JP2003073758A - Powder composition for sliding member, and sliding member - Google Patents

Powder composition for sliding member, and sliding member

Info

Publication number
JP2003073758A
JP2003073758A JP2001269209A JP2001269209A JP2003073758A JP 2003073758 A JP2003073758 A JP 2003073758A JP 2001269209 A JP2001269209 A JP 2001269209A JP 2001269209 A JP2001269209 A JP 2001269209A JP 2003073758 A JP2003073758 A JP 2003073758A
Authority
JP
Japan
Prior art keywords
powder
alloy
sliding member
powder composition
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001269209A
Other languages
Japanese (ja)
Inventor
Kazunari Narita
一就 成田
Kenji Watabe
健司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001269209A priority Critical patent/JP2003073758A/en
Publication of JP2003073758A publication Critical patent/JP2003073758A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sliding member, which can be manufactured by means of sintering at a comparatively low temperature, and has reduced coefficient of friction, improved corrosion resistance, and high thermal conductivity, and facilitates removal of generated frictional heat. SOLUTION: This powder composition includes a powder of a matrix material blended with a powder of a low frictional alloy. The above matrix material consisting of Cu, or a Cu alloy (% and parts indicate weight) including 30% or less of Cu substituted by one or two of Sn and Zn, occupies 50-99 parts, and the low friction alloy consisting of 66-81% one, two, or three of Fe, Ni, and Co, 18-30% Mo, and 1-4% S, occupies 50-1 parts, in the above powder composition. The sliding member is obtained by means of molding the powder composition into a desired shape of the member, and sintering it at 800-950 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、摺動材料用の粉末
組成物と、その粉末組成物を成形し焼結してなる摺動部
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder composition for a sliding material and a sliding member obtained by molding and sintering the powder composition.

【0002】[0002]

【従来の技術】種々の機械部品、たとえば自動車用の部
品であって摺動部分を有するものは、摺動面におけるメ
カニックロスを低減してエネルギーの有効利用を図るた
めに、摩擦係数を小さくすることが望まれる。
2. Description of the Related Art Various mechanical parts, for example, parts for automobiles having a sliding portion, have a small friction coefficient in order to reduce mechanical loss on a sliding surface and effectively utilize energy. Is desired.

【0003】そのような部分に使用する摺動材料であっ
て、摩擦係数の低い摺動面を与える合金として、出願人
は、重量%で、Mo:18〜30%、およびS:0.5
〜4%を含有し、残部がFeおよび不可避の不純物から
なる組成を有するFeMoS合金のマトリクス中に、M
o−S系やFe−Mo−S系の化合物であって、固体潤
滑作用を示す物質の相(以下、両者をあわせて「MoS
相」と呼ぶ)を分散形成させたものが有用であることを
見出し、この合金粉末の焼結体を利用することを提案し
た(特願平11−246142)。
As a sliding material used for such a part, which is an alloy giving a sliding surface having a low coefficient of friction, the applicant of the present invention has Mo: 18 to 30% by weight, and S: 0.5.
In a matrix of FeMoS alloy having a composition of ~ 4% and the balance being Fe and unavoidable impurities.
An o-S-based or Fe-Mo-S-based compound, which is a phase of a substance exhibiting a solid lubricating action (hereinafter, both are collectively referred to as "MoS
It has been found that a dispersion of a "phase") is useful, and it has been proposed to utilize a sintered body of this alloy powder (Japanese Patent Application No. 11-246142).

【0004】続いて出願人は、上記のFeMoS合金焼
結体を鋼製の裏金層の上に設けた、鋼裏金付きの摺動材
料を確立して、これも開示した(特願2000−346
532)。この鋼裏金付き摺動材料のFeMoS合金焼
結体は、その30重量%までを、Cuおよび(または)
Snで置き換えられるということも、あわせて開示し
た。
[0004] Subsequently, the applicant established a sliding material with a steel back metal, in which the above FeMoS alloy sintered body was provided on a steel back metal layer, and disclosed this (Japanese Patent Application No. 2000-346).
532). The FeMoS alloy sintered body of the sliding material with the steel backing contains up to 30% by weight of Cu and / or
It was also disclosed that it is replaced by Sn.

【0005】その後、FeMoS合金焼結体において、
Feの一部をNiおよびCoの1種または2種で置き換
えることができ、それによって、FeMoS合金の欠点
である、耐食性の弱さが改善されることを見出して、こ
れもすでに提案した(特願2000−353311)。
FeMoS合金にはまた、使用環境によってはその中の
FeとSとが反応して硫化鉄を形成し、そのためにMo
S相の生成が妨げられて潤滑作用が損なわれるという懸
念があるが、それもNiおよび(または)Coで置き換
えることにより緩和される。
Then, in the FeMoS alloy sintered body,
We have found that a part of Fe can be replaced by one or two of Ni and Co, which improves the weakness of corrosion resistance, which is a drawback of the FeMoS alloy, and has already proposed it (special feature). Wish 2000-35311).
In the FeMoS alloy, Fe and S in the FeMoS alloy may react with each other to form iron sulfide depending on the use environment.
There is a concern that the generation of the S phase will be hindered and the lubrication effect will be impaired, but this can also be mitigated by replacing with Ni and / or Co.

【0006】一方、CuまたはCu−Sn合金をマトリ
クス材料とし、これにMoSを、たとえば5%程度配
合した粉末を焼結してなる、低摩擦合金が知られてい
る。同じく、Cu−Sn合金をマトリクスとし、硬質物
質の粒子をBiとともに含有させた摺動材料も知られて
いる(特開2001−81523)。発明者らは、この
銅系マトリクスすなわちCuまたはCu−Sn合金のマ
トリクスと、上記のFe(Ni,Co)MoS合金とを
組み合わせた粉末焼結体を着想し、試作した結果、これ
が、より低い摩擦係数を示し、耐食性もすぐれているこ
とを見出した。
On the other hand, a low-friction alloy is known, which comprises Cu or Cu-Sn alloy as a matrix material and sinters a powder in which MoS 2 is mixed, for example, at about 5%. Similarly, a sliding material is known in which Cu-Sn alloy is used as a matrix and particles of a hard substance are contained together with Bi (Japanese Patent Laid-Open No. 2001-81523). The inventors of the present invention have invented a powder sintered body in which this copper-based matrix, that is, a matrix of Cu or Cu—Sn alloy, and the above Fe (Ni, Co) MoS alloy are combined and made a prototype, and as a result, this is lower. The coefficient of friction was shown and it was found that the corrosion resistance was also excellent.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
した発明者らが得た新知見を活用し、銅系マトリクスと
Fe(Ni,Co)MoS合金とを組み合わせてなり、
比較的低温で焼結して摺動材料とすることができる粉末
組成物を提供することにある。この粉末組成物を使用し
て製造した、低減された摩擦係数と改善された耐食性と
をもち、熱伝導率が高い摺動材料を提供することも、本
発明の目的に含まれる。
The object of the present invention is to combine the copper-based matrix and the Fe (Ni, Co) MoS alloy by utilizing the new knowledge obtained by the inventors.
It is to provide a powder composition that can be sintered at a relatively low temperature to form a sliding material. It is also an object of the present invention to provide a sliding material having a reduced coefficient of friction and improved corrosion resistance and a high thermal conductivity produced using this powder composition.

【0008】[0008]

【課題を解決するための手段】本発明の摺動部材用の粉
末組成物は、下記のマトリクス材料の粉末と低摩擦合金
の粉末とを配合してなる、粉末組成物である(%および
部は重量)。 (マトリクス材料) Cu、またはCuの30%以内を
SnおよびZnの1種または2種で置き換えたもの 5
0〜99部 (低摩擦合金) Fe、NiおよびCoから選んだ1
種、2種または3種:66〜81%、Mo:18〜30
%およびS:1〜4%からなる合金 50〜1部
A powder composition for a sliding member of the present invention is a powder composition (% and part) which is prepared by blending the following matrix material powder and low friction alloy powder. Is the weight). (Matrix material) Cu, or one in which 30% or less of Cu is replaced by one or two of Sn and Zn 5
0 to 99 parts (low friction alloy) 1 selected from Fe, Ni and Co
Type, 2 types or 3 types: 66 to 81%, Mo: 18 to 30
% And S: alloy consisting of 1 to 4% 50 to 1 part

【0009】本発明の摺動部材は、上記した組成の粉末
組成物を部材形状に成形し、焼結してなるものである。
The sliding member of the present invention is formed by molding the powder composition having the above composition into a member shape and sintering it.

【0010】[0010]

【発明の実施形態】本発明の摺動部材用の粉末組成物に
おいて、マトリクス材料の粉末と低摩擦合金の粉末との
比率は、上記のように、重量で、前者が50〜99部、
後者が50〜1部の範囲から選ぶ。一般に、低摩擦合金
の粉末が多いほど摩擦係数が低いという効果が確実に得
られ、マトリクス材料の粉末が多ければ、焼結温度を低
くすることができ、かつ、焼結によって得た摺動部材の
強度その他の物性はすぐれたものになる。焼結部材の用
途と、所望する低摩擦効果の程度に応じて両者の比率を
決定すべきことは、もちろんである。
BEST MODE FOR CARRYING OUT THE INVENTION In the powder composition for a sliding member of the present invention, the ratio of the powder of the matrix material to the powder of the low friction alloy is 50 to 99 parts by weight in terms of weight, as described above.
The latter is selected from the range of 50 to 1 part. In general, the effect that the friction coefficient is low is obtained more as the powder of the low friction alloy is larger, and the sintering temperature can be made lower if the powder of the matrix material is larger, and the sliding member obtained by the sintering is obtained. The strength and other physical properties of are excellent. Of course, the ratio of the two should be determined according to the application of the sintered member and the desired degree of low friction effect.

【0011】本発明で、マトリクス用粉末の合金組成を
前記のように限定した理由は、つぎのとおりである。
The reason why the alloy composition of the matrix powder is limited as described above in the present invention is as follows.

【0012】Cu、またはCuの30%以内をSnおよ
びZnの1種または2種で置き換えたもの Cuの一部をSnまたはZnで置き換えることにより、
いっそう低い温度で焼結が行なえる。一方、焼結によっ
て得た部材の機械的強度は向上する。しかし、摩擦係数
は上昇する傾向を見せるので、重量で30%を置き換え
の限界として定めた。
Cu, or Cu with 30% or less replaced by one or two of Sn and Zn By substituting a part of Cu by Sn or Zn,
Sintering can be performed at a lower temperature. On the other hand, the mechanical strength of the member obtained by sintering is improved. However, since the friction coefficient tends to increase, 30% by weight was set as the limit of replacement.

【0013】低摩擦合金粉末の組成を前記のように限定
した理由は、つぎのとおりである。
The reason why the composition of the low friction alloy powder is limited as described above is as follows.

【0014】Fe,NiおよびCoから選んだ1種また
は2種以上:66〜81% Fe,NiおよびCoの量(2種または3種併用の場合
は合計量)が、重量で66%に満たないと、耐食性の発
現が不十分であり、またCr含有鉄合金またはC含有鉄
合金と配合使用したときに、CrやCとMoS相との反
応が十分に抑制されず、上記した効果が低い。Fe,N
iおよびCoの添加効果は量の増大に伴って大きくなる
が、80%を超えると飽和してくるし、焼結用粉末とし
ての適用可能な範囲が限られてくるから、あまり多量に
使用することは得策でない。NiおよびCo、とくに後
者は、材料としてはやや高価であるから、コストを押し
上げる要因にもなる。そこで、66〜81%の範囲を定
めた。
One or more selected from Fe, Ni and Co: 66 to 81% The amount of Fe, Ni and Co (in the case of using two or three kinds in combination, the total amount) is less than 66% by weight. If it is not, the corrosion resistance is not sufficiently expressed, and when compounded with a Cr-containing iron alloy or a C-containing iron alloy, the reaction between Cr and C and the MoS phase is not sufficiently suppressed, and the above effects are low. . Fe, N
The effect of adding i and Co increases as the amount increases, but when it exceeds 80%, it becomes saturated and the applicable range as a powder for sintering is limited. Therefore, use too much amount. Is not a good idea. Ni and Co, and particularly the latter, are slightly expensive as materials, and thus also contribute to cost increase. Therefore, the range of 66 to 81% is set.

【0015】Mo:18〜30% Mo量が18%に達しないと、S成分が十分に存在して
も、MoS相の形成が不十分になる。しかし、30%を
超える多量を添加しても、MoS相の生成量は飽和し、
潤滑性のそれ以上の向上は望めない。Moは高価な材料
であるから、過大な量を添加することは直ちにコスト増
に結びつく。好ましい範囲は、20〜28%である。
Mo: 18-30% If the amount of Mo does not reach 18%, the MoS phase is not sufficiently formed even if the S component is sufficiently present. However, even if a large amount exceeding 30% is added, the amount of MoS phase produced is saturated,
Further improvement of lubricity cannot be expected. Since Mo is an expensive material, adding an excessive amount immediately leads to an increase in cost. A preferred range is 20 to 28%.

【0016】S:1〜4% S量が1%未満の少量では、MoS相の形成が十分に行
なわれず、摩擦係数低減の目的が達成できない。4%を
超える多量になると、FeSのような潤滑性に寄与しな
い硫化物の生成を招き、かえって摩擦係数を高めること
になる。また、このような高いS量となると、合金の溶
製時にSを均一に分布させることが困難になる。好まし
い範囲は、1.5〜3.0%である。
S: 1-4% If the S content is less than 1%, the MoS phase is not sufficiently formed, and the purpose of reducing the friction coefficient cannot be achieved. If the amount exceeds 4%, sulfides such as FeS that do not contribute to lubricity are produced, and the friction coefficient is increased. Further, when such a high S content is obtained, it becomes difficult to uniformly distribute S during melting of the alloy. A preferred range is 1.5 to 3.0%.

【0017】低摩擦合金の粉末の製造には、噴霧法が適
切であり、噴霧後の冷却は急冷が好ましい。急冷によ
り、FeSの生成が抑制された状態で、MoS相が粉末
の粒子中に分散析出する。粉末の粒度は、10〜250
μm程度が好適である。あまり大きい粒子は焼結に不都
合であり、一方、あまり微細であると、焼結のときに拡
散が容易であって、好ましくない反応が起こりやすくな
る。
A spraying method is suitable for producing the powder of the low-friction alloy, and rapid cooling is preferable for cooling after spraying. Due to the rapid cooling, the MoS phase is dispersed and precipitated in the particles of the powder while the generation of FeS is suppressed. The particle size of the powder is 10 to 250
About μm is preferable. Particles that are too large are not suitable for sintering, while particles that are too fine tend to diffuse easily during sintering, which tends to cause undesirable reactions.

【0018】粉末の製造法としては、もちろん噴霧法に
限らず、インゴットの粉砕によることも可能である。そ
のほか、回転電極法と呼ばれる、高速で回転する合金を
陽極とし、タングステンなどの陰極との間にアークを発
生させて陽極を部分的に溶融させ、飛散した微細な溶滴
を急冷する技術や、ロール急冷法とかスプラット急冷法
と呼ばれる、合金の溶湯を急速回転するロールで急冷し
てリボン状またはフレーク状にした後、粉砕して粉末を
得る技術なども利用できる。主としてコスト面で、また
製品粉末の粒度や形状の点からも、溶湯噴霧法、とりわ
け水噴霧による粉末製造法が有利である。
The method for producing the powder is not limited to the spraying method, and it is also possible to pulverize the ingot. In addition, a technique called a rotating electrode method, which uses an alloy that rotates at high speed as an anode, generates an arc between a cathode such as tungsten to partially melt the anode, and rapidly cools fine droplets that have scattered, A technique called a roll quenching method or a splat quenching method, in which a molten alloy is rapidly cooled into a ribbon or flake by a rapidly rotating roll and then pulverized to obtain a powder, can be used. The melt spraying method, especially the powder manufacturing method by water spraying, is advantageous mainly in terms of cost and in terms of the particle size and shape of the product powder.

【0019】粉末混合物の成形および焼結は、既知の技
術に従って実施すればよい。焼結の温度は、800〜9
50℃が適切である。このような比較的低い焼結温度を
採用できることは、本発明のひとつの利点である。
Molding and sintering of the powder mixture may be carried out according to known techniques. Sintering temperature is 800-9
50 ° C is suitable. The ability to employ such relatively low sintering temperatures is an advantage of the present invention.

【0020】[0020]

【実施例】以下の実施例において使用した材料は、下記
のとおりである。 (マトリクス合金)Cu−10%Snの合金の溶湯を水
噴霧して得た粉末であって、平均粒径45μmのもの。 (低摩擦合金粉末)下記の成分の合金を溶製し、溶湯を
水噴霧して粉末化し、60メッシュ(250μm)以下
の微細粉を還元性雰囲気下に焼鈍して、5種の合金粉末
を得た。低摩擦合金 Mo Ni Co S Fe 実施例A 27.0 − − 2.6 70.4 B 21.0 43.0 − 3.0 33.0 C 21.0 − 43.0 3.0 33.0 D 26.0 − 71.5 2.5 − E 27.0 20.3 20.0 2.7 30.0 比較例F 15.0 − 50.0 3.0 32.0
EXAMPLES Materials used in the following examples are as follows. (Matrix alloy) A powder obtained by spraying a molten alloy of Cu-10% Sn with water, having an average particle size of 45 μm. (Low-friction alloy powder) Alloys of the following components are melted, the molten metal is sprayed with water to be powdered, and fine powder of 60 mesh (250 μm) or less is annealed in a reducing atmosphere to obtain five alloy powders. Obtained. Low Friction Alloy Mo Ni Co S Fe Example A 27.0--2.6 70.4 B 21.0 43.0-3.0 33.0 C 21.0-43.0 3.0 33.0 D 26.0-71.5 2.5-E 27.0 20.3 20.0 2.7 30.0 Comparative example F 15.0-50.0 3.0 32.0

【0021】[実施例1]マトリクス合金の粉末80部
と低摩擦合金の粉末10部とを配合し、潤滑剤としてス
テアリン酸亜鉛を1部添加して、Vブレンダーで混合し
た。粉末混合物を6.5トン/cmの圧力でプレスして
圧粉成形体とし、500℃×2時間の脱脂を行なった
後、850℃×1時間の焼結を行なった。比較のため、
常用の固体潤滑剤MoS(電解粉)を使用した場合に
ついても、焼結体を製造した。
[Example 1] 80 parts of a powder of a matrix alloy and 10 parts of a powder of a low friction alloy were blended, 1 part of zinc stearate was added as a lubricant, and they were mixed with a V blender. The powder mixture was pressed at a pressure of 6.5 ton / cm 2 to obtain a powder compact, which was degreased at 500 ° C for 2 hours and then sintered at 850 ° C for 1 hour. For comparison,
Sintered bodies were also produced when the usual solid lubricant MoS 2 (electrolytic powder) was used.

【0022】各焼結体について、ピンオンディスク摩耗
試験を行なって、摩擦係数を算出した。試験条件は、つ
ぎのとおりである。 相手材:マルテンサイト系ステンレス鋼SUS440C溶製材 焼入れ・焼戻し後の硬さHRC60 表面仕上げ1.5μmRa 摺動速度:0.5m/秒 荷重:5kgf 試験温度:室温 摺動距離:1000m 潤滑:なし 焼結材をディスク型の試験片とし、相手材をピン形状に
して組み合わせた。ピンは2本平行に配置し、ディスク
面に接触させた。
A pin-on-disc wear test was performed on each sintered body to calculate the friction coefficient. The test conditions are as follows. Counterpart material: Martensitic stainless steel SUS440C Ingot material Hardness after quenching / tempering HRC60 Surface finish 1.5 μmRa Sliding speed: 0.5 m / sec Load: 5 kgf Test temperature: Room temperature Sliding distance: 1000 m Lubrication: None Sintered The material was used as a disk type test piece, and the mating material was made into a pin shape and combined. Two pins were arranged in parallel and brought into contact with the disk surface.

【0023】結果を下に示す。低摩擦合金 A B C D E F 摩擦係数 0.10 0.15 0.13 0.12 0.17 0.32The results are shown below. Low friction alloy A B C D E F Friction coefficient 0.10 0.15 0.13 0.12 0.17 0.32

【0024】[実施例2]低摩擦合金の粉末Aを使用
し、マトリクス材料に種々の割合で配合して、実施例1
と同様の条件で焼結体を製造した。比較のため、低摩擦
合金を配合しない場合についても試験した。測定された
摩擦係数を、下に示す。
[Example 2] Powder A of a low friction alloy was used and mixed in various proportions in a matrix material, and Example 1 was used.
A sintered body was manufactured under the same conditions as in. For comparison, a test was also performed without the low friction alloy. The measured coefficient of friction is shown below.

【0025】合金粉末(部) 0 0.5 1 5 10 20 30 摩擦係数 0.80 0.50 0.20 0.10 0.10 0.15 0.20 40 50 60 70 80 90 100 0.25 0.30 0.50 0.55 0.62 0.73 0.80 Alloy powder (parts) 0 0.5 1 5 10 20 30 30 Friction coefficient 0.80 0.50 0.20 0.10 0.10 0.15 0.20 40 50 50 60 70 80 80 90 100 0.25 0.30 0.50 0.55 0.62 0.73 0.80

【0026】[0026]

【発明の効果】本発明の摺動材料用の粉末組成物は、プ
レス成形により容易に成形して高い充填密度の圧粉成形
体を製造することができ、この圧粉成形体は、800〜
950℃という比較的低い温度で焼結して、摺動部材と
することができる。得られた摺動部材は、摩擦係数が低
く、かつ耐摩耗性が高いばかりでなく、耐食性も優れて
いる。マトリクス材料として、銅系すなわち、Cuまた
はCuの30%以内をSnおよびZnの1種または2種
で置き換えたものを使用したから、この摺動部材は熱伝
導率が高く、摩擦により発生する熱を放散させるのに好
都合である。
The powder composition for a sliding material of the present invention can be easily molded by press molding to produce a powder compact having a high packing density.
The sliding member can be obtained by sintering at a relatively low temperature of 950 ° C. The obtained sliding member has not only a low friction coefficient and high wear resistance, but also excellent corrosion resistance. As the matrix material, a copper-based material, that is, Cu or a material in which 30% or less of Cu is replaced by one or two of Sn and Zn, is used. Therefore, this sliding member has high thermal conductivity and heat generated by friction. It is convenient to dissipate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記のマトリクス材料の粉末と低摩擦合
金の粉末とを配合してなる、摺動材料用の粉末組成物
(%および部は重量)。 (マトリクス材料) Cu、またはCuの30%以内を
SnおよびZnの1種または2種で置き換えたもの 5
0〜99部 (低摩擦合金) Fe、NiおよびCoから選んだ1
種、2種または3種:66〜81%、Mo:18〜30
%およびS:1〜4%からなる合金 50〜1部
1. A powder composition (% and parts by weight) for a sliding material, which comprises a powder of the following matrix material and a powder of a low friction alloy. (Matrix material) Cu, or one in which 30% or less of Cu is replaced by one or two of Sn and Zn 5
0 to 99 parts (low friction alloy) 1 selected from Fe, Ni and Co
Type, 2 types or 3 types: 66 to 81%, Mo: 18 to 30
% And S: alloy consisting of 1 to 4% 50 to 1 part
【請求項2】 請求項1に記載の粉末組成物を成形し、
焼結してなる摺動部材。
2. Molding the powder composition according to claim 1,
Sliding member made by sintering.
JP2001269209A 2001-09-05 2001-09-05 Powder composition for sliding member, and sliding member Pending JP2003073758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269209A JP2003073758A (en) 2001-09-05 2001-09-05 Powder composition for sliding member, and sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269209A JP2003073758A (en) 2001-09-05 2001-09-05 Powder composition for sliding member, and sliding member

Publications (1)

Publication Number Publication Date
JP2003073758A true JP2003073758A (en) 2003-03-12

Family

ID=19095068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269209A Pending JP2003073758A (en) 2001-09-05 2001-09-05 Powder composition for sliding member, and sliding member

Country Status (1)

Country Link
JP (1) JP2003073758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016680A (en) * 2004-07-05 2006-01-19 Tokai Carbon Co Ltd Copper-based sintered friction material
WO2011132703A1 (en) 2010-04-23 2011-10-27 株式会社栗本鐵工所 Copper alloy for sliding member
JP2011214129A (en) * 2010-03-31 2011-10-27 Fuji Dies Kk Sintered sliding member of configuration fixed to base metal and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016680A (en) * 2004-07-05 2006-01-19 Tokai Carbon Co Ltd Copper-based sintered friction material
JP2011214129A (en) * 2010-03-31 2011-10-27 Fuji Dies Kk Sintered sliding member of configuration fixed to base metal and method of manufacturing the same
WO2011132703A1 (en) 2010-04-23 2011-10-27 株式会社栗本鐵工所 Copper alloy for sliding member
JPWO2011132703A1 (en) * 2010-04-23 2013-07-18 株式会社栗本鐵工所 Copper alloy for sliding material
US8906129B2 (en) 2010-04-23 2014-12-09 Kurimoto, Ltd. Copper alloy for sliding materials
JP5902615B2 (en) * 2010-04-23 2016-04-13 株式会社栗本鐵工所 Copper alloy for sliding material

Similar Documents

Publication Publication Date Title
JP6444379B2 (en) Copper alloy, use of copper alloy, bearing having copper alloy, and method of manufacturing bearing made of copper alloy
KR101265391B1 (en) Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS
JPH0120215B2 (en)
JP2001500567A (en) Molding materials, especially materials for the powder metallurgical production of highly wear-resistant valve seat rings or valve guides
KR0149739B1 (en) Sintered contact component
JP3292445B2 (en) Sliding material with excellent wear resistance
JPH05179232A (en) Sintered metallic friction material for brake
JP2003073758A (en) Powder composition for sliding member, and sliding member
JP3339780B2 (en) Sliding material with excellent wear resistance
JP3869853B2 (en) Iron-based powder containing Mo, P, C
JPH029099B2 (en)
JPS6086237A (en) Cu-alloy for slide member
JP3753981B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding properties
JP2001032001A (en) Self-lubricating metal and its production
JP2005220385A (en) Cu-BASED ALLOY FOR SLIDING MEMBER
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS60121250A (en) Sintered al alloy for friction and sliding members
JP2511225B2 (en) Manufacturing method of wear-resistant sintered alloy for sliding current collector
JPS5852553B2 (en) Manufacturing method for iron-based sliding parts containing free graphite
JPH0428802A (en) Production of sintered sliding material
JPH0676648B2 (en) Sintered tool steel
JPH07247488A (en) Self-lubricating composite material
JPH0665734B2 (en) Metal-based composite material with excellent friction and wear characteristics
JP3763605B2 (en) Sintered alloy material for valve seats
JP2002097556A (en) Powder alloy for low friction sintered body, and low friction sintered body