JPS5944781B2 - semiconductor integrated circuit chip - Google Patents

semiconductor integrated circuit chip

Info

Publication number
JPS5944781B2
JPS5944781B2 JP6578475A JP6578475A JPS5944781B2 JP S5944781 B2 JPS5944781 B2 JP S5944781B2 JP 6578475 A JP6578475 A JP 6578475A JP 6578475 A JP6578475 A JP 6578475A JP S5944781 B2 JPS5944781 B2 JP S5944781B2
Authority
JP
Japan
Prior art keywords
chip
thermal resistance
semiconductor integrated
integrated circuit
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6578475A
Other languages
Japanese (ja)
Other versions
JPS51140583A (en
Inventor
久雄 金井
弘之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6578475A priority Critical patent/JPS5944781B2/en
Publication of JPS51140583A publication Critical patent/JPS51140583A/en
Publication of JPS5944781B2 publication Critical patent/JPS5944781B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、半導体集積回路のチップ構造に関する。[Detailed description of the invention] The present invention relates to a chip structure of a semiconductor integrated circuit.

最近の半導体集積回路においては、ますます。In recent semiconductor integrated circuits, this is becoming more and more common.

高速低電力(低エネルギー)、高集積度かつ高信頼性(
低接合温度)であることが要求されているが、これらは
互いに密接な関係にあり、又互いにその各々の利点が相
反するという関係にもある。従つてこれらの各々の要素
の最大限の追求がなされた上で互いの卜り−ドオフがな
され最も適切な配分とならなければならない。最近のよ
うにチップ当りに要求される機能が多くなると、たとえ
ゲート当りの消費電力が小さくなつても、チップ当りの
消費電力は大きくなり。
High speed, low power (low energy), high integration and high reliability (
However, these are closely related to each other, and their respective advantages are also in conflict with each other. Therefore, each of these elements must be maximized and then balanced against each other to arrive at the most appropriate distribution. As more and more functions are required per chip, the power consumption per chip increases even if the power consumption per gate decreases.

接合温度の上昇、即ち信頼性の低下となる。従来の半導
体構造では単位面積当りの集積度を高くする方向にある
ため、結果として熱抵抗が高くなり接合温度の上昇が大
きいという欠点を有する。第1図を参照すると、低熱抵
抗の物質上にある、厚みのある板上の熱源で発生する熱
は、斜線部を通つて低熱抵抗物質に伝わる。従つて、当
然の事ながら板上にある熱源と熱源の距離が大きい程熱
源での温度上昇は小さく等価的に熱抵抗が低いと言える
。従来の半導体構造では、小面積の中に多数の熱源があ
るため、熱抵抗が高く、チップ当りに許される消費電力
は限界に近づいていると言える。もちろんチップの実装
方法によつて全体的な熱抵抗の低下をはかることは可能
である。
This results in an increase in junction temperature, ie, a decrease in reliability. In conventional semiconductor structures, the tendency is to increase the degree of integration per unit area, which results in a high thermal resistance and a large increase in junction temperature, which is a drawback. Referring to FIG. 1, heat generated by a heat source on a thick plate on a low thermal resistance material is transmitted to the low thermal resistance material through the shaded area. Therefore, as a matter of course, it can be said that the greater the distance between the heat sources on the plate, the smaller the temperature rise at the heat source and the lower the thermal resistance equivalently. Conventional semiconductor structures have a large number of heat sources within a small area, resulting in high thermal resistance, and it can be said that the permissible power consumption per chip is approaching its limit. Of course, it is possible to reduce the overall thermal resistance by changing the chip mounting method.

本発明は、半導体チップの熱抵抗を下げることによつて
高速化更に信頼性の向上を目的とするものである。
The present invention aims to increase speed and improve reliability by lowering the thermal resistance of a semiconductor chip.

最近の半導体LSIに於いては、高集積度化が進むにつ
れて、単位ゲート当りの消費電力は小さくなつてきてい
るとは言うものの、チップ外の回路を駆動する出力をも
つ回路のエネルギは高速という点からある程度大きいこ
とが必要であり、そのためにチップの出力回路は、チッ
プ内の回路を駆動する出力をもつ回路に比べてエネルギ
をかなり大きくしなければならない。
Although it is said that the power consumption per unit gate in recent semiconductor LSIs has become smaller as the degree of integration has increased, the energy consumption of circuits with outputs that drive circuits outside the chip is said to be faster. Therefore, the chip's output circuit must have considerably more energy than the circuit that has the output to drive the circuits within the chip.

結果としてチップの消費電力は大きく接合温度は高くな
り、これを低くするにはチップを大きくするのが望まし
いが、これは我々の指向に反する。
As a result, the power consumption of the chip becomes large and the junction temperature rises.To lower this, it is desirable to make the chip larger, but this is contrary to our preference.

しかし高集積度になりチップ当りの有する機能が多くな
ればなるほど入出力端子の数を多く必要とし、従つて入
出力用の端子のためにチップ面積は大きくならざるを得
ないし、高速かつ高信頼の目的が達せられるとしたら多
少のチップ面積の増大は問題とならない。従来の半導体
集積回路に於いては,主たる熱発生源であるチツブ外の
回路を駆動するエクスターナルゲート部はチツプ内の回
路を駆動するインターナルゲート部とチツプ上隣接して
位置しているため第1図のような熱放散の効果はなく熱
が重畳され熱抵抗は高くなる。
However, as the degree of integration increases and the number of functions per chip increases, the number of input/output terminals increases, and the chip area inevitably increases due to input/output terminals. If this objective can be achieved, a slight increase in chip area will not be a problem. In conventional semiconductor integrated circuits, the external gate section that drives the circuits outside the chip, which is the main source of heat generation, is located adjacent to the internal gate section that drives the circuits inside the chip. There is no heat dissipation effect as shown in Figure 1, and heat is superimposed, increasing thermal resistance.

従つて本発明ではインターナルゲートの集合部1とエク
スターナルの集合部分とを離し、集合部のまわりにその
集合部内で発生する熱に対する熱抵抗を低減するための
熱放散部を設け、更にこの熱放散部分に入出力端子用の
パツドを配置することによつて多端子構造にできかつこ
の金属リードを低熱抵抗基板に接続することによつてこ
れらリードをも通して熱放散ができるようにするもので
あるが、回路部の実効面積は従来と同じであるから分留
りへの影響はない。
Therefore, in the present invention, the collecting part 1 of the internal gate and the collecting part of the external gate are separated, and a heat dissipation part is provided around the collecting part to reduce the thermal resistance to the heat generated within the collecting part. By arranging pads for input/output terminals in the dissipation part, a multi-terminal structure can be created, and by connecting these metal leads to a low thermal resistance board, heat can be dissipated through these leads as well. However, since the effective area of the circuit section is the same as the conventional one, there is no effect on fractional fraction.

我々の目的である高性能(高速)高信頼性(低温度)を
達成するためには、エネルギと熱抵抗の積を最小にしな
ければならないが、本発明はエネルギ最小の努力をした
上で,更に熱抵抗を最小にすることによつて上記目的を
達しようとするものである。
In order to achieve our objectives of high performance (high speed) and high reliability (low temperature), we must minimize the product of energy and thermal resistance. Furthermore, the above objective is achieved by minimizing thermal resistance.

次に本発明の一実施例について図面を参照して説明する
Next, an embodiment of the present invention will be described with reference to the drawings.

半導体LSIは、チツプ内の回路を駆動するための低エ
ネルギイノターナルゲート部とチツブ外の回路を駆動す
るための高エネルギエクスターナルゲート部に分けられ
第2図は従来の半導体集積回路構造であり、11はイン
ターナルゲート部,12はエクスターナルゲート部、1
3は入出力端子用パツドである。第3図は、本発明によ
る半導体集積回路構造の参考例であり、図のようにチツ
プ面積を多少大きくしてエクスターナルゲート部のまわ
りに熱放散のためのエリア14を設けたものであり、第
4図は更にインターナルゲート部とエクスターナルゲー
ト部を分離し熱の重畳をさけ熱抵抗を低減しようとする
ものである。15はインターナルゲート部、16はエク
スターナルゲート部.17は端子用パツド、18はイノ
ターナルゲ―ト部とエクスターナルゲート部の分離エリ
アであり熱放散のためのエリアである。
A semiconductor LSI is divided into a low-energy internal gate section for driving circuits inside the chip and a high-energy external gate section for driving circuits outside the chip. Figure 2 shows a conventional semiconductor integrated circuit structure. , 11 is an internal gate section, 12 is an external gate section, 1
3 is a pad for input/output terminals. FIG. 3 is a reference example of a semiconductor integrated circuit structure according to the present invention. As shown in the figure, the chip area is somewhat increased and an area 14 for heat dissipation is provided around the external gate part. In FIG. 4, the internal gate section and the external gate section are further separated to avoid heat overlap and reduce thermal resistance. 15 is an internal gate section, and 16 is an external gate section. Reference numeral 17 is a terminal pad, and 18 is a separation area between the innoternal gate section and the external gate section, which is an area for heat dissipation.

第3図および第4図に示す半導体のチツプ面積が第2図
に示す半導体のチツプ面積に比べて大きいため端子を多
く採ることができるという利点をもつており、回路部の
実効面積は、第2図に示す半導体の回路部の実効面積と
同じであるから歩留りへの影響はない。第5図に示す半
導体は更に、イノターナルゲート部とエクスターナルゲ
ート部の分離エリアにも端子用のパツドを配することに
よつて端子数を増加し又、その端子リード19を通して
熱が逃がすことによつて熱抵抗をも低減しようとする効
果をねら・つたものである。本発明は以上説明したよう
に半導体チツプ上の回路を配置をできるだけ広げること
によつてチツブの熱抵抗を下げかつ,取り出せる端子数
の増加をも可能にする効果がある。
Since the chip area of the semiconductor shown in FIGS. 3 and 4 is larger than that of the semiconductor shown in FIG. 2, it has the advantage of allowing more terminals, and the effective area of the circuit section is Since the effective area is the same as that of the semiconductor circuit shown in FIG. 2, there is no effect on the yield. The semiconductor shown in FIG. 5 further increases the number of terminals by arranging pads for terminals in the separation area between the innoternal gate section and the external gate section, and allows heat to escape through the terminal leads 19. This is aimed at reducing the thermal resistance as well. As explained above, the present invention has the effect of lowering the thermal resistance of the chip and increasing the number of terminals that can be taken out by expanding the layout of the circuits on the semiconductor chip as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、板上にある熱源によつて発生する熱の伝導通
路を示したものであり,第2図は従来の半導体構造を示
す図、第3図および第4図は本発明の半導体構造の参考
例を示す図,および第5図は本発明の半導体構造の一例
を示す図である。 以下、図面に用いた符号を説明する。10・・・・・・
熱源.11,15・・・・・・イ/ターナルゲートの集
合部.12,16・・・・・・エクスターナルゲートの
集合部、13,17・・・・・・入出力端子用パツド、
14,18・・・・・・熱放散部、19・・・・・・金
属リード部。
Figure 1 shows the conduction path of heat generated by a heat source on the board, Figure 2 shows a conventional semiconductor structure, and Figures 3 and 4 show the semiconductor structure of the present invention. FIG. 5 is a diagram showing a reference example of a structure, and FIG. 5 is a diagram showing an example of a semiconductor structure of the present invention. The symbols used in the drawings will be explained below. 10...
Heat source. 11,15...I/Ternal gate gathering part. 12, 16... External gate gathering part, 13, 17... Input/output terminal pad,
14, 18... Heat dissipation part, 19... Metal lead part.

Claims (1)

【特許請求の範囲】[Claims] 1 チップ内の入力側にある第1の回路集合部と、該チ
ップ内の出力側にある第2の回路集合部と、出力端子と
接続するための複数のパッドを有し前記第1の回路集合
部および前記第2の回路集合部の間に熱に対する熱抵抗
を低減するための熱放散部とを含むことを特徴とする半
導体集積回路チップ。
1. The first circuit has a first circuit assembly on the input side of the chip, a second circuit assembly on the output side of the chip, and a plurality of pads for connection to the output terminal. A semiconductor integrated circuit chip, comprising a heat dissipation section for reducing thermal resistance to heat between an assembly section and the second circuit assembly section.
JP6578475A 1975-05-30 1975-05-30 semiconductor integrated circuit chip Expired JPS5944781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6578475A JPS5944781B2 (en) 1975-05-30 1975-05-30 semiconductor integrated circuit chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6578475A JPS5944781B2 (en) 1975-05-30 1975-05-30 semiconductor integrated circuit chip

Publications (2)

Publication Number Publication Date
JPS51140583A JPS51140583A (en) 1976-12-03
JPS5944781B2 true JPS5944781B2 (en) 1984-11-01

Family

ID=13296995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6578475A Expired JPS5944781B2 (en) 1975-05-30 1975-05-30 semiconductor integrated circuit chip

Country Status (1)

Country Link
JP (1) JPS5944781B2 (en)

Also Published As

Publication number Publication date
JPS51140583A (en) 1976-12-03

Similar Documents

Publication Publication Date Title
US7148562B2 (en) Power semiconductor device and power semiconductor module
JP2006512778A (en) Spatial efficiency package for lateral conduction devices
US20050092463A1 (en) Multi-heatsink integrated cooler
JP6129355B2 (en) Power semiconductor device
JP6290758B2 (en) Semiconductor device
JPS55130178A (en) Semiconductor device
JP2002217364A (en) Semiconductor mounting structure
JPS5944781B2 (en) semiconductor integrated circuit chip
JP2018207044A (en) Semiconductor module
CN215183941U (en) Symmetrical gate gallium nitride device and parallel structure thereof
JPH01214048A (en) Semiconductor integrated device
JPH04316357A (en) Resin-sealed type semiconductor device
JPS62194640A (en) Semiconductor integrated circuit using bump mounting
JP3507714B2 (en) Multi-chip module type semiconductor device
JP2676801B2 (en) Semiconductor integrated circuit device having output buffer circuit
JPS63192256A (en) Integrated circuit cooling constitution
WO1996002943A1 (en) Thermally enhanced leadframe
JPH0714029B2 (en) Power semiconductor device
TWM498384U (en) Semiconductor package structure
WO2022270161A1 (en) Semiconductor module
CN215266281U (en) Power module and electronic device
JP2003298009A (en) Power module and power converter using the same
JPS63289847A (en) Heat dissipation structure of lsi package
JPS6022821B2 (en) semiconductor equipment
JPS60160177A (en) Field effect semiconductor device