JPS5946416B2 - How to form electrode leads - Google Patents

How to form electrode leads

Info

Publication number
JPS5946416B2
JPS5946416B2 JP12116079A JP12116079A JPS5946416B2 JP S5946416 B2 JPS5946416 B2 JP S5946416B2 JP 12116079 A JP12116079 A JP 12116079A JP 12116079 A JP12116079 A JP 12116079A JP S5946416 B2 JPS5946416 B2 JP S5946416B2
Authority
JP
Japan
Prior art keywords
protrusion
lead
eutectic
temperature
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12116079A
Other languages
Japanese (ja)
Other versions
JPS5645044A (en
Inventor
賢造 畑田
孝生 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12116079A priority Critical patent/JPS5946416B2/en
Publication of JPS5645044A publication Critical patent/JPS5645044A/en
Publication of JPS5946416B2 publication Critical patent/JPS5946416B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Description

【発明の詳細な説明】 近年、LSIの機能増大にしたがい、LSIの半導体素
子から導出されるリード端子の数も40〜80個におよ
び、従来の如く一本づつAu、Al線によつて接続する
ワイヤボンディング方法では、ボンディングに使用され
る時間が前記電極端子数の増加とともに増大し、LSI
のコストを高めるばかりでなく、接続の信頼性も低下さ
せるものであつた。
Detailed Description of the Invention In recent years, as the functions of LSIs have increased, the number of lead terminals derived from the semiconductor elements of LSIs has increased to 40 to 80, and it is no longer possible to connect them one by one with Au and Al wires as in the past. In the wire bonding method, the time used for bonding increases as the number of electrode terminals increases.
This not only increased the cost of the connection, but also reduced the reliability of the connection.

この様なワイヤボンディングの欠点を一掃するために、
ギャングボンディング法が開発され、実用化されてきた
In order to eliminate these drawbacks of wire bonding,
A gang bonding method has been developed and put into practical use.

一般的な方法を第1図で説明する。ポリイミド樹脂フィ
ルム1上に形成されたCuリード(厚さ35μm)2に
は0.2〜0.6μmの厚さにSnメッキ層3が形成さ
れている。
A general method is explained in FIG. A Cu lead (thickness: 35 μm) 2 formed on a polyimide resin film 1 is provided with a Sn plating layer 3 having a thickness of 0.2 to 0.6 μm.

半導体基板4(4’は5102膜)の電極端子上にはC
r−Cu、Th−Cu等の複数層からなら金属膜5(バ
リヤメタルと呼ばれる)が真空蒸着法やスパッター蒸着
法等により形成され、更に前記金属膜5上に電解メッキ
法によりAu突起物6が10〜20pmの厚さに形成さ
れる。
C on the electrode terminal of the semiconductor substrate 4 (4' is 5102 film)
If it is made of multiple layers of r-Cu, Th-Cu, etc., a metal film 5 (called a barrier metal) is formed by vacuum evaporation, sputter evaporation, etc., and further, Au protrusions 6 are formed on the metal film 5 by electrolytic plating. It is formed to a thickness of 10 to 20 pm.

前記Au突起物6は半導体素子の電極端子の位置に電極
端子の数だけ形成され、更に前記ポリイミド樹脂フィル
ム上のCuリードは前記端子に合致する位置まで延在さ
れるものである。
The Au protrusions 6 are formed at the positions of the electrode terminals of the semiconductor element in the same number as the electrode terminals, and further, the Cu leads on the polyimide resin film are extended to positions matching the terminals.

第1図の如く構成されたAu突起物6と、Cuリード2
とは互いに位置合せされCuリード2側から480℃程
度に加熱した治具で全Cuリード2を一度に押えればA
u−Snの共晶物(約280℃で発生)が発生し、前記
治具を取り除けば、Au突起物6とCuリード2とは完
全に接続される事になる。ところがこの様なAu−Sn
を用いる接続方法は接続の強度や、高い信頼性を期特出
来るものの、第2図に示す問題が発生する。なお、第1
図においてb図は、加熱治具50(例えばパルス的にボ
ンディング時のみ加熱する治具もしくは、ヒーターを内
蔵し、常時加熱されている治具等がある。
Au protrusions 6 and Cu leads 2 configured as shown in FIG.
If all Cu leads 2 are aligned with each other and pressed at once with a jig heated to about 480°C from the Cu lead 2 side, A
A u-Sn eutectic (generated at about 280° C.) is generated, and when the jig is removed, the Au protrusion 6 and the Cu lead 2 are completely connected. However, such Au-Sn
Although the connection method using the above method can ensure high connection strength and reliability, the problem shown in FIG. 2 occurs. In addition, the first
In the figure, figure b shows a heating jig 50 (for example, a jig that heats only during bonding in a pulsed manner, or a jig that has a built-in heater and is constantly heated).

)が降下してきて、Cuリード2とAu突記物6を加圧
し、前記Cuリード2とAu突起物6とを圧接した状態
である。次いで前記加熱治具50にパルス電流51を流
すと、前記加熱治具50は所定の温度までに瞬時に達す
る。この時、前記加熱治具50の温度度はCuリード2
から、熱伝導率の良いAu突起物6を介して半導体基板
4の方へ逃げる事になる(矢印52)。このためにAu
突起物6と接しているCuリード2の部分53の温度は
前記加熱治具50で発生した温度よりも低くなるが、A
u突起物6と接していないCuリード2の部分54,5
1の温度はほぼ前記加熱治具50の温度と等しくなる。
すなわち、Cuリードの部分53と54,54′との間
に温度差が発生する。この状態が瞬時(約500ms以
内)に発生するためにAu−Snの共晶物はAu突起物
6の端55,55′で発生し、次いでAu突起物6の上
53でこの部分の温度がAu−Snの共晶温度(280
℃)に達した後発生する。ところがAu突起物6上に発
生した共晶物56は第1図Cの如くAu突起物6上のみ
に存在するが、瞬時に大量に出来たAu突起物6の端5
5,55′の共晶物は第2図A,bに示した如く半導体
基板4上に流れ落ちる。これが共晶物により発生する(
第2図A,bで説明する)クラツクの原因である。した
がつてCuリード2上のSn層がAu突起物6よりはみ
だしていることがクラツクを発生させる原因である。こ
れに対し、Au突起物6の端6の端55,551で発生
する共晶物の発生量を極力押えるためにSnメツキの厚
さを調整することが容易に考えられる。一般に共晶物の
発生量はSnメツキ厚さが厚く、加熱治具50の温度が
高い程発生しやすい。
) descends and pressurizes the Cu lead 2 and the Au protrusion 6, bringing the Cu lead 2 and the Au protrusion 6 into pressure contact. Next, when a pulse current 51 is passed through the heating jig 50, the heating jig 50 instantly reaches a predetermined temperature. At this time, the temperature of the heating jig 50 is
Therefore, it escapes toward the semiconductor substrate 4 via the Au protrusion 6 having good thermal conductivity (arrow 52). For this purpose, Au
Although the temperature of the portion 53 of the Cu lead 2 in contact with the protrusion 6 is lower than the temperature generated by the heating jig 50,
Portions 54, 5 of the Cu lead 2 that are not in contact with the u protrusion 6
1 is approximately equal to the temperature of the heating jig 50.
That is, a temperature difference occurs between the Cu lead portions 53 and 54, 54'. Since this state occurs instantaneously (within about 500 ms), Au-Sn eutectic is generated at the ends 55, 55' of the Au protrusion 6, and then the temperature of this part increases at the top 53 of the Au protrusion 6. Au-Sn eutectic temperature (280
Occurs after reaching ℃). However, the eutectic 56 generated on the Au protrusion 6 exists only on the Au protrusion 6 as shown in FIG.
The 5,55' eutectic flows down onto the semiconductor substrate 4 as shown in FIGS. 2A and 2B. This is caused by eutectics (
This is the cause of cracks (explained in Fig. 2A and b). Therefore, the fact that the Sn layer on the Cu lead 2 protrudes beyond the Au protrusion 6 is the cause of cracks. On the other hand, it is easy to consider adjusting the thickness of the Sn plating in order to suppress the amount of eutectic generated at the ends 55, 551 of the ends 6 of the Au protrusions 6 as much as possible. In general, the amount of eutectic generated is more likely to occur as the Sn plating thickness increases and the temperature of the heating jig 50 increases.

したがつて、Snメツキの厚さと、加熱温度の2つを,
制御する事が必要であるが、最も問題となる事は加熱治
具の温度分布の不均一性である。例えば加熱治具50の
Cuリードを加圧する側の寸法が2.4×4.071L
m(例えば4KbitRAMの寸法)とすれば、この様
な微少面積において、4800C.の温度を前記2.4
×6.0m1の全領域において均一にする事は著しく困
難である。加熱治具の端部においては放熱が激しく急激
な温度勾配を示す。第1図dは2.4×6.011のパ
ルスツールでの実測値を示したものである。最初のAu
−Sn共晶を発生一させるボンデイング条件が480℃
であつたとすれば中央附近では良いが周辺附近では余り
にも温度差がありすぎる。周辺附近の温度415℃を4
80℃にするためには少なくとも、中央附近の温度を5
50〜560℃に高くしなければならない。この場合、
−加熱治具の中央附近にあるAu突起物上では共晶物の
発生量が著しく大きくなり、過剰の共晶物は半導体基板
4へ流れ落ちクラツ久の発生をまねくものである。又、
第1図dの如くの温度分布の場合、Snメツキ厚を厚く
して、低い温度でも共晶を作らせる事が出来るが、41
5℃附近では適量の共晶物が出来ても、480℃附近で
は、Snメツキ厚さが厚いから、その分だけ共晶物の量
が多くなつてしまい、結果的に、クラツクの発生をまね
くものである。すなわち、Snメツキ厚さを調整するに
しても加熱治具の温度分布を度外視する事が出来ないの
で、根本的な解決策とはならない。第2図aにおいて、
Au突起物6とCuリード2とはAu,Snの共晶物7
′によつて接続されているが、前記共晶物7′が発生す
る瞬間に余剰に発生した共晶物7は半導体基板4のSi
O2膜4′上に瞬間的に落下する。
Therefore, the thickness of the Sn plating and the heating temperature are
Although it is necessary to control the temperature, the biggest problem is the non-uniformity of the temperature distribution in the heating jig. For example, the dimensions of the heating jig 50 on the side that presses the Cu lead are 2.4 x 4.071L.
m (for example, the size of a 4Kbit RAM), in such a small area, 4800C. The temperature of 2.4
It is extremely difficult to achieve uniformity over the entire area of ×6.0 m1. At the end of the heating jig, heat radiation is intense and a sharp temperature gradient is exhibited. FIG. 1d shows actual measured values using a 2.4×6.011 pulse tool. First Au
-The bonding conditions for generating Sn eutectic are 480℃
If it were, it would be fine near the center, but there would be too much temperature difference near the periphery. The temperature around the surrounding area is 415℃.
In order to reach 80℃, the temperature near the center must be at least 5℃.
The temperature must be increased to 50-560°C. in this case,
- The amount of eutectic material generated on the Au protrusion near the center of the heating jig becomes significantly large, and the excess eutectic material flows down onto the semiconductor substrate 4, leading to the occurrence of cracks. or,
In the case of the temperature distribution as shown in Figure 1 d, it is possible to increase the Sn plating thickness and form a eutectic even at a low temperature.
Even if an appropriate amount of eutectic is produced at around 5°C, at around 480°C, the thickness of the Sn plating is thick, so the amount of eutectic increases accordingly, resulting in the occurrence of cracks. It is something. That is, even if the Sn plating thickness is adjusted, the temperature distribution of the heating jig cannot be ignored, so this is not a fundamental solution. In Figure 2a,
The Au protrusion 6 and the Cu lead 2 are a eutectic material 7 of Au and Sn.
However, at the moment when the eutectic 7' is generated, the excess eutectic 7 is connected to the Si of the semiconductor substrate 4.
It instantly falls onto the O2 film 4'.

この時に前記SiO2膜11半導体基板4あるいはバリ
ヤメタル5との熱膨張の差により瞬時にクラツク8を発
生せしめる。前記クラツク8はCuリード2の引張強度
を著しく低下する一方、半導体基板4内に形成されてい
るP・N接合を損傷してしまい、電気的特性の低下をま
ねくものであつた。又、前記Au突起物6と半導体基板
4の端が比較的接近している様な構成にあつては、第2
図bに示す如く共晶物9が、半導体基板4の端まで流れ
出し、半導体基板4と接触(矢印10で示した)してし
まい、電気的に短絡する問題を発生させていた。本発明
はAu−Sn共晶によつて接続を行なうギヤングボンデ
イングにおいて、前述した如くの共晶物の余剰物による
半導体基板のクラツクや、共晶物と半導体基板との短絡
を積極的に防止した信頼性の高いリード形成方法を提供
せんとするものである。
At this time, cracks 8 are instantaneously generated due to the difference in thermal expansion between the SiO2 film 11 and the semiconductor substrate 4 or barrier metal 5. The cracks 8 significantly reduced the tensile strength of the Cu lead 2, and also damaged the P/N junction formed in the semiconductor substrate 4, leading to a decrease in electrical characteristics. In addition, in a configuration where the Au protrusion 6 and the edge of the semiconductor substrate 4 are relatively close to each other, the second
As shown in FIG. b, the eutectic 9 flows out to the edge of the semiconductor substrate 4 and comes into contact with the semiconductor substrate 4 (indicated by arrow 10), causing an electrical short circuit problem. The present invention actively prevents cracks in the semiconductor substrate due to excess eutectic material and short circuits between the eutectic material and the semiconductor substrate in the gigantic bonding in which connections are made using Au-Sn eutectic material. The present invention aims to provide a highly reliable lead forming method.

第3図で本発明の構成を示す。FIG. 3 shows the configuration of the present invention.

半導体基板11上の電極端子に相当する位置にCr−C
u,Th−Ni等のバリヤメタル12が抵抗加熱法、ス
パツタ一蒸着法によつて形成され、更に10〜20μm
の厚さにAuメツキ法によりAu突起物13が形成され
る。
Cr-C is placed on the semiconductor substrate 11 at a position corresponding to the electrode terminal.
A barrier metal 12 such as u, Th-Ni, etc. is formed by a resistance heating method or a sputtering vapor deposition method, and further has a thickness of 10 to 20 μm.
Au protrusions 13 are formed by Au plating to a thickness of .

一方、ポリイミド樹脂フイルム14のCuリード15の
先端にはSnメツキ16が施こされている。前記Snメ
ツキ16は前記CulJ−ドの先端のみに部分的に形成
されているが、この形成はCuリードのエツチングによ
る形成が終了した段階で、再度、感光性樹脂を塗布し、
前記Cuリードの先端のみを露出させたパターンを形成
せしめ、無電解メツキする事により第3図aの構造を得
る事が出来る。第3図の本発明の実施例において、前記
CuIJード15に設けたSnメツキ16の長さAは、
Au突起物13の長さBよりも小さい事が本発明の特徴
である。例えば仮にAu突起物13の長さBが100μ
mであれば、Cuリード15に設けたSnメツキ16の
長さBは80μm程度となる。
On the other hand, Sn plating 16 is applied to the tip of the Cu lead 15 of the polyimide resin film 14. The Sn plating 16 is partially formed only on the tip of the CulJ-de, but this formation is done by applying photosensitive resin again after the etching of the Cu lead is completed.
The structure shown in FIG. 3a can be obtained by forming a pattern in which only the tips of the Cu leads are exposed and performing electroless plating. In the embodiment of the present invention shown in FIG. 3, the length A of the Sn plating 16 provided on the CuIJ board 15 is as follows:
A feature of the present invention is that the length of the Au protrusion 13 is smaller than the length B. For example, if the length B of the Au protrusion 13 is 100μ
m, the length B of the Sn plating 16 provided on the Cu lead 15 is about 80 μm.

前記A(!::Bの関係は単に長さ方向だけでなく幅に
関しても同様の事が必要である。第3図aは断面図を示
すものであるが、平面図を第4図に示した。
The relationship A(!::B) needs to be the same not only in the length direction but also in the width direction. Fig. 3a shows a cross-sectional view, and Fig. 4 shows a plan view. Ta.

前記CulJ−ド15に設けたSnメツキ16の領域と
Au突起物13との位置合せにおいては、第4図に示す
如く、Snメツキ16の領域が、Au突起物13の領域
内に入る様に行なうものである。第4図もしくは第3図
aの状態で加熱した治具、で加圧すればAu−Snの共
晶物17が発生し、第3図bの如くの接続を得る事が出
来る。
In aligning the area of the Sn plating 16 provided on the CulJ-do 15 and the Au protrusion 13, as shown in FIG. It is something to do. If pressure is applied using a heated jig in the state shown in FIG. 4 or FIG. 3a, Au-Sn eutectic 17 is generated, and a connection as shown in FIG. 3b can be obtained.

第3図bにおいて、発生した共晶物17は、Snメツキ
16の領域がAu突起物13よりも小さいために余剰物
となつて流れ出したり、流れ落ちる事がない。したがつ
て、従来発生していた、半導体基板のクラツクの発生に
よる電気的特性の低下や、流れ出した共晶物と半導体基
板との接触する事故が発生しない、このために信頼性の
高いリード接続を行なう事が出来るものである。
In FIG. 3b, the generated eutectic 17 does not flow out or fall as a surplus because the area of the Sn plating 16 is smaller than the Au protrusion 13. Therefore, the deterioration of electrical characteristics due to cracks in the semiconductor substrate, which occurred in the past, and the accidents where the flowing eutectic material comes into contact with the semiconductor substrate do not occur, resulting in highly reliable lead connections. It is possible to do this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,b,cは従来例の構成断面図、同図dは温度
分布図、第2図A,bは従来例のボンデイングによる問
題を示す断面図、第3図A,bは本発明の一実施例の構
成断面図、第4図は本発明の一実施例の構成平面図であ
る。 11・・・・・・半導体基板、13・・・・・・Au突
起物、15・・・・・・Cuリード、16・・・・・・
Snメツキ。
Figures 1A, b, and c are cross-sectional views of the structure of the conventional example, d of the same figure is a temperature distribution diagram, Figures 2A and b are sectional views showing problems caused by bonding in the conventional example, and Figures 3A and b are of the present invention. FIG. 4 is a cross-sectional view of the structure of an embodiment of the invention, and FIG. 4 is a plan view of the structure of the embodiment of the invention. 11...Semiconductor substrate, 13...Au protrusion, 15...Cu lead, 16...
Sn Metsuki.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体素子上の電極端子に設けたAu突起物と樹脂
フィルムテープ上に設けたSnメッキしたCuリードと
をギャングボンディングする方法において、前記Cuリ
ードにメッキされているSn層が一定厚でメッキ領域の
長さが、前記Au突起物の長さよりも短かくかつ前記S
n層のメッキ領域の幅が、前記Au突起物の幅よりも短
かく形成されるとともに、前記Cuリードにメッキされ
ているSn層の領域が前記Au突起物の領域内において
ギャングボンディングし、前記Sn層とAu突起物の共
晶物を前記Au突起物の領域内に形成させることによつ
て電極リードを形成することを特徴とする電極リードの
形成方法。
1. In a method of gang-bonding Au protrusions provided on electrode terminals on a semiconductor element and Sn-plated Cu leads provided on a resin film tape, the Sn layer plated on the Cu lead has a constant thickness in the plated area. is shorter than the length of the Au protrusion and the length of the S
The width of the plating region of the n layer is formed to be shorter than the width of the Au protrusion, and the region of the Sn layer plated on the Cu lead is gang-bonded within the region of the Au protrusion. A method for forming an electrode lead, comprising forming an electrode lead by forming a eutectic of a Sn layer and an Au protrusion in a region of the Au protrusion.
JP12116079A 1979-09-19 1979-09-19 How to form electrode leads Expired JPS5946416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12116079A JPS5946416B2 (en) 1979-09-19 1979-09-19 How to form electrode leads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12116079A JPS5946416B2 (en) 1979-09-19 1979-09-19 How to form electrode leads

Publications (2)

Publication Number Publication Date
JPS5645044A JPS5645044A (en) 1981-04-24
JPS5946416B2 true JPS5946416B2 (en) 1984-11-12

Family

ID=14804325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12116079A Expired JPS5946416B2 (en) 1979-09-19 1979-09-19 How to form electrode leads

Country Status (1)

Country Link
JP (1) JPS5946416B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756771B2 (en) * 1988-06-27 1995-06-14 松下電工株式会社 Remote control relay
CN107978582A (en) * 2016-10-25 2018-05-01 矽创电子股份有限公司 Chip-packaging structure and relevant pins joint method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596570A (en) * 1982-07-02 1984-01-13 Toshiba Corp Semiconductor device
JP4104889B2 (en) * 2002-03-29 2008-06-18 株式会社東芝 Optical semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756771B2 (en) * 1988-06-27 1995-06-14 松下電工株式会社 Remote control relay
CN107978582A (en) * 2016-10-25 2018-05-01 矽创电子股份有限公司 Chip-packaging structure and relevant pins joint method

Also Published As

Publication number Publication date
JPS5645044A (en) 1981-04-24

Similar Documents

Publication Publication Date Title
US4942140A (en) Method of packaging semiconductor device
US3619725A (en) Electrical fuse link
US4091529A (en) Method of forming substrate terminal areas for bonded leads
JPH0332914B2 (en)
US5057811A (en) Electrothermal sensor
US3775838A (en) Integrated circuit package and construction technique
JPS5946416B2 (en) How to form electrode leads
JPH0239097B2 (en)
JP2001230267A (en) Semiconductor device and manufacturing method
US3735485A (en) Method of providing thermally conductive ground connections for integrated circuits
JPS5924543B2 (en) How to form electrode leads
JP2570626B2 (en) Board connection structure and connection method
KR900005590A (en) Gold / Tin Eutectic Bonding in Tape Automatic Bonding Method
US3293586A (en) Hall plate devices
JPS63252447A (en) Formation of bump of semiconductor element
JPS6366958A (en) Lead frame for semiconductor and manufacture thereof
JPS60130132A (en) Manufacture of semiconductor device
JPH0669610B2 (en) Heater chip and bonding method using the same
JPH0613523A (en) Semiconductor electronic components
JPH0671026B2 (en) Semiconductor mounting method
JP3723350B2 (en) Wiring board and manufacturing method thereof
JPH1140716A (en) Semiconductor device and manufacture thereof
JP2600161B2 (en) Substrate for transfer bump
JPH0563955B2 (en)
JP2886945B2 (en) Wiring board