じ、給水路11から分岐通路11bを介して湯水混合ユニット10に導入される水を、接続通路45を介して給湯器5aに導入すると共に、給湯器5aの燃焼制御部42に指令を与え、給湯器5aを稼働させて補助給湯熱源装置4による給湯を行う。   Further, when the hot water supply heat source is switched to the auxiliary hot water supply heat source device 4, the selection control unit 36 closes the hot water on / off valve 54, for example, and supplies water introduced into the hot water mixing unit 10 from the water supply passage 11 through the branch passage 11 b. The hot water heater 5a is introduced through the connection passage 45, and a command is given to the combustion control unit 42 of the hot water heater 5a, and the hot water heater 5a is operated to supply hot water by the auxiliary hot water supply heat source device 4.

燃焼制御部42は、前記選択制御部36が補助給湯熱源装置4からの給湯動作を選択したときには、流量センサ73の検出流量を参照しながら、ガス開閉弁81,82,83の少なくとも一つを開き、ガス比例弁86の開弁量を調節してバーナ6に供給されるガス量を調節すると共に、燃焼ファン8の風量調節を行い、給湯熱交換器19を通って出湯される湯が設定温度の湯となるようにバーナ6の燃焼制御を行う。   When the selection control unit 36 selects the hot water supply operation from the auxiliary hot water supply heat source device 4, the combustion control unit 42 refers to the flow rate detected by the flow rate sensor 73 and turns on at least one of the gas on-off valves 81, 82, 83. Open and adjust the valve opening amount of the gas proportional valve 86 to adjust the amount of gas supplied to the burner 6 and also adjust the air volume of the combustion fan 8 to set the hot water discharged through the hot water supply heat exchanger 19. Combustion control of the burner 6 is performed so that the temperature becomes hot water.

発電装置起動検出部37は、発電装置1の起動タイミングを検知するものであり、発電装置1が起動したときに、発電装置起動信号を発電装置起動時湯送り手段38に加える。   The power generation device activation detection unit 37 detects the activation timing of the power generation device 1 and applies a power generation device activation signal to the power generation device activation hot water feeding means 38 when the power generation device 1 is activated.

発電装置起動時湯送り手段38は、前記蓄熱量検出部35によって時々刻々と検出されている貯湯槽2内の湯の蓄熱量を取り込み、この値が予め定めた湯送り閾値以上の時に、発電装置起動検出部37から発電装置起動信号が加えられたときには、予め定められた湯送り設定時間だけ前記貯湯槽2内の湯を前記発電装置1側に送水する。なお、湯送り閾値は発電装置1を加温できる値であればよいので、例えば60℃の湯であれば10Lといったように、小さな値を与えることができる。   The hot water feed means 38 at the time of starting the power generation device takes in the heat storage amount of hot water in the hot water storage tank 2 detected every moment by the heat storage amount detection unit 35, and generates power when this value is equal to or greater than a predetermined hot water feed threshold. When a power generator activation signal is applied from the apparatus activation detector 37, hot water in the hot water storage tank 2 is fed to the power generator 1 side for a predetermined hot water feed set time. In addition, since the hot water feeding threshold value should just be a value which can heat the electric power generating apparatus 1, a small value can be given like 10L, for example, if it is 60 degreeC hot water.

また、この湯の送水は、発電装置1と貯湯槽2との間に設けられて貯湯槽2内の湯を発電装置1側に導入可能な湯送り通路48を通して行うものである。本実施形態例では、発電装置起動時湯送り手段38は、前記排熱回収湯水循環通路47の排熱湯導入通路14を前記湯送り設定時間だけ前記湯送り通路48として利用して、循環ポンプ46の駆動によって排熱回収湯水循環通路47内を逆方向に湯水循環させて貯湯槽2内の湯を発電装置1に導入する。   The hot water is supplied through the hot water feed passage 48 provided between the power generation device 1 and the hot water storage tank 2 and capable of introducing the hot water in the hot water storage tank 2 to the power generation device 1 side. In the present embodiment, the hot water feed means 38 at the time of starting the power generator uses the exhaust hot water introduction passage 14 of the exhaust heat recovery hot water circulation passage 47 as the hot water feed passage 48 for the hot water feed set time, thereby circulating the pump 46. The hot water in the hot water storage tank 2 is introduced into the power generator 1 by circulating the hot water in the exhaust heat recovery hot water circulation passage 47 in the reverse direction by driving.

なお、貯湯槽2内に湯を蓄積する前に、システムの最初の稼働時に発電装置1を起動させるときには、例えば三方弁53を調整し、湯水を貯湯槽2側に循環せずに発電装置1側のみで循環させて、発電装置1を起動させる。   In addition, when accumulating the hot water in the hot water tank 2 and starting the power generator 1 at the first operation of the system, for example, the three-way valve 53 is adjusted so that the hot water is not circulated to the hot water tank 2 side. The power generator 1 is started by circulating only on the side.

本実施形態例は以上のように構成されており、発電装置1の排熱回収時には、貯湯槽2の水を前記排熱回収湯水循環通路47に順方向に通し、発電装置1の排熱利用により加熱形成された湯を貯湯槽2に蓄積することによって、貯湯槽2内に湯が蓄積され、貯湯槽2内の湯を熱源とした給湯が行われ、また、場合によっては、補助給湯熱源装置4を熱源とした給湯が前記の如く行われる。   The present embodiment is configured as described above, and at the time of exhaust heat recovery of the power generator 1, the water in the hot water storage tank 2 is passed forward through the exhaust heat recovery hot water circulation passage 47 to use the exhaust heat of the power generator 1. By accumulating hot water formed by heating in the hot water storage tank 2, hot water is accumulated in the hot water storage tank 2, hot water supply using the hot water in the hot water storage tank 2 as a heat source is performed, and in some cases, an auxiliary hot water supply heat source Hot water supply using the device 4 as a heat source is performed as described above.

また、発電装置1の起動に際し、以下の動作が行われる。つまり、蓄熱量検出部35が、コジェネレーション給湯熱源装置3の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽2内の湯の蓄熱量に対応する値を求め、この値が予め定められた湯送り閾値以上の時に発電装置起動検知部37により発電装置1の起動が検知されたときには、発電装置起動時湯送り手段38が、湯送り設定時間だけ前記排熱回収湯水循環通路47の排熱湯導入通路14を湯送り通路48として利用し、循環ポンプ46の逆回転によって、前記排熱回収湯水循環通路47内を逆方向に湯水循環させて貯湯槽2内の湯を発電装置1に導入する。   Moreover, the following operation | movement is performed at the time of starting of the electric power generating apparatus 1. FIG. That is, the heat storage amount detection part 35 calculates | requires the value corresponding to the heat storage amount of the hot water in the hot water storage tank 2 based on the monitor information regarding the heat storage amount detection of the operation condition of the cogeneration hot water supply heat source device 3, and this value was predetermined. When the power generation device activation detection unit 37 detects the activation of the power generation device 1 when the hot water supply threshold value is exceeded, the power generation device activation hot water feed means 38 is configured to discharge the hot water in the exhaust heat recovery hot water circulation passage 47 for the hot water feed set time. The introduction passage 14 is used as the hot water feed passage 48, and the hot water in the hot water storage tank 2 is introduced into the power generator 1 by circulating the hot water in the exhaust heat recovery hot water circulation passage 47 in the reverse direction by the reverse rotation of the circulation pump 46. .

したがって、本実施形態例によれば、燃料電池の発電装置1の起動時に、発電装置1内に貯湯槽2内の湯を導入して暖めることができ、それにより、燃料電池が発電開始可能温度に達するまでの時間を短縮でき、短時間で起動可能な給湯熱源システムを実現できる。   Therefore, according to the present embodiment, the hot water in the hot water storage tank 2 can be introduced into the power generation device 1 and warmed up when the power generation device 1 of the fuel cell is started, so that the fuel cell can generate power at a temperature at which power generation can be started. The hot water supply heat source system can be realized in a short time and can be started in a short time.

また、本実施形態例によれば、排熱回収用に設けた排熱回収湯水循環通路47を湯送り通路48として利用して、上記のように発電装置1の起動時間短縮を行えるので、システム構成の簡略化を図ることができ、上記効果を効率的に発揮できる給湯熱源システムを実現できる。   Further, according to the present embodiment, the start-up time of the power generator 1 can be shortened as described above by using the exhaust heat recovery hot water circulation passage 47 provided for exhaust heat recovery as the hot water feed passage 48, so that the system The configuration can be simplified, and a hot water supply heat source system that can efficiently exhibit the above-described effects can be realized.

さらに、本実施形態例によれば、コジェネレーション給湯熱源装置3を有する複合的な給湯装置であるので、コジェネレーション給湯熱源装置3を給湯熱源とする給湯動作を行うことで省エネルギー化が可能な給湯装置を実現できる。   Furthermore, according to the present embodiment, since it is a complex hot water supply device having the cogeneration hot water supply heat source device 3, hot water supply that can save energy by performing a hot water supply operation using the cogeneration hot water supply heat source device 3 as a hot water supply heat source. A device can be realized.

さらに、本実施形態例によれば、コジェネレーション給湯熱源装置3の貯湯槽2から送水される給湯の通路(給湯路12)が補助給湯熱源装置4の給水導入口に連通され、貯湯槽2の湯のみを熱源として給湯を行うときは、貯湯槽2の湯を非加熱駆動状態の補助給湯熱源装置4を経由して給湯先へ給湯するので、コジェネレーション給湯熱源装置3の貯湯槽2から送水される給湯の通路と補助給湯熱源装置4の給水導入口とを連通させることによりシステム構成を簡単にでき、効率的に給湯を行うことができる。   Furthermore, according to the present embodiment, a hot water supply passage (hot water supply path 12) fed from the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is communicated with the water supply inlet of the auxiliary hot water supply heat source device 4. When hot water is supplied using only hot water as the heat source, the hot water in the hot water storage tank 2 is supplied to the hot water supply destination via the auxiliary hot water supply heat source device 4 in a non-heated drive state, so that water is supplied from the hot water storage tank 2 of the cogeneration hot water supply heat source apparatus 3. By connecting the hot water supply passage to the hot water supply inlet of the auxiliary hot water supply heat source device 4, the system configuration can be simplified and hot water can be supplied efficiently.

なお、本発明は上記実施形態例に限定されることはなく、様々な態様を採り得る。例えば、上記実施形態例では、排熱回収用に設けた排熱回収湯水循環通路47を湯送り通路48として利用して、発電装置1の起動時に貯湯槽2内の湯を発電装置1側に送ったが、排熱回収湯水循環通路47とは別個に湯送り通路を設け、この湯送り通路を通して貯湯槽2内の湯を発電装置1側に送るようにしてもよい。   In addition, this invention is not limited to the said embodiment, It can take various aspects. For example, in the above embodiment, the exhaust heat recovery hot water circulation passage 47 provided for exhaust heat recovery is used as the hot water feed passage 48 so that hot water in the hot water storage tank 2 is moved to the power generation device 1 side when the power generation device 1 is started. However, a hot water feed passage may be provided separately from the exhaust heat recovery hot water circulation passage 47, and the hot water in the hot water storage tank 2 may be sent to the power generator 1 through the hot water feed passage.

また、上記実施形態例では、給水路11を、湯水混合ユニット10を介して補助給湯熱源装置4の給水導入通路18に接続したが、図3(a)に示すように、給水路11を、弁69を介して給湯通路26側に接続してもよいし、図3(b)に示すように、給水路11を、弁69を介して、給水導入通路18と給湯通路26の両方に接続してもよい。   In the above embodiment, the water supply channel 11 is connected to the water supply introduction passage 18 of the auxiliary hot water supply heat source device 4 via the hot water mixing unit 10, but as shown in FIG. It may be connected to the hot water supply passage 26 side through the valve 69, or the water supply passage 11 is connected to both the water supply introduction passage 18 and the hot water supply passage 26 through the valve 69 as shown in FIG. May be.

さらに、上記実施形態例では、コジェネレーション給湯熱源装置3の発電装置1は燃料電池としたが、発電装置1にはガスタービン発電装置やディーゼルエンジン発電装置、ガソリンエンジン発電装置等を適用することができ、発電システムの排熱を用いて貯湯槽2内への蓄熱を行ってもよいものであり、発電装置1の燃料や構成は特に限定されるものでなく、適宜設定されるものである。   Furthermore, in the above embodiment, the power generation device 1 of the cogeneration hot water supply heat source device 3 is a fuel cell. However, a gas turbine power generation device, a diesel engine power generation device, a gasoline engine power generation device, or the like can be applied to the power generation device 1. In addition, heat storage in the hot water storage tank 2 may be performed using the exhaust heat of the power generation system, and the fuel and configuration of the power generation apparatus 1 are not particularly limited, and are appropriately set.

ガスタービン発電装置やディーゼルエンジン発電装置、ガソリンエンジン発電装置については、エンジン等の大きさにもよるが、例えば起動タイミングの数十分程度前から送湯を行うことにより、エンジンオイル等が暖まり、その粘度が下がることで、起動に必要なエネルギー(電気ヒータでの予熱や始動後に行うアフターグロー等)が少なくてすみ、かつ、エンジン等がかかりやすくなる。   For gas turbine power generators, diesel engine power generators, and gasoline engine power generators, depending on the size of the engine, etc., for example, by supplying hot water several tens of minutes before the start timing, the engine oil etc. is warmed, By reducing the viscosity, the energy required for starting up (preheating with an electric heater, afterglow after starting, etc.) can be reduced, and the engine or the like can be started easily.

さらに、上記実施形態例では、コジェネレーション給湯熱源装置3の貯湯槽2の給湯路12を、湯水混合ユニット10と接続通路45を介して補助給湯熱源装置4の給水導入口に連通したが、本発明は、コジェネレーション給湯熱源装置3と補助給湯熱源装置4とを別個に設けて併設してもよい。   Further, in the above embodiment, the hot water supply path 12 of the hot water storage tank 2 of the cogeneration hot water supply heat source device 3 is communicated with the water supply inlet of the auxiliary hot water supply heat source device 4 via the hot water mixing unit 10 and the connection passage 45. In the invention, the cogeneration hot water supply heat source device 3 and the auxiliary hot water supply heat source device 4 may be provided separately and provided side by side.

さらに、上記実施形態例では、コジェネレーション給湯熱源装置3と補助給湯熱源装置4とを有する複合的な給湯システムとしたが、補助給湯熱源装置4を省略した給湯システムとしてもよい。   Furthermore, in the said embodiment, although it was set as the composite hot water supply system which has the cogeneration hot water supply heat source device 3 and the auxiliary hot water supply heat source device 4, it is good also as a hot water supply system which abbreviate | omitted the auxiliary hot water supply heat source device 4.

本発明に係る給湯熱源システムの一実施形態例の制御構成を示す要部構成図である。It is a principal part block diagram which shows the control structure of one Embodiment of the hot-water supply heat source system which concerns on this invention. 本発明に係る給湯熱源システムの一実施形態例のシステム構成を模式的に示す要部構成図である。It is a principal part block diagram which shows typically the system configuration | structure of one Example of the hot water supply heat source system which concerns on this invention. 本発明に係る給湯熱源システムの他の実施形態例に適用される補助給湯熱源装置とコジェネレーション給湯熱源装置の給水路との接続構成を模式的に示す要部説明図である。It is principal part explanatory drawing which shows typically the connection structure of the hot water supply heat source system applied to other example embodiments of the present invention and the water supply path of the cogeneration hot water supply heat source device. コジェネレーション給湯熱源装置の構成例とその動作を模式的に示す説明図である。It is explanatory drawing which shows typically the structural example and its operation | movement of a cogeneration hot-water supply heat source apparatus.

符号の説明Explanation of symbols

1 発電装置
2 貯湯槽
3 コジェネレーション給湯熱源装置
4 補助給湯熱源装置
5 給湯器
14 排熱湯導入通路
35 蓄熱量検出部
36 選択制御部
37 発電装置起動検出部
38 発電装置起動時湯送り手段
44 制御装置
47 排熱回収湯水循環通路
48 湯送り通路
101〜111 貯湯槽内湯水温検出センサ
DESCRIPTION OF SYMBOLS 1 Power generation device 2 Hot water storage tank 3 Cogeneration hot water supply heat source device 4 Auxiliary hot water supply heat source device 5 Water heater 14 Waste hot water introduction passage 35 Heat storage amount detection part 36 Selection control part 37 Power generation device starting detection part 38 Power generation device starting hot water feed means 44 Control Device 47 Waste heat recovery hot water circulation passage 48 Hot water feed passage 101-111 Hot water temperature detection sensor in hot water storage tank

Claims (5)

発電装置の排熱を利用して貯湯槽に蓄積した湯を給湯先に給湯するコジェネレーション給湯熱源装置を備えた給湯熱源システムにおいて、前記発電装置は予熱を与えることにより起動時間が短縮できる構成を有し、前記貯湯槽と前記発電装置との間には、前記貯湯槽の水を前記発電装置に導入する冷却水導入通路と、前記発電装置に導入されて該発電装置の排熱利用により加熱された湯を前記貯湯槽に導く排熱湯導入通路とが設けられ、前記冷却水導入通路には循環ポンプが設けられており、前記発電装置の排熱回収時には前記循環ポンプの駆動により前記貯湯槽の水を前記冷却水導入通路を通して発電装置に導入し、その水を発電装置の排熱利用により加熱し前記排熱湯導入通路を通して前記貯湯槽に導く構成とし、前記循環ポンプの吸い込み口側の前記冷却水導入通路と前記排熱湯導入通路とをバイパスするバイパス通路が設けられ、該バイパス通路と前記排熱湯導入通路との連通部には該排熱湯導入通路を通る湯の流路を前記貯湯槽側と前記バイパス通路側のいずれか一方に選択的に切り替える三方弁が設けられており、前記コジェネレーション給湯熱源装置の稼働状況の蓄熱量検出に関するモニタ情報に基づき貯湯槽内の湯の蓄熱量に対応する値を求める蓄熱量検出部と、前記発電装置の起動タイミングを検知する発電装置起動検知部と、前記発電装置の起動時に予熱を供給する発電装置起動時予熱供給手段とが設けられ、該発電装置起動時予熱供給手段は、前記貯湯槽内に湯を蓄積する前のシステムの最初の稼動時に前記発電装置を起動させるときには、前記三方弁を前記バイパス通路側に切り替え、かつ、前記循環ポンプを駆動し、前記排熱湯導入通路を通る湯を前記バイパス通路と前記冷却水導入通路とを通して前記発電装置に導入することにより該発電装置に予熱を供給する構成としたことを特徴とする給湯熱源システム。 In a hot water supply heat source system having a cogeneration hot water supply source that supplies hot water accumulated in a hot water storage tank to the hot water supply destination using exhaust heat of the power generation device, the power generation device has a configuration that can shorten the startup time by applying preheating. And between the hot water storage tank and the power generation device, a cooling water introduction passage for introducing the water in the hot water storage tank into the power generation device, and heating by using the exhaust heat of the power generation device introduced into the power generation device. A hot water introducing passage for guiding the hot water to the hot water storage tank is provided, and a circulating pump is provided in the cooling water introducing passage, and the hot water storage tank is driven by the circulation pump when recovering the exhaust heat of the power generator. Water is introduced into the power generation device through the cooling water introduction passage, the water is heated by using the exhaust heat of the power generation device, and is led to the hot water storage tank through the waste heat hot water introduction passage. A bypass passage that bypasses the cooling water introduction passage and the exhaust hot water introduction passage on the mouth side is provided, and a flow of hot water passing through the exhaust hot water introduction passage is provided at a communication portion between the bypass passage and the exhaust hot water introduction passage. A three-way valve is provided for selectively switching the path between the hot water tank side and the bypass passage side, and in the hot water tank based on the monitor information regarding the heat storage amount detection of the operating status of the cogeneration hot water source a heat storage amount detection unit for obtaining a value corresponding to the heat storage amount of the hot water, power generator activation detection unit and the power generating device startup preheating supply means for supplying a preheating when starting the previous SL generation device for detecting the start timing of the generator device Doo is provided, power-generating device startup preheating supply means, sometimes activating the power generator at the first operation of the system before accumulating hot water in said hot water storage tank, before the three-way valve Switch to the bypass passage side, drive the circulation pump, and supply hot water passing through the exhaust hot water introduction passage to the power generation device through the bypass passage and the cooling water introduction passage to supply preheat to the power generation device A hot water supply heat source system characterized in that it is configured to perform. 発電装置起動時予熱供給手段は、蓄熱量検出部により求めた蓄熱量に対応する値が湯送り閾値以上の時に発電装置起動検知部により発電装置の起動が検知されたときには、三方弁を貯湯槽側に切り替え、かつ、発電装置の排熱回収時とは逆方向に循環ポンプを駆動させることにより、前記貯湯槽の湯を予め定められた湯送り設定時間だけ排熱湯導入通路を通して前記発電装置に導入することにより該発電装置に予熱を供給する構成としたことを特徴とする請求項1記載の給湯熱源システム。   The preheating supply means at the time of starting the power generation device is configured so that when the value corresponding to the heat storage amount obtained by the heat storage amount detection unit is equal to or greater than the hot water feed threshold, the power generation device start detection unit detects the start of the power generation device, The hot water in the hot water storage tank is passed through the exhaust hot water introduction passage for a predetermined hot water feed set time by driving the circulation pump in a direction opposite to that at the time of exhaust heat recovery of the power generator. The hot water supply heat source system according to claim 1, wherein preheating is supplied to the power generator by introducing the hot water supply system. 冷却水導入通路は貯湯槽の底部から貯湯槽内に貯湯されている湯水を引き出して該湯水を貯湯槽から発電装置へ直接的に導き、排熱湯導入通路は前記発電装置の排熱利用により加熱された湯を貯湯槽の上部側から貯湯槽内に直接的に導入する構成としたことを特徴とする請求項1または請求項2記載の給湯熱源システム。   The cooling water introduction passage draws hot water stored in the hot water storage tank from the bottom of the hot water storage tank and guides the hot water directly from the hot water storage tank to the power generation device, and the exhaust hot water introduction passage is heated by using the exhaust heat of the power generation device. The hot water supply heat source system according to claim 1 or 2, wherein the hot water is directly introduced into the hot water tank from the upper side of the hot water tank. 通水の水を加熱して作成した湯を給湯先に供給する機能を備えた補助給湯熱源装置がコジェネレーション給湯熱源装置と併設されており、該コジェネレーション給湯熱源装置の貯湯槽は貯湯槽の湯を送水する給湯路を有して該給湯路が前記補助給湯熱源装置の給水導入口に連通され、前記貯湯槽の湯のみを熱源として給湯を行うときは、貯湯槽の湯を非加熱駆動状態の補助給湯熱源装置を経由して給湯先へ給湯する構成と成したことを特徴とする請求項1または請求項2または請求項3記載の給湯熱源システム。   An auxiliary hot water supply heat source device having a function of supplying hot water created by heating water to the hot water supply destination is provided together with the cogeneration hot water supply heat source device, and the hot water storage tank of the cogeneration hot water supply heat source device is a hot water storage tank. A hot water supply passage for supplying hot water is connected to the water supply introduction port of the auxiliary hot water supply heat source device, and when hot water supply is performed using only the hot water in the hot water storage tank as a heat source, the hot water in the hot water storage tank is driven without heating. The hot water supply heat source system according to claim 1, wherein the hot water supply system is configured to supply hot water to a hot water supply destination via the auxiliary hot water supply heat source device. 発電装置は水素と酸素を反応させて電気を発生する燃料電池とした請求項1乃至請求項4のいずれか一つに記載の給湯熱源システム。   The hot water supply heat source system according to any one of claims 1 to 4, wherein the power generation device is a fuel cell that generates electricity by reacting hydrogen and oxygen.
JP2004113321A 2004-04-07 2004-04-07 Hot water supply system Expired - Lifetime JP4369278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113321A JP4369278B2 (en) 2004-04-07 2004-04-07 Hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113321A JP4369278B2 (en) 2004-04-07 2004-04-07 Hot water supply system

Publications (2)

Publication Number Publication Date
JP2005299961A JP2005299961A (en) 2005-10-27
JP4369278B2 true JP4369278B2 (en) 2009-11-18

Family

ID=35331710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113321A Expired - Lifetime JP4369278B2 (en) 2004-04-07 2004-04-07 Hot water supply system

Country Status (1)

Country Link
JP (1) JP4369278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347654B2 (en) * 2009-03-30 2013-11-20 株式会社ノーリツ Hot water storage hot water supply system

Also Published As

Publication number Publication date
JP2005299961A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP2006214619A (en) Hot-water supply device
JP4294545B2 (en) Water heater with water level sensor
JP4369278B2 (en) Hot water supply system
JP4203431B2 (en) Water heater with learning function
JP2011231680A (en) Cogeneration system
JP2018173228A (en) Heat source device
JP2013224797A (en) Storage water heater
JP4880312B2 (en) Hot water storage hot water source
JP4487140B2 (en) Hot water supply system
JP5113709B2 (en) Combined hot water supply system
JP4688430B2 (en) Hot water supply system
JP4154363B2 (en) Hot water supply system
JP4639059B2 (en) Hot water supply system
JP2005291626A (en) Compound hot-water supply heat source system
JP4199694B2 (en) Combined hot water supply system
JP2007248008A (en) Cogeneration system and its operation method
JP6044117B2 (en) Hot water storage system
JP4146387B2 (en) Hot water supply system
JP4154367B2 (en) Water heater with learning function
JP4198522B2 (en) Cogeneration system
JP4295683B2 (en) Hot water supply system
JP6682911B2 (en) Cogeneration system
JP5919957B2 (en) Hot water storage system
JP2005308371A (en) Hot water supply heat source system
JP4903535B2 (en) Hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

R150 Certificate of patent or registration of utility model

Ref document number: 4369278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term