JP2001500567A - Molding materials, especially materials for the powder metallurgical production of highly wear-resistant valve seat rings or valve guides - Google Patents

Molding materials, especially materials for the powder metallurgical production of highly wear-resistant valve seat rings or valve guides

Info

Publication number
JP2001500567A
JP2001500567A JP09516110A JP51611097A JP2001500567A JP 2001500567 A JP2001500567 A JP 2001500567A JP 09516110 A JP09516110 A JP 09516110A JP 51611097 A JP51611097 A JP 51611097A JP 2001500567 A JP2001500567 A JP 2001500567A
Authority
JP
Japan
Prior art keywords
weight
powder
amount
material according
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP09516110A
Other languages
Japanese (ja)
Other versions
JP4272706B2 (en
Inventor
ケーラー エッケハルト
ダラル キリット
ヴイ ナドカルニ エニール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCM Metal Products Inc
Original Assignee
SCM Metal Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCM Metal Products Inc filed Critical SCM Metal Products Inc
Publication of JP2001500567A publication Critical patent/JP2001500567A/en
Application granted granted Critical
Publication of JP4272706B2 publication Critical patent/JP4272706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Abstract

(57)【要約】 殊に高い耐摩耗性および耐蝕性ならびに高い熱伝導率を有する弁座環または弁案内部材を少なくとも50重量%の銅含量を有する粉末混合物から粉末冶金的に製造するための材料;出発粉末混合物は、50〜90重量%の量の、Cu含量を有する基礎粉末および10〜50重量%の量の、モリブデンを含有する粉末状合金添加剤からなり、この場合基礎粉末は、0.1〜1.1重量%のAl23含量を有する、Al23により分散固化された銅粉末であり、これは、Cu−Al溶融液を噴霧しかつ引続き酸化雰囲気中で加熱することに製造されたものである。更に、本発明の対象は、殊に高い熱伝導率を有する耐摩耗性および耐蝕性の弁座環または弁案内部材を粉末冶金的に製造するための前記種類の分散固化された粉末の使用ならびにこの種の弁座環または弁案内部材の製造法である。 (57) Abstract: A powder metallurgical process for producing valve seat rings or valve guides having particularly high wear and corrosion resistance and high thermal conductivity from powder mixtures having a copper content of at least 50% by weight. Materials; the starting powder mixture consists of a base powder with a Cu content in an amount of 50-90% by weight and a powdered alloy additive containing molybdenum in an amount of 10-50% by weight, wherein the base powder comprises: Al 2 O 3 dispersed and solidified copper powder having an Al 2 O 3 content of 0.1 to 1.1% by weight, which is sprayed with a Cu—Al melt and subsequently heated in an oxidizing atmosphere It is manufactured to be. Furthermore, the object of the present invention is the use of dispersed solidified powders of the above type for the powder metallurgical production of wear- and corrosion-resistant valve seat rings or valve guides, in particular with high thermal conductivity, and This is a method of manufacturing such a valve seat ring or valve guide member.

Description

【発明の詳細な説明】 成形材料、殊に高い耐摩耗性を有する弁座環または弁案内部材を粉末冶金的に製 造するための材料 本発明は、高い熱伝導性ならびに高い耐摩耗性および耐腐食性を有する成形材 料を、少なくとも約50重量%の銅含量を有する粉末混合物の圧縮、焼結および 場合によっては後圧縮によって粉末冶金的に製造するための材料に関する。 この種の焼結材料は、熱いガスまたはガス混合物に晒されている成形部材のた め、例えば一方で高い機械的負荷、他方で同時に熱い燃焼ガスの作用に晒されて いる内燃機関用の弁座環および弁座案内部材の製造のために必要とされている。 従って、この種の焼結材料は、耐摩耗性および耐蝕性であるだけでなく、高い熱 伝導性をも有する材料から製造されていなければならない。この場合、熱伝導性 は、ますます重要な意味を持っている。それというのも、弁に対する温度水準は 、排出の理由から化学量論的混合物の必要とされる拡充によって上昇され、かつ よりいっそう高い出力のエンジンに対して持続傾向が認められうるからである。 弁座環が挿入されている、弁の頭部とシリンダー頭部との間の温度差を弁内で の熱伝達によって減少させることは、公知である。この目的のために、弁軸には 、中空孔が備えられており、弁軸は冷却される。費用よび重量の理由から、弁軸 の直径は、最近、多くの場合には、弁軸に中空孔を備えることがもはや不可能で あるような程度に縮小されており、したがって中空穿孔されかつ例えばナトリウ ムが充填された弁は、将来的にはもはや不可能なものとなる。従って、こうして 熱を迅速に導出し、温度水準を減少させ、摩擦比を改善し、かつ系を技術的かつ 費用的に改善するために、弁座、殊に弁座環を製造する材料の熱伝導性を改善す ることが努力されている。 注入された銅を有する鉄を基礎とする焼結材料からなる粉末冶金的に製造され た成形部材は、公知であり、この成形部材は、弁座環または弁案内部材として使 用するために十分な耐摩耗性を有するが、その熱伝導性は、銅含量を有しない焼 結材料と比較して十分な高さを持っていない。例えば、ドイツ連邦共和国特許第 2114160号明細書の記載から、炭素および鉛ならびに別の合金成分が添加 されている、鉄を基礎とする材料からなる焼結材料は、公知である。この材料か ら製造された弁座環は、実際に十分な耐熱性および耐摩耗性を有しているが、し かし、その熱伝導性は、本明細書中で殊に現在の内燃機関の排出範囲内で懸案と なっている問題を解決するためには十分なものではない。 PCT-EP89/01343の記載から、耐摩耗性が高い際に高 められた熱伝導性を有する弁座環を粉末冶金的に製造するための焼結材料は、公 知である。焼結材料は、銅約70〜100重量%の銅含量および1つの合金含量 を有する基礎金属粉末からなる。この合金含量は、例えばコバルト1〜3重量% または硬質相としての基礎金属粉末が混合されている高合金の添加金属粉末から なり、この場合この含量は、最大30重量%である。 この種の材料を用いて実施される試験により、この材料は、弁座環の完成、殊 に内燃機関の排出範囲にとっては不十分な耐摩耗性を有することが判明した。こ のことは、実際に、150μmの最大粒径を有する硬質材料の埋封によるマトリ ックスの強化によって材料の硬度を上昇させることができ、ひいては弁座環の耐 摩耗性も上昇させることできるが、しかし、別の側での対向体の比較的に大きく 角のとがった埋封物によって著しく摩耗されることに帰因する。従って、弁座環 の耐摩耗性は僅かであり、他方で、系の永続的な機能にとって重要な全体的な耐 摩耗性を劣化させた。 本発明の課題は、殊に耐摩耗性が著しく高くかつ同時にこの目的のために利用 される公知の焼結材料と比較して著しく高い熱伝導性を有する弁座環または弁案 内部材を粉末冶金的に製造するための焼結材料を得ることであった。 本発明は、少なくとも約50重量%の銅含量を有する出発粉末混合物の圧縮、 焼結および場合によっては 後圧縮により、高い耐摩耗性および耐蝕性ならびに高い熱伝導率を有する成形部 材を粉末冶金的に製造するため、殊に内燃機関用の弁座環または弁案内部材を製 造するための材料から出発し、出発粉末混合物が50〜90重量%の量の、Cu 含量を有する基礎粉末および10〜50重量%の量の、モリブデンを含有する粉 末状合金添加剤からなり、かつ合金粉末が分散固化された銅粉末であることにあ る。有利に、分散固化された銅粉末は、Al230.1〜1.1重量%および不 純物0.5重量%を含有するAl23によって固化されており、Cu−Al溶融 液を噴霧しかつ引続きアルミニウムの選択的な酸化のために酸化雰囲気中で加熱 することに製造される。 本発明は、一定の方法で特にAl23を用いて分散固化されたCu−Al23 粉末を形成部材の粉末冶金的な製造のための材料として使用することにより、一 面で高い耐摩耗性および耐腐食性を有し、他面、高い熱伝導率を有する製品を生 じるという意外な認識に基づくものであり、したがってこの材料は、殊に内燃機 関用の弁座環または弁案内部材の製造に適している。 本発明の使用目的には、Al23が分散固化されたCu粉末を有するもののみ が適当であり、この場合この粉末は、例えば米国特許第3779714号明細書 またはドイツ連邦共和国特許第2355122号明 細書の記載から公知の方法により、Cu−Al溶融液の噴霧により製造されたC u−Al合金化された粉末を内部酸化しかつ引続き酸化雰囲気中で加熱すること によって製造されたものであり、他方、内部酸化が明らかに排除されている、英 国特許第2083500号明細書に記載の別の方法により製造された分散固化さ れた金属粉末は、不適当なものである。本出願人としては、内部酸化により製造 されたCu−Al23粉末の場合に銅マトリックス中に分散されたAl23粒子 間の距離が3〜12nmの程度の大きさであり、他方、内部酸化なしに製造され た粉末の場合には、約40μmであるということに帰結した。成形部材、殊に弁 座環または弁案内部材を粉末冶金的に製造するための基礎粉末として分散固化さ れた金属を本発明により使用することについては、前記刊行物には、何等の指摘 もない。 本発明の1つの好ましい実施態様によれば、合金添加剤がモリブデン28〜3 2重量%、有利に30重量%、クロム9〜11重量%、有利に10重量%、珪素 2.5〜3.5重量%、残分コバルトからの粉末状の、有利に水噴霧された金属 間硬質相からなることが設けられており、この場合粉末混合物中の金属間硬質相 は、約10重量%の量であり、かつ基礎粉末は、約90重量%の量である。 本発明の別の実施態様の場合には、金属間硬質相は 、モリブデン28〜32重量%、有利に30重量%、クロム9〜11重量%、有 利に10重量%、珪素2.5〜3.5重量%、有利に3重量%、残分鉄からなり 、この場合粉末混合物中の金属間相は、約10重量%の量であり、かつ基礎粉末 は、約90重量%の量である。 また、合金添加剤は、本発明によれば、タングステン約6重量%.、モリブデ ン約5重量%、バナジウム約2重量%、クロム約4重量%、残分鉄の高速度鋼粉 末からの硬質相からなることもでき、この場合粉末混合物中の硬質相は、約30 重量%までの量であり、かつ基礎粉末は、約70重量%またはそれ以上の量であ る。 また、合金添加剤は、モリブデン約11重量%、燐約0.6重量%、炭素約1 .2重量%、残分鉄のMo−P−C粉末からの硬質相からなることができ、この 場合粉末混合物中の硬質相および基礎粉末は、それぞれ約50重量%の量である 。 更に、本発明の対象は、基礎粉末約80重量%、モリブデン粉末約10重量% および銅粉末約10重量%または基礎粉末約79重量%、モリブデン粉末約10 重量%、銅粉末約10重量%および粉末状三酸化モリブデン約1重量%の出発粉 末混合物からなる材料である。 更に、本発明には、基礎粉末が付加的に二硫化モリ ブデン(MoS2)および/または硫化マンガン(MnS)および/または二硫化タン グステン(WS2)および/またはフッ化カルシウム(CaF2)および/またはテル ル(Te)および/または炭酸カルシウム(CaCO3)を基礎粉末の量に対して少な くとも1重量%ないし最大3重量%の全体量で含有することが設けられている。 更に、本発明の対象は、高い耐摩耗性および耐蝕性ならびに高い熱伝導率を有 する成形部材を粉末冶金的に製造するため、殊に内燃機関用の弁座環または弁案 内部材を製造するための1つの方法であり、この場合出発粉末混合物は、圧縮を 簡易化する薬剤、例えばワックス0.3重量%を有する前記に記載の組成物と混 合され、変形され、かつ約8.0g/cm3である密度を有する成形部材に圧縮 され、引続き保護ガス下で焼結され;この場合、焼結は、有利に窒素約80重量 %および水約20重量%からなる保護ガス雰囲気下で約1040℃の温度で約4 5分間行なわれる。場合によっては、焼結された成形部材は、約8.8g/cm3 の密度に後圧縮される。 本発明の選択的な実施態様によれば、請求項1に記載された出発粉末が次に記 載された物質または物質混合物の1つまたはそれ以上を含有することが設けられ ている: a)工具鋼 型 M35または型 T15、 Ni-Cr-Si-Fe-B-Cu-Mo 5〜30重量%; b)W、Mo、Nb、WC、TiC、B4C、TIC、c-VN、TiB2 5〜10重量%; c)Ti、Cr、Zr、Cr+Zr、Be、Ni+P 0.5〜5重量%。 群a)の材料は、前記添加剤を銅中に拡散混入することにより分散固化された 銅の銅マトリックスで合金化されたものであり、この場合導電率および熱伝導率 は、著しく減少されている。熱伝導率を100W/m・kを上廻るように維持す るために、前記添加剤の含量は、5〜20重量%、典型的には10重量%を超え てはならない。 群b)の材料は、銅マトリックスで合金化されておらず、したがって熱伝導率 に対する顕著な影響を示さない。しかし、この材料は、比較的に安価である。勿 論、5〜10重量%の含量で十分であることが判明した。 群c)の添加剤は、金属間成分の分離を生じさせ、こうして付加的に分散固化 された銅中でのAl23粒子による硬化のために硬度の効果を重ねて生じさせる 。酸化アルミニウム粒子は、高い温度(>500℃)で銅マトリックスの効果的 な硬化を生じさせるけれども、分離段階は、中位の温度範囲(200〜500℃ )内で効果的な硬化を生じさせ、この場合には、弁座環が晒される典型的な運転 温度が問題となる。より 高い高温硬さにより、一般により高い耐摩耗性が生じる。 弁座環の耐摩耗性を、固体滑剤、例えばグラファイト、MoS2、MnS、h −BN、CaF2等並びに金属添加物、例えばMo、Co、W等の添加によって も生じさせることができ、これらは運転温度で、潤滑効果を有する酸化物皮膜を 形成する。 出発粉末が1種以上の次に挙げる物質: Zn5〜20重量%、元素のAl、Be、Si、Mg、Snのいずれか0. 1〜5重量% を含有することにより、耐酸化性、即ち耐腐食性が運転中にかなり高められる。 熱伝導率の可能な限り僅かな低減に関して、Znは有利な合金成分である。これ に関して、5〜30重量%の添加は問題ない。 出発粉末は、不均一な粒子形を有する次に記載の粉末状物質1種以上を含有す るのが有利である: 高生強度Cu、電解Cu、酸化物還元Cu、Mo等5〜25重量%。 使用される分散固化銅が円形粒子、平滑粒子を有することで、これらの材料か らなる未焼結の生成形体は僅かな強度を有するにすぎない。生強度は、前記の成 分を添加することによりかなり高めることができる。「高生強度Cu」とは、繊 維様に長く薄い粒子を有する粉末であり、これは圧縮すると互いに絡み合い、か つそれにより、生成形体の高い強度が生じる。熱伝導 率は、純粋なCuの添加により影響を受けず、5〜25重量%添加することがで き、その際、有利な範囲は10〜15重量%である。 分散固化銅の加工性、殊に切削性は、次に挙げる物質の1種以上を添加するこ とにより改善される: a)化学元素、例えばC(グラファイト)、Te、Se0.2〜2重量%; b)スルフィド、例えばMoS2、MnS等0.5〜5重量%; c)酸化物、例えばMoO3、WO3、Co34等0.5〜5重量%; d)化合物、例えば六方晶BN、CaF20.5〜5重量%。 殊に弁頭部での圧縮の場合に与えられているべき弁座環の放射状破壊強度は、 次の物質1種以上の添加により高められる: a)Zn5〜20重量%、Al又はSn0.1〜5重量%等; b)M35又はT15タイプの工具鋼、Ni−Cr−Si−Fe−B−Cu −Mo5〜30重量%。 前記の合金添加物の相応する組合せにより、出発粉末混合物をそれぞれ弁座環 に求められる特性に関して、最適に調節することができる。 全て前記した本発明による粉末混合物では、弁座環 の製造に関する主な利点は、熱伝導率が特に高い、即ち最低100W/m・kで あることにある。 実施例 例1 Al230.5重量%の含有率を有する、内部酸化により分散固化されたCu −Al23−粉末を、慣用の圧縮簡易化剤0.3重量%と混合し、かつ800M N/mm2の圧縮圧力で、寸法36.6×30.1×9mmの弁座環に圧縮した 。8.4g/cm3の圧縮密度を有する生成形体を引き続き45分間、温度10 40℃で、N280%及び水素20%からなる保護ガス雰囲気下に焼結した。焼 結密度は、8.4g/cm3であった。焼結された環を引き続き、圧力1600 MN/mm2の圧力で後圧縮して、密度8.8g/cm3にした。 第1表は測定された密度及び硬度を、第2表は、レーザー−フラッシュ法によ り測定された熱伝導率の値を示している。 例2 内部酸化によりAl230.5重量%の含有率を有して製造された分散固化C u−Al23−粉末90重量%を、水蒸発された粉末状金属間硬質相10重量% 及び慣用の圧縮簡易化剤0.3重量%と混合した。金属間硬質相は、コバルト6 0重量%、モリブデン30重量%、クロム10重量%及びケイ素3重量%からな った。粉末混合物を圧縮圧力800MN/mm2で、寸法36.6×30.1× 9mmの弁座環に圧縮した。生成形体は圧縮密度8.2g/cm3を有した。引 き続き、環を45分間、温度1040℃で、N280%及びH220%からなる保 護ガス雰囲気中で焼結させ;焼結密度は8.2g/cm3であった。8.7g /cm3の密度への後圧縮は、圧力1600MN/mm2の圧力で行った。 第3表は密度及び硬度の値を、第4表はレーザー−フラッシュー法で測定され た熱伝導率の値を示している。 例1及び2により製造された弁座環は、銅注入を場 合により伴う鉄をベースとする市販の弁座環に比べて熱伝導率の予期せぬ改善を 示した。これは、図面1から明らかである。曲線1は例1による弁座環の熱伝導 率の値を、曲線2は例2による環に関する値を、曲線3は銅注入を伴うFeをベ ースとする弁座環の値を、かつ曲線4は本出願人の市販の弁座環の値を示してい る。 例1により製造された環は、内燃機関の入口領域でのその使用が可能な硬度を 有し、一方で、例2による弁座環は、出口領域で使用することができ、かつこの 場合、優れた走行特性を有する。このことは実験により判明したが、その条件を 第5表にまとめた。 機関実験の結果を第6表にまとめ、かつ図2に図示 した。陥没深さは、弁及び弁座環の磨滅の合計である。例2による本発明の弁座 環を、大規模に使用されている本出願人の量産材料Como 12と比較した。 本発明の弁座環の陥没深さは、材料の熱伝導率がかなり上昇すると、市販の弁 座環の陥没深さより低くなることが判明した。DETAILED DESCRIPTION OF THE INVENTION Molding materials, especially valve rings or valve guides with high wear resistance, are produced by powder metallurgy. Materials for building   The present invention relates to a molded material having high thermal conductivity and high wear and corrosion resistance. The powder is pressed, sintered and mixed with a powder mixture having a copper content of at least about 50% by weight. In some cases, it relates to materials for powder metallurgical manufacture by post-compression.   This type of sintered material is used for forming parts that are exposed to hot gases or gas mixtures. For example, on the one hand, high mechanical loads and, on the other hand, simultaneously exposed to the action of hot combustion gases There is a need for the manufacture of valve seat rings and valve seat guides for certain internal combustion engines. Therefore, this type of sintered material is not only wear and corrosion resistant, but also has high heat It must be made from a material that is also conductive. In this case, the thermal conductivity Has an increasingly important meaning. Because the temperature level for the valve is Increased by the required expansion of the stoichiometric mixture for emission reasons, and This is because a sustained tendency can be observed for engines with higher power.   The temperature difference between the head of the valve and the head of the cylinder in which the valve seat ring is inserted It is known to reduce by heat transfer. For this purpose, the valve stem has , A hollow hole is provided, and the valve shaft is cooled. For cost and weight reasons, the valve stem In recent years, it is often no longer possible to provide hollow holes in the valve stem It has been reduced to some extent, and is therefore hollow perforated and, for example, sodium Filled valves will no longer be possible in the future. So in this way Quickly extract heat, reduce temperature levels, improve friction ratios, and make systems technical and In order to improve the cost, the thermal conductivity of the material from which the valve seat, in particular the valve seat ring is made, should be improved. Efforts are being made.   Manufactured by powder metallurgy consisting of iron-based sintered material with injected copper Molded members are known and are used as valve seat rings or valve guides. It has sufficient wear resistance to be used, but its thermal conductivity is It does not have enough height compared to the bonding material. For example, German Patent No. From the description of 2114160, carbon and lead and other alloy components are added Sintered materials made of iron-based materials are known. This material Although the valve seat rings manufactured from these products actually have sufficient heat and wear resistance, However, its thermal conductivity is a concern here, especially within the current range of emissions of internal combustion engines. Is not enough to solve the problem.   From the description of PCT-EP89 / 01343, it is Sintered materials for powder metallurgical production of valve rings with thermal conductivity Is knowledge. The sintered material has a copper content of about 70-100% by weight copper and one alloy content Consisting of a base metal powder having The alloy content is, for example, 1 to 3% by weight of cobalt. Or from a high alloy additive metal powder in which the base metal powder as a hard phase is mixed In this case, this content is at most 30% by weight.   Tests conducted with this type of material have shown that this material can be used to complete valve seat rings, especially It has been found that they have insufficient wear resistance for the emission range of the internal combustion engine. This This actually means that the matrices due to the embedding of hard material with a maximum particle size of 150 μm The hardness of the material can be increased by strengthening the housing, and the resistance of the valve seat ring Abrasion can also be increased, but the counterpart on the other side is relatively large Attributable to significant wear due to the pointed inserts. Therefore, the valve seat ring Has a low abrasion resistance, while the overall resistance is important for the permanent functioning of the system. Deterioration of wear properties.   The object of the present invention is to provide a particularly high wear resistance and at the same time use for this purpose. Seat ring or valve plan having significantly higher thermal conductivity compared to known sintered materials It was to obtain a sintered material for manufacturing the inner member by powder metallurgy.   The present invention provides for the compression of a starting powder mixture having a copper content of at least about 50% by weight; Sintering and possibly Molded parts with high abrasion and corrosion resistance and high thermal conductivity due to post-compression In order to produce the material in powder metallurgy, a valve seat ring or valve guide, in particular for an internal combustion engine, is produced. Starting from the material to be prepared, the starting powder mixture is in an amount of 50 to 90% by weight of Cu Base powder with content and powder containing molybdenum in an amount of 10 to 50% by weight The alloy powder is composed of a powdery alloy additive, and the alloy powder is a dispersed and solidified copper powder. You. Advantageously, the dispersed and solidified copper powder comprises AlTwoOThree0.1-1.1% by weight and Al containing 0.5% pure by weightTwoOThreeSolidified by Cu-Al melting Spray liquid and subsequently heat in oxidizing atmosphere for selective oxidation of aluminum To be manufactured.   The present invention provides a method,TwoOThreeCu-Al dispersed and solidified usingTwoOThree The use of powder as a material for the powder metallurgical production of formed parts Products with high abrasion and corrosion resistance on the other side and high thermal conductivity on the other side. This material is particularly useful for internal combustion engines. It is suitable for manufacturing valve seat rings or valve guide members for use.   The purpose of the present invention is to use AlTwoOThreeHaving only Cu powder dispersed and solidified In this case, the powder is, for example, described in US Pat. No. 3,779,714. Or DE 2355122 A1 C produced by spraying a Cu-Al melt by a method known from the detailed description internally oxidizing the u-Al alloyed powder and subsequently heating in an oxidizing atmosphere Manufactured on the other hand, while internal oxidation is clearly excluded. Dispersion solidification produced by another method described in US Patent No. 2083500 The resulting metal powder is unsuitable. Applicant, manufactured by internal oxidation Cu-AlTwoOThreeAl dispersed in a copper matrix in the case of powderTwoOThreeparticle The distance between them is of the order of 3 to 12 nm, while being manufactured without internal oxidation. In the case of the powder, the result was about 40 μm. Molded parts, especially valves Dispersed and solidified as the base powder for powder metallurgy manufacture of washer or valve guide There is no indication in the above publication about the use of Nor.   According to one preferred embodiment of the present invention, the alloying additive is molybdenum 28-3 2% by weight, preferably 30% by weight, chromium 9-11% by weight, preferably 10% by weight, silicon 2.5-3.5% by weight, powdered, preferably water-sprayed metal from the balance cobalt In which the intermetallic hard phase in the powder mixture is provided. Is about 10% by weight and the base powder is about 90% by weight.   In another embodiment of the present invention, the intermetallic hard phase is , Molybdenum 28-32% by weight, preferably 30% by weight, chromium 9-11% by weight, yes 10% by weight, 2.5-3.5% by weight of silicon, preferably 3% by weight, with the balance being iron The intermetallic phase in the powder mixture is in an amount of about 10% by weight and the base powder Is in an amount of about 90% by weight.   Also, according to the present invention, the alloy additive comprises about 6% by weight of tungsten, molybdenum. About 5% by weight, about 2% by weight of vanadium, about 4% by weight of chromium, high-speed steel powder of residual iron The hard phase in the powder mixture may comprise about 30 %, And the base powder is present in an amount of about 70% by weight or more. You.   The alloy additives were about 11% by weight molybdenum, about 0.6% by weight phosphorus, and about 1% carbon. . 2% by weight, consisting of a hard phase from Mo-PC powder with the balance iron, The hard phase and the base powder in the powder mixture are each in an amount of about 50% by weight .   Further, the subject of the present invention is about 80% by weight of base powder, about 10% by weight of molybdenum powder. And about 10% by weight of copper powder or about 79% by weight of base powder, about 10% by weight of molybdenum powder. Starting powder of about 10% by weight of copper powder and about 1% by weight of molybdenum trioxide in powder form It is a material consisting of a powder mixture.   Furthermore, the present invention provides that the base powder additionally comprises Buden (MoSTwo) And / or manganese sulfide (MnS) and / or tan disulfide Gusten (WSTwo) And / or calcium fluoride (CaFTwo) And / or tell (Te) and / or calcium carbonate (CaCOThree) Less than the amount of the base powder It is provided that the total content be at least 1% by weight up to 3% by weight.   Furthermore, the objects of the present invention have high abrasion and corrosion resistance and high thermal conductivity. Valve rings or valve designs for powder metallurgical production of molded parts to be produced, in particular for internal combustion engines One method for manufacturing the inner part, where the starting powder mixture is compressed Mixing with the composition described above having a simplification agent, for example 0.3% by weight of wax. Combined, deformed, and about 8.0 g / cmThreeCompressed into molded parts with a certain density And subsequently sintered under protective gas; in this case, the sintering is advantageously about 80% by weight of nitrogen % At a temperature of about 1040 ° C. in a protective gas atmosphere consisting of about 20% by weight of water and about 20% by weight of water. Performed for 5 minutes. In some cases, the sintered molded part has a weight of about 8.8 g / cm.Three After compression to a density of   According to an alternative embodiment of the present invention, the starting powder according to claim 1 is as follows: Containing one or more of the listed substances or substance mixtures ing: a) Tool steel type M35 or type T15,     Ni-Cr-Si-Fe-B-Cu-Mo     5-30% by weight; b) W, Mo, Nb, WC, TiC, BFourC, TIC, c-VN, TiBTwo     5-10% by weight; c) Ti, Cr, Zr, Cr + Zr, Be, Ni + P     0.5-5% by weight.   The materials of group a) were dispersed and solidified by diffusing the additives into copper. Alloyed with a copper matrix of copper, where the electrical and thermal conductivity Has been significantly reduced. Maintain thermal conductivity above 100 W / mk In order to achieve this, the content of said additives is between 5 and 20% by weight, typically above 10% by weight. must not.   The materials of group b) are not alloyed with a copper matrix and therefore have a thermal conductivity No significant effect on However, this material is relatively inexpensive. Of course It has been found that a content of 5 to 10% by weight is sufficient.   The additives of group c) cause the separation of the intermetallic components and thus additionally solidify Al in doped copperTwoOThreeOverlapping hardness effects due to particle hardening . Aluminum oxide particles are effective for copper matrix at high temperatures (> 500 ° C) However, the separation step takes place in the middle temperature range (200-500 ° C.). ), Which results in effective hardening, in which case the typical operation in which the valve seat ring is exposed Temperature matters. Than High hot hardness generally results in higher wear resistance.   The wear resistance of the valve seat ring is increased by using a solid lubricant such as graphite, MoSTwo, MnS, h -BN, CaFTwoAnd the addition of metal additives such as Mo, Co, W, etc. Can also produce oxide films with a lubricating effect at operating temperatures. Form.   The starting powder is one or more of the following substances:     5 to 20% by weight of Zn, any one of the elements Al, Be, Si, Mg, and Sn. 1-5% by weight The oxidation resistance, ie the corrosion resistance, is considerably increased during operation. Zn is an advantageous alloying component for the lowest possible reduction in thermal conductivity. this With respect to the above, addition of 5 to 30% by weight is not a problem.   The starting powder contains one or more of the following pulverulent substances having a non-uniform particle shape: Advantageously:     High raw strength Cu, electrolytic Cu, oxide reduced Cu, Mo, etc. 5 to 25% by weight.   Since the solidified copper used has circular particles and smooth particles, The resulting green compact has only a slight strength. The green strength is It can be increased considerably by adding a minute. "High raw strength Cu" A powder that has long, thin particles that look like fibers, which when crushed become entangled with each other, This results in a high strength of the formed form. Heat conduction The percentage is not affected by the addition of pure Cu and can be added at 5 to 25% by weight. The preferred range is 10 to 15% by weight.   The workability, especially machinability, of the dispersed solidified copper can be improved by adding one or more of the following substances. And is improved by:     a) chemical elements such as C (graphite), Te, Se 0.2-2% by weight;     b) sulfides such as MoSTwo, MnS, etc. 0.5 to 5% by weight;     c) oxides, such as MoOThree, WOThree, CoThreeOFour0.5 to 5% by weight;     d) compounds such as hexagonal BN, CaFTwo0.5-5% by weight.   The radial breaking strength of the valve seat ring, which should be given especially in the case of compression at the valve head, It is enhanced by the addition of one or more of the following substances:     a) 5 to 20% by weight of Zn, 0.1 to 5% by weight of Al or Sn, and the like;     b) M35 or T15 type tool steel, Ni-Cr-Si-Fe-B-Cu -Mo 5-30% by weight.   By means of a corresponding combination of the above-mentioned alloying additives, the starting powder mixture is in each case mounted on a valve seat ring. Can be adjusted optimally with respect to the characteristics required for   In the powder mixture according to the invention all described above, the valve seat ring The main advantage with regard to the production of is that the thermal conductivity is particularly high, ie at least 100 W / m · k. There is to be.   Example   Example 1   AlTwoOThreeCu solidified by internal oxidation with a content of 0.5% by weight -AlTwoOThreeMixing the powder with 0.3% by weight of a conventional compression simplifier and 800M N / mmTwoAt a compression pressure of 36.6 × 30.1 × 9 mm. . 8.4 g / cmThreeThe green compact having a compacted density of At 40 ° C., NTwoSintering was performed under a protective gas atmosphere consisting of 80% and 20% hydrogen. Burning The sintering density is 8.4 g / cmThreeMet. The sintered ring is subsequently pressed at 1600 MN / mmTwoAfter compression at a pressure of 8.8 g / cmThreeI made it.   Table 1 shows the measured density and hardness, and Table 2 shows the results obtained by the laser-flash method. 2 shows the measured values of the thermal conductivity.   Example 2   Al due to internal oxidationTwoOThreeDispersion solidified C produced with a content of 0.5% by weight u-AlTwoOThree90% by weight of powder, 10% by weight of water-evaporated powdery intermetallic hard phase And 0.3% by weight of a conventional compression simplifier. The intermetallic hard phase is cobalt 6 0% by weight, 30% by weight of molybdenum, 10% by weight of chromium and 3% by weight of silicon. Was. The powder mixture is compressed at 800 MN / mmTwoWith dimensions 36.6 × 30.1 × It was compressed into a 9 mm valve seat ring. The formed form has a compressed density of 8.2 g / cmThreeIt had. Pull The ring is then heated for 45 minutes at a temperature of 1040 ° C.Two80% and HTwo20% insurance Sintering in a protective gas atmosphere; sintering density 8.2 g / cmThreeMet. 8.7g / CmThreePost-compression to a density of 1600 MN / mmTwoPressure.   Table 3 shows the values of density and hardness, and Table 4 shows the values measured by the laser-flash method. The value of the thermal conductivity is shown.   The valve seat rings produced according to Examples 1 and 2 were designed for copper injection. Unexpected improvement in thermal conductivity over commercially available iron-based valve seat rings Indicated. This is clear from FIG. Curve 1 is the heat conduction of the valve seat ring according to Example 1. %, Curve 2 for the ring according to Example 2, curve 3 for Fe with copper implantation. The curve 4 shows the value of the valve seat ring commercially available from the present applicant. You.   The ring produced according to Example 1 has a hardness that allows its use in the inlet area of the internal combustion engine. On the other hand, the valve seat ring according to Example 2 can be used in the outlet area and In this case, it has excellent running characteristics. This proved experimentally, but the conditions The results are summarized in Table 5. The results of the engine experiments are summarized in Table 6 and shown in Fig. 2. did. The depression depth is the sum of the wear of the valve and the valve seat annulus. Inventive valve seat according to example 2 The rings were compared to Applicants' mass-produced material Como 12, which is used on a large scale.  The recess depth of the valve seat annulus of the present invention can be increased by increasing the thermal conductivity of the material, and the It was found to be lower than the sink ring's sinking depth.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 エッケハルト ケーラー ドイツ連邦共和国 ヴェター ウンターム ラートハウス 12 (72)発明者 キリット ダラル ドイツ連邦共和国 ラーデフォルムヴァル ト ローエングリン シュトラーセ 2 (72)発明者 エニール ヴイ ナドカルニ アメリカ合衆国 ノースカロライナ チャ ペル ヒル セットフォード コート 105────────────────────────────────────────────────── ─── Continuation of front page    (72) Eckehard Koehler             Germany Vetter Unterm               Rat House 12 (72) Inventor Kirit Dalal             Germany Radeformval             Troenglin Strasse 2 (72) Inventor Enil Vu Nadcarni             United States North Carolina Cha             Pell Hill Setford Court             105

Claims (1)

【特許請求の範囲】 1.高い耐摩耗性および耐蝕性ならびに高い熱伝導率を有する成形部材を粉末 冶金的に製造するための、特に内燃機関のための弁座環または弁案内部材を、少 なくとも約50重量%の銅含量を有する出発粉末混合物の圧縮、焼結および場合 により後圧縮により製造するための材料において、出発粉末混合物が50〜90 重量%の量のCu含量含有基礎粉末および10〜50重量%の量のモリブデン含 有粉末状合金添加剤からなり、かつ基礎粉末が分散固化された銅粉末であること を特徴とする、高い耐摩耗性および耐蝕性ならびに高い熱伝導率を有する成形部 材を粉末冶金的に製造するための材料。 2.分散固化された銅粉末がAl23で固化されており、0.1〜1.1重量 %のAl23および0.5重量%未満の不純物を含有し、かつCu−Al−溶融 物の噴霧および引き続きアルミニウムの選択的酸化のための酸化雰囲気下での加 熱により製造されたものである、請求項1記載の材料。 3.合金添加剤が粉末状の、有利には水噴霧された金属間硬質相からなる、請 求項1または2記載の材料。 4.金属間硬質相が以下の組成: モリブデン 28〜32重量%、有利には30重量% 、 クロム 9〜11重量%、有利には10重量%、 ケイ素 2.5〜3.5重量%、有利には3重量%、 残分 コバルト、 を有する、請求項1から3までのいずれか1項記載の材料。 5.粉末混合物中の金属間硬質相が約10重量%の量で、および基礎粉末が約 90重量%の量で存在する、請求項4記載の材料。 6.金属間硬質相が以下の組成: モリブデン 28〜32重量%、有利には30重量%、 クロム 9〜11重量%、有利には10重量%、 ケイ素 2.5〜3.5重量%、有利には3重量%、 残分 鉄、 を有する、請求項1から3までのいずれか1項記載の材料。 7.粉末混合物中の金属間層が約10重量%の量で、および基礎粉末が約90 重量%の量で存在する、請求項6記載の材料。 8.硬質相からなる合金添加剤が以下の組成: タングステン 約6重量%、 モリブデン 約5重量%、 バナジウム 約2重量%、 クロム 約4重量%、 残分 鉄、 を有する高速度鋼(AlSi−型 M2;DIN S−6−5−2)からなる、 請求項1または2記載の材料。 9.粉末混合物中の硬質相が30重量%までの量で、および基礎粉末が約70 重量%以上の量で存在する、請求項8記載の材料。 10.硬質相からなる合金添加剤が以下の組成: モリブデン 約11重量% リン 約0.6重量% 炭素 約1.2重量% 残分 鉄、 を有するMo−P−C−粉末からなる、請求項1または2記載の材料。 11.粉末混合物中の硬質相および基礎粉末がそれぞれ約50重量%の量で存 在する、請求項10記載の材料。 12.出発粉末混合物の以下の組成: 基礎粉末 約80重量%、 モリブデン粉末 約10重量%、 銅粉末 約10重量% を特徴とする、請求項1記載の材料。 13.出発粉末混合物の以下の組成: 基礎粉末 約79重量%、 モリブデン粉末 約10重量%、 銅粉末 約10重量%、および 酸化モリブデン 約1重量% を特徴とする、請求項1記載の材料。 14.基礎粉末が、付加的に硫化モリブデン(MoS2)および/または硫化 第一マンガン(MnS)および/または二硫化タングステン(WS2)および/ またはフッ化カルシウム(CaF2)および/またはテルル(Te)および/ま たは炭酸カルシウム(CaCO3)を、基礎粉末の量に対して、全体量で少なく とも1重量%から最高で3重量%含有する、請求項1から13までのいずれか1 項記載の材料 15.高い耐摩耗性および耐蝕性および高い熱伝導率を有する成形品を粉末冶 金的に製造するための、特に内燃機関のための弁座環または弁案内部材を製造す るための方法において、請求項1から14までのいずれか1項記載の出発粉末混 合物に、約0.3重量%の圧縮を簡易化する薬剤、例えばワックスを混合し、該 混合物を変形し、かつ密度約8.0g/cm3を有する成形品に圧縮し、かつ引 続き保護ガス下で焼結させることを特徴とする、高い耐摩耗性および耐蝕性およ び高い熱伝導率を有する成形品を粉末冶金的に製造するための方法。 16.約80重量%の窒素および約20重量%の水素からなる保護ガス下で、 温度約1040℃で約45分間焼結を行う、請求項15記載の方法。 17.焼結した成形体を密度約8.8g/cm3へ後圧縮させる、請求項15 または16記載の方法。 18.Al23を用いて分散固化し、0.3〜1.1重量%の間にあるAl2 3含有量を有し、Cu−Al−溶融物の噴霧および引き続き酸化雰囲気下での 加熱により製造したCu−Al23−粉末の、高い熱伝導率を有する耐摩耗性お よび耐蝕性成形品を粉末冶金により製造するための、特に弁座環または弁案内部 材を製造するための使用。 19.出発粉末混合物が、以下に記載する物質または物質混合物: a)工具鋼M35型またはT15型、Ni−Cr−Si−Fe−B−Cu−Mo 5〜30重量%; b)W、Mo、Nb、WC、TiC、B4C、TiN、c−BN、TiB2 5〜 10重量%; c)Ti、Cr、Zr、Cr+Zr、Be、Ni+P 0.5〜5重量% を1種以上含有する、請求項1記載の材料。 20.出発粉末混合物が以下に記載する物質: Co、W 5〜10重量% を1種以上含有する、請求項1記載の材料。 21.出発粉末混合物が以下に記載する物質: Zn 5〜20重量%、元素Al、Be、Si、Mg、Snの1つ 0.1〜5 重量% を1種以上含有する、請求項1記載の材料。 22.出発粉末混合物が以下に記載する、不規則な粒子形を有する粉末状物質 : 生強度の高いCu、電解質−Cu、酸化還元されたCu、Mo 5〜25重量% を1種以上含有する、請求項1記載の材料。 23.出発粉末混合物が以下の項目a)〜項目d)に記載する物質: a)化学元素、例えばC(グラファイト)、Te、Se 0.2〜2重量%; b)硫化物、例えばMoS2、MnSなど 0.5〜5重量%; c)酸化物、例えばMoO3、WO3、Co34など0.5〜5重量%; d)六方晶BN、CaF2のような化合物 0.5〜5重量%、 を1種以上含有する、請求項1記載の材料。 24.出発粉末混合物が以下に記載する物質: a)Zn、0.1〜5重量%のAlまたはSnなど5〜20重量%; b)工具鋼M35型またはT15型、Ni−Cr−Si−Fe−B−Cu−Mo 5〜30重量% を1種以上含有する、請求項1記載の材料。 25.出発粉末混合物が請求項18から23までのいずれか1項記載の物質ま たは物質混合物の組み合わせを含有する、請求項1および請求項18から23ま でのいずれか1項記載の材料。 26.熱伝導率が少なくとも100W/m・kである弁座環または弁案内部材 を製造するための、請求項1および請求項19から24までのいずれか1項記載 の材料の使用。[Claims]   1. Powder molded parts with high wear and corrosion resistance and high thermal conductivity Valve seats or valve guides for metallurgical production, especially for internal combustion engines Pressing, sintering and, if appropriate, starting powder mixtures having a copper content of at least about 50% by weight The starting powder mixture is 50 to 90 A base powder containing a Cu content in an amount of 10% by weight and a molybdenum containing an amount of 10-50% by weight. Copper powder consisting of powdered alloy additive and base powder dispersed and solidified Molded part with high wear and corrosion resistance and high thermal conductivity characterized by Materials used to produce materials by powder metallurgy.   2. The dispersed and solidified copper powder is AlTwoOThree0.1 to 1.1 weight % AlTwoOThreeAnd less than 0.5% by weight impurities and Cu-Al-melt Spraying and subsequent application in an oxidizing atmosphere for selective oxidation of aluminum The material of claim 1, wherein the material is manufactured by heat.   3. The alloy additive comprises a powdered, preferably water-sprayed, intermetallic hard phase. 3. The material according to claim 1 or 2.   4. The intermetallic hard phase has the following composition: Molybdenum 28-32% by weight, advantageously 30% by weight , Chromium 9-11% by weight, advantageously 10% by weight, Silicon 2.5-3.5% by weight, advantageously 3% by weight, Residue cobalt, The material according to any one of claims 1 to 3, having:   5. The intermetallic hard phase in the powder mixture is in an amount of about 10% by weight and the base powder is 5. The material of claim 4, wherein the material is present in an amount of 90% by weight.   6. The intermetallic hard phase has the following composition: Molybdenum 28-32% by weight, advantageously 30% by weight, Chromium 9-11% by weight, advantageously 10% by weight, Silicon 2.5-3.5% by weight, advantageously 3% by weight, Residue iron, The material according to any one of claims 1 to 3, having:   7. The intermetallic layer in the powder mixture is in an amount of about 10% by weight and the base powder is about 90% by weight. 7. The material of claim 6, wherein the material is present in an amount by weight.   8. The hard phase alloy additive has the following composition: About 6% by weight of tungsten, About 5% by weight molybdenum, About 2% by weight of vanadium, About 4% by weight of chromium, Residue iron, High speed steel (AlSi-type M2; DIN S-6-5-2) having The material according to claim 1.   9. The hard phase in the powder mixture is in an amount of up to 30% by weight and 9. The material of claim 8, wherein the material is present in an amount equal to or greater than weight percent.   10. The hard phase alloy additive has the following composition: Molybdenum about 11% by weight About 0.6% by weight of phosphorus About 1.2% by weight of carbon Residue iron, The material according to claim 1, comprising a Mo—PC— powder having the following formula:   11. The hard phase and the base powder in the powder mixture are each present in an amount of about 50% by weight. 11. The material of claim 10, wherein the material is present.   12. The following composition of the starting powder mixture: About 80% by weight of base powder, Molybdenum powder about 10% by weight, Copper powder about 10% by weight The material according to claim 1, characterized in that:   13. The following composition of the starting powder mixture: About 79% by weight of base powder, Molybdenum powder about 10% by weight, About 10% by weight of copper powder, and Molybdenum oxide about 1% by weight The material according to claim 1, characterized in that:   14. The base powder additionally contains molybdenum sulfide (MoSTwo) And / or sulfide Manganese (MnS) and / or tungsten disulfide (WS)Two)and/ Or calcium fluoride (CaFTwo) And / or tellurium (Te) and / or Or calcium carbonate (CaCOThree), The total amount is less than the amount of the base powder 14. Any one of claims 1 to 13 wherein both contain from 1% by weight up to 3% by weight. Materials described in section   15. Powder molded parts with high wear and corrosion resistance and high thermal conductivity Manufacturing valve seat rings or valve guides for metal manufacturing, in particular for internal combustion engines 15. A method according to claim 1, wherein the starting powder is mixed. The compound is mixed with about 0.3% by weight of an agent which simplifies compression, for example, wax. Deform the mixture and have a density of about 8.0 g / cmThreeCompressed into a molded article with High wear and corrosion resistance and sintering characterized by continuous sintering under protective gas For producing molded articles having high thermal conductivity by powder metallurgy.   16. Under a protective gas consisting of about 80% by weight of nitrogen and about 20% by weight of hydrogen, The method of claim 15, wherein sintering is performed at a temperature of about 1040C for about 45 minutes.   17. The density of the sintered compact is about 8.8 g / cmThree16. The post-compression to Or the method of 16.   18. AlTwoOThreeAnd solidify using AlTwo OThreeContent, spraying of Cu-Al-melt and subsequently under oxidizing atmosphere Cu-Al manufactured by heatingTwoOThree-Abrasion resistance and high thermal conductivity of the powder; And valve seats for powder and metallurgical production of corrosion-resistant and molded articles Use for producing lumber.   19. The starting powder mixture is a substance or substance mixture described below: a) Tool steel M35 type or T15 type, Ni-Cr-Si-Fe-B-Cu-Mo   5-30% by weight; b) W, Mo, Nb, WC, TiC, BFourC, TiN, c-BN, TiBTwo  5- 10% by weight; c) Ti, Cr, Zr, Cr + Zr, Be, Ni + P 0.5-5% by weight The material according to claim 1, wherein the material contains one or more types.   20. The starting powder mixture has the following substances: Co, W 5-10% by weight The material according to claim 1, wherein the material contains one or more types.   21. The starting powder mixture has the following substances: Zn 5 to 20% by weight, one of the elements Al, Be, Si, Mg, Sn 0.1 to 5 weight% The material according to claim 1, wherein the material contains one or more types.   22. A powdery substance having an irregular particle shape, as described below, for the starting powder mixture : High raw strength Cu, electrolyte-Cu, redox Cu, Mo 5 to 25% by weight The material according to claim 1, wherein the material contains one or more types.   23. The starting powder mixture is a substance according to the following items a) to d): a) chemical elements such as C (graphite), Te, Se 0.2-2% by weight; b) sulfides, for example MoSTwo, MnS, etc. 0.5 to 5% by weight; c) oxides, such as MoOThree, WOThree, CoThreeOFour0.5 to 5% by weight; d) Hexagonal BN, CaFTwo0.5-5% by weight of a compound such as The material according to claim 1, wherein the material contains one or more types.   24. The starting powder mixture has the following substances: a) 5-20 wt% such as Zn, 0.1-5 wt% Al or Sn; b) Tool steel type M35 or T15, Ni-Cr-Si-Fe-B-Cu-Mo   5-30% by weight The material according to claim 1, wherein the material contains one or more types.   25. 24. The starting powder mixture as claimed in claim 18, wherein Or a combination of substance mixtures. The material according to any one of the preceding claims.   26. Valve seat ring or valve guide member with thermal conductivity of at least 100 W / mk 25. A method according to claim 1 for manufacturing a slab. Use of materials.
JP51611097A 1996-02-21 1997-02-21 Material for powder metallurgical manufacture of valve seat rings or valve guide members with high wear resistance Expired - Fee Related JP4272706B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19606270A DE19606270A1 (en) 1996-02-21 1996-02-21 Material for powder metallurgical production of molded parts, especially valve seat rings with high thermal conductivity and high wear and corrosion resistance
DE19606270.5 1996-02-21
PCT/EP1997/000837 WO1997030808A1 (en) 1996-02-21 1997-02-21 Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear

Publications (2)

Publication Number Publication Date
JP2001500567A true JP2001500567A (en) 2001-01-16
JP4272706B2 JP4272706B2 (en) 2009-06-03

Family

ID=7785898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51611097A Expired - Fee Related JP4272706B2 (en) 1996-02-21 1997-02-21 Material for powder metallurgical manufacture of valve seat rings or valve guide members with high wear resistance

Country Status (5)

Country Link
US (1) US6039785A (en)
EP (1) EP0881958B1 (en)
JP (1) JP4272706B2 (en)
DE (2) DE19606270A1 (en)
WO (1) WO1997030808A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015118924A1 (en) * 2014-02-10 2017-03-23 日産自動車株式会社 Sliding mechanism
US10344636B2 (en) 2014-06-27 2019-07-09 Kabushiki Kaisha Riken Sintered valve seat and its production method
JP2019520475A (en) * 2016-05-24 2019-07-18 ブライシュタール−プロダクションズ ゲーエムベーハー ウント コンパニー カーゲーBleistahl−Produktions GmbH & Co KG. Valve seat ring

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19925300A1 (en) * 1999-06-02 2000-12-07 Mahle Ventiltrieb Gmbh Cast material with high warm hardness
DE102012013226A1 (en) 2012-07-04 2014-01-09 Bleistahl-Produktions Gmbh & Co Kg High heat conducting valve seat ring
DE102013021059A1 (en) * 2013-12-18 2015-06-18 Bleistahl-Produktions Gmbh & Co Kg. Double / triple layer valve guide
CN104561638B (en) * 2015-01-04 2016-06-08 河南科技大学 A kind of Al2O3The preparation method of dispersed and strengthened copper-based composite material
JP6386676B2 (en) * 2015-10-02 2018-09-05 株式会社リケン Sintered valve seat
CN108698130B (en) 2017-03-28 2019-08-06 株式会社理研 It is sintered valve seat
DE102018209682A1 (en) * 2018-06-15 2019-12-19 Mahle International Gmbh Process for the manufacture of a powder metallurgical product
CN109825733B (en) * 2019-03-11 2021-02-19 中南大学 Short-process preparation method of dispersion-strengthened copper alloy
KR20210104418A (en) * 2020-02-17 2021-08-25 현대자동차주식회사 A outer ring for variable oil pump and manufacturing method thereof
US11473456B2 (en) * 2020-09-15 2022-10-18 GM Global Technology Operations LLC Cylinder head valve seat with high thermal conductivity and multiple material cross-section

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578443A (en) * 1969-01-21 1971-05-11 Massachusetts Inst Technology Method of producing oxide-dispersion-strengthened alloys
JPS55122841A (en) * 1979-03-14 1980-09-20 Taiho Kogyo Co Ltd Sliding material
DE3130920A1 (en) * 1980-09-04 1982-04-01 General Electric Co., Schenectady, N.Y. "ELIGIBLE COPPER ALLOYS"
JPS59145756A (en) * 1983-02-08 1984-08-21 Hitachi Powdered Metals Co Ltd Manufacture of sintered alloy for member of control valve mechanism of internal-combustion engine
US4752334A (en) * 1983-12-13 1988-06-21 Scm Metal Products Inc. Dispersion strengthened metal composites
DE3838461A1 (en) * 1988-11-12 1990-05-23 Krebsoege Gmbh Sintermetall POWDER METALLURGICAL MATERIAL BASED ON COPPER AND ITS USE
SE468466B (en) * 1990-05-14 1993-01-25 Hoeganaes Ab ANNUAL-BASED POWDER AND NUTRITION-RESISTANT HEATHOLD SOLID COMPONENT MANUFACTURED FROM THIS AND THE MANUFACTURING COMPONENT
JPH083133B2 (en) * 1990-07-12 1996-01-17 日立粉末冶金株式会社 Outboard motor valve seat material and manufacturing method thereof
JPH05179232A (en) * 1991-12-26 1993-07-20 Toshiba Tungaloy Co Ltd Sintered metallic friction material for brake
US5296189A (en) * 1992-04-28 1994-03-22 International Business Machines Corporation Method for producing metal powder with a uniform distribution of dispersants, method of uses thereof and structures fabricated therewith
DE4232432A1 (en) * 1992-09-28 1994-03-31 Krebsoege Gmbh Sintermetall Powder metallurgy connecting rod - has at least powder metallurgy big-end bearing forming part of compound connecting rod structure
US5551970A (en) * 1993-08-17 1996-09-03 Otd Products L.L.C. Dispersion strengthened copper
EP0769635A1 (en) * 1995-10-20 1997-04-23 Tokyo Yogyo Kabushiki Kaisha Brake lining material for heavy-load braking device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015118924A1 (en) * 2014-02-10 2017-03-23 日産自動車株式会社 Sliding mechanism
US10590812B2 (en) 2014-02-10 2020-03-17 Nissan Motor Co., Ltd. Sliding mechanism
US10344636B2 (en) 2014-06-27 2019-07-09 Kabushiki Kaisha Riken Sintered valve seat and its production method
JP2019520475A (en) * 2016-05-24 2019-07-18 ブライシュタール−プロダクションズ ゲーエムベーハー ウント コンパニー カーゲーBleistahl−Produktions GmbH & Co KG. Valve seat ring
JP7071931B2 (en) 2016-05-24 2022-05-19 ブライシュタール-プロダクションズ ゲーエムベーハー ウント コンパニー カーゲー Valve seat ring

Also Published As

Publication number Publication date
JP4272706B2 (en) 2009-06-03
DE19606270A1 (en) 1997-08-28
EP0881958A1 (en) 1998-12-09
WO1997030808A1 (en) 1997-08-28
DE59703672D1 (en) 2001-07-05
EP0881958B1 (en) 2001-05-30
US6039785A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US7087318B2 (en) Copper based sintered contact material and double-layered sintered contact member
JP4368245B2 (en) Hard particle dispersion type iron-based sintered alloy
CN100374605C (en) Power-matallurgy valve seat inserts
JP3928782B2 (en) Method for producing sintered alloy for valve seat
JP2001500567A (en) Molding materials, especially materials for the powder metallurgical production of highly wear-resistant valve seat rings or valve guides
US10563548B2 (en) Sintered valve seat
US4021205A (en) Sintered powdered ferrous alloy article and process for producing the alloy article
JP2008280613A (en) Copper based sintered contact material and double-layered sintered contact member
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
KR0149739B1 (en) Sintered contact component
JPS6365051A (en) Manufacture of ferrous sintered alloy member excellent in wear resistance
JP3186816B2 (en) Sintered alloy for valve seat
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP2003166025A (en) Hard-grain dispersion type sintered alloy and manufacturing method therefor
JP3257349B2 (en) Iron-based sintered alloy with excellent strength and wear resistance
US20220136561A1 (en) Wear resistant, highly thermally conductive sintered alloy
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact
JP2001032001A (en) Self-lubricating metal and its production
JP3763605B2 (en) Sintered alloy material for valve seats
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP2003073758A (en) Powder composition for sliding member, and sliding member
JP3346292B2 (en) High strength Fe-based sintered valve seat
JPH07116489B2 (en) Manufacturing method of infiltration valve seat ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees