JPS5942065B2 - Sliding body with excellent wear resistance - Google Patents

Sliding body with excellent wear resistance

Info

Publication number
JPS5942065B2
JPS5942065B2 JP51132433A JP13243376A JPS5942065B2 JP S5942065 B2 JPS5942065 B2 JP S5942065B2 JP 51132433 A JP51132433 A JP 51132433A JP 13243376 A JP13243376 A JP 13243376A JP S5942065 B2 JPS5942065 B2 JP S5942065B2
Authority
JP
Japan
Prior art keywords
graphite
copper alloy
wear resistance
particle size
sliding body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51132433A
Other languages
Japanese (ja)
Other versions
JPS5357102A (en
Inventor
正輝 諏訪
勝博 小室
芳明 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP51132433A priority Critical patent/JPS5942065B2/en
Publication of JPS5357102A publication Critical patent/JPS5357102A/en
Publication of JPS5942065B2 publication Critical patent/JPS5942065B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は耐摩耗性にすぐれた新規な銅合金摺動体の製造
法に係り、特に、電車パンタグラフ用摺板として耐摩耗
性にすぐれた集電摺動体の製造法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for producing a novel copper alloy sliding body with excellent wear resistance, and particularly to a current collector with excellent wear resistance as a sliding plate for a train pantograph. Concerning a method for manufacturing a sliding body.

〔発明の背景〕 従来、軸受あるいは機械摺動部品等には銅基合金、錫基
合金、鉛基合金、アルミニウム基合金、鉄基合金、カド
ミウム基合金などのいわゆる軸受台金が使用されている
が、これら単独では潤滑効果が得られないため黒鉛、P
bなとの低摩擦物質の固体潤滑剤が含有されている。
[Background of the Invention] Conventionally, so-called bearing base metals such as copper-based alloys, tin-based alloys, lead-based alloys, aluminum-based alloys, iron-based alloys, and cadmium-based alloys have been used for bearings or mechanical sliding parts. However, these alone cannot provide a lubricating effect, so graphite, P
Contains a solid lubricant of low friction material such as b.

特に例を集電用のパンタグラフ用摺板にとれば鉄基合金
には潤滑剤としてpbが用いられ、銅基合金には黒鉛が
用いられている。
Taking the current collector pantograph sliding plate as an example, PB is used as a lubricant for iron-based alloys, and graphite is used for copper-based alloys.

一般に摺板材として要求される主な特性は、良導電性お
よび耐摩耗性があるが、近年電気車の高速化、集電電力
の増大に伴い、特に耐摩耗性と強度の改善に対する要請
が高まってきた。
Generally speaking, the main characteristics required for a sliding plate material are good conductivity and wear resistance, but in recent years, as electric cars have become faster and the amount of power collected has increased, there has been a growing demand for improvements in wear resistance and strength. It's here.

電気車用摺板の摩耗量は、電気車の高速化、集電電力の
増大など使用条件が苛酷になるに従って増boする。
The amount of wear on sliding plates for electric vehicles increases as the operating conditions become more severe, such as as the speed of electric vehicles increases and the amount of collected power increases.

このような要求にこたえるために銅基合金では潤滑剤に
よるほか基地を強化する鉄、ニッケル、クロム、燐など
を適量含有させているが、苛酷な使用条件のもとでは耐
摩耗性が十分でなかった。
In order to meet these demands, copper-based alloys contain appropriate amounts of iron, nickel, chromium, phosphorus, etc. to strengthen the base in addition to being used as lubricants, but they do not have sufficient wear resistance under harsh usage conditions. There wasn't.

銅基合金としては、黒鉛分散銅系焼結合金が一般的であ
り、耐摩耗性の改善と強度との関連という点では合金中
に占め黒鉛粒子の容積%が留意されており、また製法上
の制約があるが均一混合を可能とするためには黒鉛粒子
の粒度に注意が払われている。
Graphite-dispersed copper-based sintered alloys are common as copper-based alloys, and the volume percentage of graphite particles in the alloy is considered in terms of the relationship between improvement of wear resistance and strength. Although there are restrictions, attention is paid to the particle size of graphite particles in order to enable uniform mixing.

一方、耐摩耗性を向上する点から黒鉛の含有量として5
〜50容量%が必要とされ、その均一な分散を得る上か
ら黒鉛粒子の粒径としては200μm以下の細粒がよい
とされている。
On the other hand, from the viewpoint of improving wear resistance, the graphite content is 5.
~50% by volume is required, and in order to obtain uniform dispersion, it is said that the particle size of graphite particles is preferably 200 μm or less.

さらに最近では鋳造法による黒鉛分散合金が研究されて
おり、この場合合金溶湯中に黒鉛を分散させるためには
黒鉛粒径として200μm以下、特に40〜120μm
の範囲のものがよいとされている。
Furthermore, recently, graphite dispersed alloys using casting methods have been studied, and in this case, in order to disperse graphite in the molten alloy, the graphite particle size must be 200 μm or less, especially 40 to 120 μm.
It is said that a range of .

しかし、これらの従来合金は黒鉛の適正な含有量および
粒径にもかかわらず、また基地金属の強化が得られてい
るにもかかわらず、黒鉛の均一な分散が得られず、十分
な耐摩耗性が得られなかった。
However, despite the appropriate content and particle size of graphite, and despite the reinforcement of the base metal, these conventional alloys do not have a uniform dispersion of graphite, resulting in insufficient wear resistance. I couldn't find sex.

〔発明の目的〕[Purpose of the invention]

本発明の目的は黒鉛粒子を均一に分散させた耐摩耗性の
すぐれた銅合金摺動体の製造法を提供するにある。
An object of the present invention is to provide a method for manufacturing a copper alloy sliding body with excellent wear resistance in which graphite particles are uniformly dispersed.

〔発明の概要〕[Summary of the invention]

本発明は、重量で、錫20%以下、亜鉛20%以下、鉛
20%以下及びクロム5%以下を含み、50%以上の銅
からなる銅合金の溶湯中に、粒径0.25〜7龍の黒鉛
粒子を分散させ、黒鉛粒子を分散させた銅合金の溶湯を
金型に鋳込み、加圧凝固させることを特徴とする銅合金
摺動体の製造法にある。
In the present invention, a molten copper alloy containing not more than 20% tin, not more than 20% zinc, not more than 20% lead, and not more than 5% chromium, and having a particle size of 0.25 to 7 A method for manufacturing a copper alloy sliding body is characterized by dispersing dragon graphite particles, casting a molten copper alloy containing dispersed graphite particles into a mold, and solidifying it under pressure.

錫、亜鉛及びクロムは銅合金の強度を向上させるために
必要な元素であり、各々錫20重量%以下、亜鉛20重
量%以下及びクロム5重量%以下含有される。
Tin, zinc, and chromium are elements necessary to improve the strength of the copper alloy, and each contains up to 20% by weight of tin, up to 20% by weight of zinc, and up to 5% by weight of chromium.

各元素の各々の値を越える含有量は合金の基地の延性を
低めるので避けるべきである。
Contents exceeding the respective values of each element should be avoided as they reduce the ductility of the alloy matrix.

特に、クロムの添加は黒鉛と反応し黒鉛の表面にクロム
炭化物を形成して銅合金溶湯と黒鉛との濡れを生じせし
める重要な効果があり、クロム炭化物の形成によって一
旦溶湯中に濡れた黒鉛の浮上が防止され、銅合金中に黒
鉛を均一に分散させることができる。
In particular, the addition of chromium has the important effect of reacting with graphite to form chromium carbide on the surface of graphite, causing wetting between the molten copper alloy and graphite. Floating is prevented and graphite can be uniformly dispersed in the copper alloy.

鉛は、黒鉛と同様に固体潤滑剤として作用するもので、
銅合金と密着した黒鉛より微粒となる鉛粒子による潤滑
作用として重要な作用があり、その含有量は20重量%
以下である。
Lead, like graphite, acts as a solid lubricant.
The lead particles, which are finer than graphite and are in close contact with the copper alloy, have an important lubricating effect, and their content is 20% by weight.
It is as follows.

20重量%を越える添加は延性及び強度の点から避ける
べきである。
Addition of more than 20% by weight should be avoided from the viewpoint of ductility and strength.

黒鉛粒子の粒径は0.25〜7mrnのとき顕著に耐摩
耗性が向上する。
When the particle size of the graphite particles is 0.25 to 7 mrn, the wear resistance is significantly improved.

特に通電を伴う場合の耐摩耗性がすぐれている。It has excellent wear resistance, especially when energized.

一般に耐摩耗性は黒鉛粒径が100μm以下のより小さ
い程すぐれているといわれている。
Generally, it is said that the wear resistance is better as the graphite particle size becomes smaller, ie, 100 μm or less.

しかし、本発明者らは逆に粒径がそれより大きい0.2
5〜7關のとき耐摩耗性がすくれていることを見い出し
た。
However, the present inventors conversely found that the particle size was larger than 0.2
It has been found that the abrasion resistance decreases when the wear resistance is between 5 and 7.

黒鉛の含有量は銅合金の耐摩耗性及び通電状態での耐摩
耗性の点から1〜50容量%が好ましい。
The content of graphite is preferably 1 to 50% by volume from the viewpoint of the abrasion resistance of the copper alloy and the abrasion resistance in an energized state.

本発明の製造法は黒鉛粒子を分散させた銅合金溶湯を金
型に注湯し、次いでその溶湯を加圧凝固させるものであ
る。
The manufacturing method of the present invention involves pouring a molten copper alloy in which graphite particles are dispersed into a mold, and then solidifying the molten metal under pressure.

銅合金溶湯に黒鉛粒子を分散させることにより所望の含
有量の黒鉛粒子を銅合金中に均一に分散させることがで
きる。
By dispersing graphite particles in the molten copper alloy, a desired content of graphite particles can be uniformly dispersed in the copper alloy.

金型にその溶湯を注湯するとともに、加圧凝固させるこ
とによりその溶湯を急速に冷却できるので、黒鉛粒子の
浮上を防止できる。
By pouring the molten metal into a mold and solidifying it under pressure, the molten metal can be rapidly cooled, thereby preventing graphite particles from floating.

前述のように黒鉛粒子として従来使用されていたものよ
り大きい粒径のものを使用すると、銅合金より軽い黒鉛
粒子は溶湯中に浮上し易くなり均一な分散が得られにく
い。
As mentioned above, if graphite particles with a larger particle size than those conventionally used are used, the graphite particles, which are lighter than the copper alloy, tend to float in the molten metal, making it difficult to obtain uniform dispersion.

しかし、注湯後急速に凝固すれは、その浮上は防止でき
る。
However, if the molten metal solidifies rapidly after pouring, it can be prevented from floating.

本発明の銅合金摺動体の製造法は、特に通電を伴なう摺
動摩耗抵抗が高く、パンクグラフ用摺板としてきわめて
有用であり、特に、粒径0.25〜7關の黒鉛粒子を有
するとき最も通電摩耗抵抗が高い。
The method for producing a copper alloy sliding body of the present invention has particularly high sliding abrasion resistance when energized, and is extremely useful as a sliding plate for puncture graphs. When it has the highest electrical abrasion resistance.

〔発明の実施例〕[Embodiments of the invention]

実施例 I Cu −5%S n −5%Zn 4%Pb−0,8
%Cr、(重量組成)合金を溶解し、これにCuメッキ
した黒鉛粉末を投入添加した。
Example I Cu-5%Sn-5%Zn 4%Pb-0,8
%Cr (weight composition) alloy was melted, and Cu-plated graphite powder was added thereto.

Cuメッキ量はメッキ前後の黒鉛重量変化を測定して求
めたが20重量%であった。
The amount of Cu plating was determined by measuring the change in graphite weight before and after plating and was 20% by weight.

黒鉛の比重を2.0として、合金中に占める黒鉛容積が
20%となるよう必要な黒鉛量を求めて1030℃の溶
湯中に添加した。
Assuming that the specific gravity of graphite is 2.0, the amount of graphite necessary to make the volume of graphite in the alloy 20% was determined and added to the molten metal at 1030°C.

なお黒鉛粒度は4011m〜107nrILの範囲でふ
るいわけして分級した。
The graphite particle size was sieved and classified within the range of 4011m to 107nrIL.

分級された各粒径の黒鉛を銅合金溶湯中に撹拌投入後、
その溶湯を直径50龍の炭素鋼金型に注湯し、ただちに
上面より炭素鋼プランジャーで加圧凝固させ直径50m
m、長さ120mmの鋳塊を得た。
After stirring the classified graphite of each particle size into the molten copper alloy,
The molten metal was poured into a carbon steel mold with a diameter of 50m, and immediately solidified under pressure from the top with a carbon steel plunger to a diameter of 50m.
An ingot with a length of 120 mm was obtained.

この場合の加圧力を6301y/ffl一定とした。The pressing force in this case was kept constant at 6301y/ffl.

このようにして得た鋳塊の縦断面マクロ組識合歓察した
結果、黒鉛粒子は均一に分散していることが確認された
As a result of observing the macrostructure of the longitudinal section of the ingot thus obtained, it was confirmed that the graphite particles were uniformly dispersed.

また顕微鏡組織を観察した結果、黒鉛表面にクロム炭化
物が形成されていた。
Further, as a result of observing the microstructure, chromium carbide was formed on the graphite surface.

この鋳塊より直径10mrn、長さ25m71Lの摩耗
試験片を切り出し、面圧500 ky/i、平均摺動速
度0.2m/sで相手材を炭素鋼545C(硬さHv2
05)として乾式下で往復摺動摩耗試験を行なった。
A wear test piece with a diameter of 10 mrn and a length of 25 m71 L was cut from this ingot, and the mating material was carbon steel 545C (hardness Hv2) at a surface pressure of 500 ky/i and an average sliding speed of 0.2 m/s
05), a reciprocating sliding abrasion test was conducted under dry conditions.

その結果を摩耗寸法(μm)と黒鉛粒径(μm)との関
係にまとめたものが第1図である。
The results are summarized in the relationship between wear dimension (μm) and graphite particle size (μm) in FIG. 1.

本図により粒径200μm未満では摩耗量が多くそれ以
上77nrft以下の範囲で摩耗が顕著に少ないことが
わかる。
This figure shows that when the particle size is less than 200 μm, the amount of wear is large, and when the particle size is larger than that and 77 nrft or less, the wear is significantly less.

実施例 2 実施例2の鋳塊より1OX25X50TLr/L試片を
切り出し、相手材を硬銅線として40krIl/h、押
付荷重3.5kgで乾式通電摩耗試験を行なった。
Example 2 A 1OX25X50TLr/L specimen was cut out from the ingot of Example 2, and a dry current wear test was conducted using a hard copper wire as the mating material at 40 krIl/h and a pressing load of 3.5 kg.

通電は直流20OAである。The current is 20OA DC.

100Ian走行後の摩耗寸法と黒鉛粒径との関係を第
2図に示す。
FIG. 2 shows the relationship between the wear dimension and graphite particle size after running at 100 Ian.

本図より、通電中の摩耗性も粒径0.25〜7.0mm
のとき著しくすぐれていることが明らかである。
From this figure, the abrasion resistance during energization is also 0.25 to 7.0 mm in particle size.
It is clear that it is significantly superior when .

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明の銅合金摺動体の製造法によれは、
銅合金基地中に粒径0.25〜7mmの黒鉛粒子が均一
に分散し、著しく耐摩耗性が高く、特にパンクグラフの
如く摺動しながら通電する摺板として著しくすぐれた通
電耐摩耗性が得られるすぐれた効果が発揮された。
As described above, according to the method for manufacturing a copper alloy sliding body of the present invention,
Graphite particles with a grain size of 0.25 to 7 mm are uniformly dispersed in the copper alloy base, and it has extremely high wear resistance.It has particularly excellent current-carrying wear resistance as a sliding plate that conducts electricity while sliding, such as a Punk graph. The excellent results obtained were demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は銅−5%錫−5%亜鉛−4%Pb
−0,8%クロム(重量組成)合金に容量で20%の
黒鉛を分散させた複合体に関する摩耗量と黒鉛粒径との
関係を示す線図である。
Figures 1 and 2 are copper-5% tin-5% zinc-4% Pb.
FIG. 2 is a diagram showing the relationship between wear amount and graphite particle size for a composite in which 20% graphite by volume is dispersed in a -0.8% chromium (weight composition) alloy.

Claims (1)

【特許請求の範囲】 1 重量で、錫20%以下、亜鉛20%以下、鉛20%
以下及びクロム5%以下含み、50%以上の銅からなる
銅合金の溶湯に、粒径0.25〜77n7rtの黒鉛粒
子を分散させ、前記黒鉛粒子を分散させた前記銅合金の
溶湯を金型に鋳込み、加圧凝固させることを特徴とする
銅合金摺動体の製造法。 2 鞘己黒鉛の含有量が1〜50容量%である特許請求
の範囲第1項に記載の銅合金摺動体の製造法。
[Claims] 1. By weight, 20% or less of tin, 20% or less of zinc, and 20% of lead.
Graphite particles with a particle size of 0.25 to 77n7rt are dispersed in a molten copper alloy containing 5% or less of chromium and 50% or more of copper, and the molten copper alloy in which the graphite particles are dispersed is molded into a mold. A method for manufacturing a copper alloy sliding body, which is characterized by casting and solidifying under pressure. 2. The method for manufacturing a copper alloy sliding body according to claim 1, wherein the content of sheath graphite is 1 to 50% by volume.
JP51132433A 1976-11-05 1976-11-05 Sliding body with excellent wear resistance Expired JPS5942065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51132433A JPS5942065B2 (en) 1976-11-05 1976-11-05 Sliding body with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51132433A JPS5942065B2 (en) 1976-11-05 1976-11-05 Sliding body with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPS5357102A JPS5357102A (en) 1978-05-24
JPS5942065B2 true JPS5942065B2 (en) 1984-10-12

Family

ID=15081249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51132433A Expired JPS5942065B2 (en) 1976-11-05 1976-11-05 Sliding body with excellent wear resistance

Country Status (1)

Country Link
JP (1) JPS5942065B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976841A (en) * 1983-09-22 1984-05-02 Hitachi Chem Co Ltd Sliding material
CN108515170A (en) * 2018-03-29 2018-09-11 大同新成新材料股份有限公司 A kind of preparation process of novel high-performance pantograph material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49125225A (en) * 1973-04-06 1974-11-30
JPS5032035A (en) * 1973-07-25 1975-03-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49125225A (en) * 1973-04-06 1974-11-30
JPS5032035A (en) * 1973-07-25 1975-03-28

Also Published As

Publication number Publication date
JPS5357102A (en) 1978-05-24

Similar Documents

Publication Publication Date Title
KR102309320B1 (en) Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
US4084669A (en) Composite collector
JPH0120215B2 (en)
KR20200083377A (en) Bronze alloy and sliding member using the bronze alloy
JPH07166278A (en) Coppery sliding material and production thereof
JPS5942065B2 (en) Sliding body with excellent wear resistance
JPS6316456B2 (en)
Tokisue et al. Friction and wear properties of aluminum-particulate graphite composites
JPH029099B2 (en)
JPH06234061A (en) Pan for current collector
CN113322398A (en) Wear-resistant tin-lead bronze alloy material for engineering truck
JP2001107161A (en) Method for producing copper series wear resistant sintered alloy for collecting electricity and sliding
Ahmed et al. Tribological properties of cast copper-SiC-Graphite hybrid composites
JPS6316455B2 (en)
JPS5837372B2 (en) Copper alloy for sliding current collector
JP2511225B2 (en) Manufacturing method of wear-resistant sintered alloy for sliding current collector
JPS6138252B2 (en)
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPS5832910B2 (en) Current collector slider
JPS6140027B2 (en)
KR20000031027A (en) Composition for a friction plate of pantograph and preparation of the plate using the same
JPH0665734B2 (en) Metal-based composite material with excellent friction and wear characteristics
JPS631385B2 (en)
JP2567960B2 (en) Manufacturing method of ferrous wear-resistant sintered alloy for current collecting sliding
JP2003073758A (en) Powder composition for sliding member, and sliding member