JPS5940307B2 - Manufacturing method of insulated gate field effect transistor - Google Patents

Manufacturing method of insulated gate field effect transistor

Info

Publication number
JPS5940307B2
JPS5940307B2 JP10640576A JP10640576A JPS5940307B2 JP S5940307 B2 JPS5940307 B2 JP S5940307B2 JP 10640576 A JP10640576 A JP 10640576A JP 10640576 A JP10640576 A JP 10640576A JP S5940307 B2 JPS5940307 B2 JP S5940307B2
Authority
JP
Japan
Prior art keywords
gate
polycrystalline silicon
film
layer
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10640576A
Other languages
Japanese (ja)
Other versions
JPS5331977A (en
Inventor
忠晴 露木
克彦 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10640576A priority Critical patent/JPS5940307B2/en
Publication of JPS5331977A publication Critical patent/JPS5331977A/en
Publication of JPS5940307B2 publication Critical patent/JPS5940307B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は、絶縁ゲート形電界効果トランジスタ、特に寄
生MOSの発生を防止するために寄生部における半導体
表面を半絶縁性多結晶シリコン膜SIPOSVCてパッ
シベーションする場合の絶縁ゲート形電界効果トランジ
スタの製法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate type field effect transistor, particularly an insulated gate type field effect transistor in which a semiconductor surface in a parasitic part is passivated with a semi-insulating polycrystalline silicon film SIPOSVC in order to prevent the generation of parasitic MOS. Relates to the manufacturing method of field effect transistors.

絶縁ゲート形電界効果トランジスタの集積回路(通称M
OS−IC)においては、その寄生部のパッシベーショ
ンに半絶縁性多結晶シリコン膜を用いると、寄生の閾値
電圧Vthが大となることが知られている。このような
半絶縁性多結晶シリコン膜を絶縁ゲート形電界効果トラ
ンジスタの集積回路に導入する場合の最も容易な製法と
しては、第1図に示す如き製法が考えられる。即ち、第
1導電形例えばN形のシリコン半導体基体1の主面にS
iO2膜等よりなる拡散マスク2を介して第2導電形即
ちP形のソース領域3及びドレイン領域4を拡散形成し
て後、拡散マスク2を除去し、基体1の主面全面に半絶
縁性多結晶シリコン膜5とSiO2膜6をCVD法(化
学的気相成長法)にて順次被着形成する(第1図A及び
B)。次いで、フォトエッチングによつてゲート部に対
応する部分の膜5及び6を選択的に除去し、即ちゲート
窓あけを行つて後、熱酸化により所定厚のゲート絶縁層
(SiO2膜)Tを形成し、然る後電極窓あけを行つて
夫々ソース電極s、ゲート電極G及びドレイン電極Dを
形成するようになす(第1図C及びD)。このような製
法は、工程が簡単である反面、特性的に欠陥が生ずる。
Insulated gate field effect transistor integrated circuit (commonly known as M
It is known that in an OS-IC, if a semi-insulating polycrystalline silicon film is used for passivation of the parasitic portion, the parasitic threshold voltage Vth increases. The easiest manufacturing method for introducing such a semi-insulating polycrystalline silicon film into an integrated circuit of an insulated gate field effect transistor is the manufacturing method shown in FIG. That is, S is formed on the main surface of the silicon semiconductor substrate 1 of the first conductivity type, for example, the N type.
After forming a source region 3 and a drain region 4 of the second conductivity type, that is, P type, by diffusion through a diffusion mask 2 made of an iO2 film or the like, the diffusion mask 2 is removed and a semi-insulating film is formed over the entire main surface of the substrate 1. A polycrystalline silicon film 5 and a SiO2 film 6 are sequentially deposited by CVD (chemical vapor deposition) (FIGS. 1A and 1B). Next, the portions of the films 5 and 6 corresponding to the gate portions are selectively removed by photo-etching, that is, gate windows are opened, and then a gate insulating layer (SiO2 film) T of a predetermined thickness is formed by thermal oxidation. After that, electrode windows are opened to form a source electrode s, a gate electrode G, and a drain electrode D, respectively (FIG. 1C and D). Although such a manufacturing method is simple, it causes defects in characteristics.

即ち基体1に接して半絶縁性多結晶シリコン膜5を全面
被着して後の膜5に対するゲート窓あけ工程即ち選択エ
ッチング工程で膜5と基体1の界面がわかりに<く膜5
だけを正確にエッチングすることが困難であり、又膜5
をエッチングしたゲート部分の表面電荷密度Qssが上
昇しゲート部の閾値電圧Vthが変動する。さらにゲー
ト絶縁層Tの形成の際の熱酸化工程で半絶縁性多結晶シ
リコン膜5中に基体1からの不純物の再拡散、或は上層
のSiO2膜6からの酸素の再拡散によつて膜5の性質
が変化する。本発明は、このような欠点を回避し製造容
易にして安定した特性を有する絶縁ゲート形電界効果ト
ランジスタの製法を提供するものである。
That is, a semi-insulating polycrystalline silicon film 5 is deposited on the entire surface in contact with the substrate 1, and the interface between the film 5 and the substrate 1 is made clear in the subsequent gate window opening process, that is, selective etching process for the film 5.
It is difficult to accurately etch only the film 5.
The surface charge density Qss of the etched gate portion increases, and the threshold voltage Vth of the gate portion fluctuates. Further, during the thermal oxidation process during the formation of the gate insulating layer T, impurities from the substrate 1 are re-diffused into the semi-insulating polycrystalline silicon film 5, or oxygen from the upper SiO2 film 6 is re-diffused. The properties of 5 change. The present invention provides a method for manufacturing an insulated gate field effect transistor that avoids these drawbacks, is easy to manufacture, and has stable characteristics.

以下、本発明による絶縁ゲート形電界効果トランジスタ
の製法を実施例を参照して説明しよう。第2図は本発明
の一実施例を示す工程順の断面図である。先づ、例比ば
比抵抗が2〜3Ωcmの第1導電層半導体基体即ちN形
のシリコン半導体基体11を設け、この一主面上に熱酸
化によつてゲート絶縁層となる厚さ1000A程度のS
iO2膜12を被着形成する(第2図A)。次に、この
SiO2膜12上に爾後ゲート導電層として構成される
例えば厚さ5000λ程度の多結晶シリコン層13をC
VD法により被着形成する(第2図B)。
Hereinafter, a method for manufacturing an insulated gate field effect transistor according to the present invention will be explained with reference to examples. FIG. 2 is a cross-sectional view showing an embodiment of the present invention in the order of steps. First, a first conductive layer semiconductor substrate 11 having a specific resistance of 2 to 3 Ωcm, that is, an N-type silicon semiconductor substrate 11 is provided, and a gate insulating layer with a thickness of about 1000 A is formed on one principal surface by thermal oxidation. S of
An iO2 film 12 is deposited (FIG. 2A). Next, on this SiO2 film 12, a polycrystalline silicon layer 13 with a thickness of, for example, about 5000λ, which will be used as a gate conductive layer, is deposited using carbon dioxide.
Adhesion is formed by VD method (Fig. 2B).

次に、SiO2膜12及び多結晶シリコン層13に対し
てフオトエツチングを行い、ソース及びドレインの拡散
窓14S及び14Dを形成して後、この拡散窓14S及
び14Dを過して第2導電形即ちP形不純物を拡散し、
ソース領域15及びドレイン領域16を形成する。
Next, the SiO2 film 12 and the polycrystalline silicon layer 13 are photo-etched to form source and drain diffusion windows 14S and 14D. Diffuse P-type impurities,
A source region 15 and a drain region 16 are formed.

この工程で、同時に多結晶シリコン層13に対してもP
形不純物をドープし多結晶シリコン層13を導電性にす
る。この工程で、SiO2膜12より成るゲート絶縁層
17及び不純物ドープの多結晶層13より成るゲート導
電層18が形成されると共に、このゲート導電層18が
ソース領域15及びドレイン領域16のセルフアライン
となり、ゲート絶縁層17とソース及びトレー7領域1
5及び16の重なりが少なくなり、浮遊容量の減少が図
れる(第2図C)。次に、ゲート絶縁層17及びゲート
導電層18を残して、他の不要なSiO2膜12及び多
結晶シリコン層13を除去して後、ゲート導電層18上
を含む半導体表面全面にCVD法により厚さ1000A
程度の半絶縁性多結晶シリコン膜19及び厚さ8000
X,程度のSiO2膜20を被着形成する(第2図D及
びE)。
In this step, P is also applied to the polycrystalline silicon layer 13 at the same time.
The polycrystalline silicon layer 13 is made conductive by doping with a type impurity. In this step, a gate insulating layer 17 made of an SiO2 film 12 and a gate conductive layer 18 made of an impurity-doped polycrystalline layer 13 are formed, and this gate conductive layer 18 serves as a self-aligning source for the source region 15 and drain region 16. , gate insulating layer 17 and source and tray 7 regions 1
5 and 16 is reduced, and stray capacitance can be reduced (FIG. 2C). Next, the unnecessary SiO2 film 12 and polycrystalline silicon layer 13 are removed leaving the gate insulating layer 17 and the gate conductive layer 18, and then the entire surface of the semiconductor including the top of the gate conductive layer 18 is coated with a thick layer by CVD. 1000A
semi-insulating polycrystalline silicon film with a thickness of 19 and a thickness of 8000 mm
A SiO2 film 20 having a thickness of about X is deposited (FIG. 2 D and E).

半絶縁性多結晶シリコン膜19は14〜35at0m%
の酸素を含有する多結晶シリコン膜より成り、その比抵
抗は107ΩCm〜10110cmを有するものであり
、CVD法によりSiH4−N2O−N2の反応系を用
いて650℃で成長し得る(第2図E)。然る後、Si
O2膜20及び半絶縁性多結晶シリコン膜19に対し夫
々ゲート、ソース及びドレインの電極窓あけを行い、多
窓孔を通してゲート導電層18VC接するゲート電極G
、ソース領域15に接するソース電極S及びドレイン領
域16に接するドレイン電極Dを形成し、又基体11の
裏面に裏面電極21を形成する。之等各電極G,S,D
及び21は例えばアルミニウム蒸着によつて形成し得る
。斯して、第2図Fに示す如く寄生部が半絶縁性多結晶
シリコン膜19にて被覆された所謂シリコンゲート型の
絶縁ゲート形電界効果トランジスタが得られる。周、本
例ではゲート導電層19として不純物ドープの多結晶シ
リコン13を用いたが、之に代えて例えばモリブデンの
蒸着層を用い、所謂モリブデンゲート型の絶碌ゲート形
電界効果トランジスタとして構成することもできる。
The semi-insulating polycrystalline silicon film 19 has a concentration of 14 to 35 at 0 m%
It is made of a polycrystalline silicon film containing oxygen, and has a specific resistance of 107ΩCm to 10110cm, and can be grown at 650°C using a reaction system of SiH4-N2O-N2 by the CVD method (Fig. 2E). ). After that, Si
Gate, source, and drain electrode windows are formed in the O2 film 20 and the semi-insulating polycrystalline silicon film 19, respectively, and a gate electrode G is formed in contact with the gate conductive layer 18VC through the multiple windows.
, a source electrode S in contact with the source region 15 and a drain electrode D in contact with the drain region 16 are formed, and a back electrode 21 is formed on the back surface of the substrate 11. Each electrode G, S, D
and 21 may be formed, for example, by aluminum vapor deposition. In this way, a so-called silicon gate insulated field effect transistor having a parasitic portion covered with a semi-insulating polycrystalline silicon film 19 is obtained as shown in FIG. 2F. In this example, impurity-doped polycrystalline silicon 13 is used as the gate conductive layer 19, but instead, for example, a vapor deposited layer of molybdenum may be used to configure a so-called molybdenum gate type insulated gate field effect transistor. You can also do it.

かかる製法によれば、ゲート絶縁層17及びゲート導電
層18を形成して後に半絶縁性多結晶シリコン膜19の
形成が行われるので半絶縁性多結晶シリコン膜19が直
接シリコン基体11に接触しない。
According to this manufacturing method, since the semi-insulating polycrystalline silicon film 19 is formed after forming the gate insulating layer 17 and the gate conductive layer 18, the semi-insulating polycrystalline silicon film 19 does not come into direct contact with the silicon substrate 11. .

然も半絶縁性多結晶シリコン膜19VC対するゲート窓
あけ工程がないので、ゲート部での表面電荷密度Qss
の変化がなく従つて閾値電圧Vthが変動せず設計通b
の特性が得られる。又、ゲート絶縁層17の熱酸化は初
めの工程で行われ、半絶縁性多結晶シリコン層19の形
成の後は高温処理がないので、半絶縁性多結晶シリコン
層19に基体11からの不純物、或はSiO2膜20か
らの酸素等が入b込まず半絶縁性多結晶シリコン層19
自体を変質させず寄生部での寄生閾値電圧Thを大なら
しめ得る。更にゲート導電層18がソース領域15及び
ドレイン領域16のセルフアラインとなりゲート絶縁層
17とソース及びドレイン領域15及び16の重なりが
少なく浮遊容量の減少が図れる。第3図は、本発明の他
の実施例である。
However, since there is no gate window opening process for the semi-insulating polycrystalline silicon film 19VC, the surface charge density at the gate part Qss
There is no change in , therefore the threshold voltage Vth does not change and is as designed b
The following characteristics are obtained. In addition, thermal oxidation of the gate insulating layer 17 is performed in the first step, and there is no high-temperature treatment after the formation of the semi-insulating polycrystalline silicon layer 19. , or a semi-insulating polycrystalline silicon layer 19 that does not allow oxygen etc. to enter from the SiO2 film 20.
It is possible to increase the parasitic threshold voltage Th in the parasitic portion without altering itself. Further, the gate conductive layer 18 is self-aligned with the source region 15 and drain region 16, so that there is less overlap between the gate insulating layer 17 and the source and drain regions 15 and 16, and stray capacitance can be reduced. FIG. 3 is another embodiment of the invention.

先づ、例えば比抵抗が2〜3ΩCmのN形シリコン半導
体基体11を用意し、その一主面上に熱酸化によつて厚
さ4000A程度のSiO2膜22を形成する(第3図
A)。このSiO2膜22にフオトエツチングによつて
ソース及びドレインの拡散窓23S及び23Dを形成し
、この拡散窓23S及び23Dを通してP形不純物を拡
散し、基体11内に夫々所定間隔を置いてなるシート抵
抗ρsが50Ω/口程度のソース領域1吸びドレイン領
域16を形成する(第3図B)。
First, an N-type silicon semiconductor substrate 11 having a resistivity of, for example, 2 to 3 ΩCm is prepared, and an SiO2 film 22 having a thickness of about 4000 Å is formed on one main surface thereof by thermal oxidation (FIG. 3A). Source and drain diffusion windows 23S and 23D are formed in this SiO2 film 22 by photo-etching, P-type impurities are diffused through these diffusion windows 23S and 23D, and sheet resistors are formed within the base 11 at predetermined intervals. A source region 1 and a drain region 16 having a ρs of about 50Ω/hole are formed (FIG. 3B).

次に、SiO2膜22を除去して後、基体11の主面全
面に熱酸化によつてゲート絶縁層となる厚さ1000A
程度のSiO2膜12を被着形成し、更にこのSiO2
膜12上にゲート導電層となるモリブデン層24を蒸着
する(第3図C及びD)。
Next, after removing the SiO2 film 22, thermal oxidation is applied to the entire main surface of the base 11 to form a gate insulating layer with a thickness of 1000 Å.
A SiO2 film 12 of about
A molybdenum layer 24, which becomes a gate conductive layer, is deposited on the film 12 (FIGS. 3C and 3D).

次に、モリブデン層24及びSiO2膜12に対して選
択エツチングし、そのソース領域15及びドレイン領域
16間のゲート部に対応する部分を残して、他を全てエ
ツチング除去する。モリブデン層24のエツチング液と
しては例えば塩酸過水(HCt+H2O2混液)が用い
ら八又下層のSiO2膜12はモリブデン層24の選択
エツチング後、残つたモリブデン層をマスクとして選択
エツチングされる。この工程でゲート部上にSiO2膜
12によるゲート絶縁層17が形成され、且つこのゲー
ト絶縁層17上にモリブデン層24によるゲート導電層
25が形成される(第3図E)。次にゲート導電層25
を含む基体11の表面全面に厚さ1000Aの半絶縁性
多結晶シリコン膜19及び厚さ8000AのSiO2膜
20をCVD法により被着形成する。半絶縁性多結晶シ
リコン膜19は第2図で説明したと同様VCl4〜35
原子%の酸素を含有する多結晶シリコン膜を用いる(第
3図F)。然る後、半絶縁性多結晶シリコン膜19及び
SiO2膜20VC対し通常の選択エツチングによつて
電極取出用の窓あけを行い(第3図G)、夫々の窓孔2
6S,26G及び26Dを通してソース電極Sゲート電
極G及びドレイン電極Dを被着し且つ裏面電極21を被
着形成する。
Next, selective etching is performed on the molybdenum layer 24 and the SiO2 film 12, leaving only a portion corresponding to the gate portion between the source region 15 and drain region 16, and removing the rest by etching. For example, hydrochloric acid/hydrogen (HCt+H2O2 mixture) is used as the etching solution for the molybdenum layer 24. After the molybdenum layer 24 is selectively etched, the SiO2 film 12 under the octave is selectively etched using the remaining molybdenum layer as a mask. In this step, a gate insulating layer 17 made of the SiO2 film 12 is formed on the gate portion, and a gate conductive layer 25 made of a molybdenum layer 24 is formed on this gate insulating layer 17 (FIG. 3E). Next, the gate conductive layer 25
A semi-insulating polycrystalline silicon film 19 with a thickness of 1000 Å and an SiO 2 film 20 with a thickness of 8000 Å are deposited over the entire surface of the substrate 11 including the substrate 11 by CVD. The semi-insulating polycrystalline silicon film 19 is made of VCl 4 to 35 as explained in FIG.
A polycrystalline silicon film containing atomic percent oxygen is used (FIG. 3F). After that, windows for taking out the electrodes are formed in the semi-insulating polycrystalline silicon film 19 and the SiO2 film 20VC by ordinary selective etching (FIG. 3G), and each window hole 2 is opened.
A source electrode S, a gate electrode G and a drain electrode D are deposited through 6S, 26G and 26D, and a back electrode 21 is deposited.

斯くて、第3図Hに示す如く寄生部が半絶縁性多結晶シ
リコン膜19VCて被覆された所謂モリブデンゲート型
の絶縁ゲート形電界効果トランジスタを得る。な訃、第
3図の例ではゲート導電層25としてモリブデン蒸着層
を用いたが、之に代えて不純物ドープの多結晶シリコン
を用い、シリコンゲート構造とすることもできる。斯る
製法に卦いても、ゲート絶縁層17及びゲート導電層2
5を形成して後に半絶縁性多結晶シリコン膜19の形成
が行われ、直接半絶縁性多結晶シリコン膜19がシリコ
ン基体11VC接触せず、且つ半絶縁性多結晶シリコン
膜19に対するゲート窓あけ工程がないので、ゲート部
での表面電荷密度Qssの変化がなく従つて閾値電圧T
hが変動せず設計通りの特性が得られる。
Thus, as shown in FIG. 3H, a so-called molybdenum gate type insulated gate field effect transistor whose parasitic portion is covered with a semi-insulating polycrystalline silicon film 19VC is obtained. In the example shown in FIG. 3, a molybdenum vapor deposited layer is used as the gate conductive layer 25, but impurity-doped polycrystalline silicon may be used instead to form a silicon gate structure. Even with such a manufacturing method, the gate insulating layer 17 and the gate conductive layer 2
After forming 5, a semi-insulating polycrystalline silicon film 19 is formed, so that the semi-insulating polycrystalline silicon film 19 does not directly contact the silicon substrate 11VC, and a gate window is opened for the semi-insulating polycrystalline silicon film 19. Since there is no process, there is no change in the surface charge density Qss at the gate, and therefore the threshold voltage T
Characteristics as designed can be obtained without fluctuation of h.

同時に半絶縁性多結晶シリコン層19の形成前にゲート
絶縁層17の熱酸化が行なわれるので半絶縁性多結晶シ
リコン層19の膜質は維持される。周、上例の第2図及
び第3図においては絶縁ゲート構造として熱酸化による
SiO2膜を用いたが、その他SiO2及びSi3O4
等酸化膜を含む多層絶縁ゲート構造、或は不揮発生メモ
リーゲート構造等にも適用できる。
At the same time, since thermal oxidation of gate insulating layer 17 is performed before forming semi-insulating polycrystalline silicon layer 19, the film quality of semi-insulating polycrystalline silicon layer 19 is maintained. In the above example of FIGS. 2 and 3, a thermally oxidized SiO2 film was used as the insulated gate structure, but other SiO2 and Si3O4
It can also be applied to a multilayer insulated gate structure including a uniform oxide film, a non-volatile memory gate structure, etc.

上述せる如く、本発明は製造容易にして素子の特件を損
なわずに寄生部に対してその寄生MOSの発生阻止にす
ぐれた特性を有する半絶縁性多結晶シリコン膜を被覆で
きるものであり、信頼性の高い絶縁ゲート形電界効果ト
ランジスタ及びその集積回洛が得られる。
As described above, the present invention enables easy manufacturing and coating of parasitic parts with a semi-insulating polycrystalline silicon film having excellent properties for preventing the generation of parasitic MOS without impairing the characteristics of the device. A highly reliable insulated gate field effect transistor and its integrated circuit can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に供する絶縁ゲート形電界効果ト
ランジスタの製法の一例を示す工程順の断面図、第2図
は本発明製法の一実施例を示す工程順の断面図、第3図
は本発明製法の他の実施例を示す工程順の断面図である
。 11は半導体基体、12はSiO2膜、13は多結晶シ
リコン層、15及び16はソース領域及びドレイン領域
、17はゲート絶縁層、181坏純物ドープの多結晶シ
リコンよりなるゲート導電層、19は半絶縁性多結晶シ
リコン膜、20はSiO2膜、25はモリブデンよりな
るゲート導電層である。
FIG. 1 is a cross-sectional view showing an example of a manufacturing method of an insulated gate field effect transistor according to the present invention, FIG. 2 is a cross-sectional view showing an example of a manufacturing method of the present invention, and FIG. 3A and 3B are cross-sectional views illustrating another embodiment of the manufacturing method of the present invention in the order of steps. 11 is a semiconductor substrate; 12 is a SiO2 film; 13 is a polycrystalline silicon layer; 15 and 16 are source and drain regions; 17 is a gate insulating layer; A semi-insulating polycrystalline silicon film, 20 a SiO2 film, and 25 a gate conductive layer made of molybdenum.

Claims (1)

【特許請求の範囲】[Claims] 1 ソース及びドレインを形成する工程と、ゲート絶縁
層及びゲート導電層を少くとも上記ソース及びドレイン
間に形成する工程と、上記2つの工程の後に上記ソース
及びドレインの一部の表面と寄生部の半導体表面に半絶
縁層を被着形成する工程と、所定の電極を形成する工程
とを含む絶縁ゲート形電界効果トランジスタの製法。
1. A step of forming a source and a drain, a step of forming a gate insulating layer and a gate conductive layer at least between the source and the drain, and after the above two steps, forming a part of the surface of the source and the drain and a parasitic part. A method for manufacturing an insulated gate field effect transistor, which includes the steps of depositing a semi-insulating layer on a semiconductor surface and forming a predetermined electrode.
JP10640576A 1976-09-06 1976-09-06 Manufacturing method of insulated gate field effect transistor Expired JPS5940307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10640576A JPS5940307B2 (en) 1976-09-06 1976-09-06 Manufacturing method of insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10640576A JPS5940307B2 (en) 1976-09-06 1976-09-06 Manufacturing method of insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JPS5331977A JPS5331977A (en) 1978-03-25
JPS5940307B2 true JPS5940307B2 (en) 1984-09-29

Family

ID=14432760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10640576A Expired JPS5940307B2 (en) 1976-09-06 1976-09-06 Manufacturing method of insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS5940307B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233801A (en) * 1985-08-05 1987-02-13 日交化工材株式会社 Method for holding article worn to body
JPS6451604U (en) * 1987-09-24 1989-03-30

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643457A (en) * 1979-09-18 1981-04-22 Japan Vilene Co Ltd Production of nonwoven fabric molded article
JPS63196751A (en) * 1987-02-05 1988-08-15 帝人株式会社 Polyester binder fiber for nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233801A (en) * 1985-08-05 1987-02-13 日交化工材株式会社 Method for holding article worn to body
JPS6451604U (en) * 1987-09-24 1989-03-30

Also Published As

Publication number Publication date
JPS5331977A (en) 1978-03-25

Similar Documents

Publication Publication Date Title
US4746628A (en) Method for making a thin film transistor
US4716131A (en) Method of manufacturing semiconductor device having polycrystalline silicon layer with metal silicide film
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JP2925008B2 (en) Method for manufacturing semiconductor device
JPS6237551B2 (en)
KR910006700B1 (en) The method of manufacturing of mos type semiconductor device
JPS5940307B2 (en) Manufacturing method of insulated gate field effect transistor
JPS5847860B2 (en) Hand tie souchi
JPS5816341B2 (en) Manufacturing method of semiconductor device
JPS6159539B2 (en)
JPH03259564A (en) Manufacture of semiconductor device
JPH0196960A (en) Semiconductor device
JPS6237541B2 (en)
JPH01260857A (en) Semiconductor device and manufacture thereof
JPS5918872B2 (en) Manufacturing method of insulated gate field effect semiconductor device
JPH04370956A (en) Semiconductor device
JPS592191B2 (en) Method for manufacturing electrodes for semiconductor devices
JPS6057974A (en) Manufacture of semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS6132830B2 (en)
JPS6395664A (en) Semiconductor device and manufacture thereof
JPS6255312B2 (en)
JPS5975664A (en) Manufacture of insulated gate type field-effect transistor
JPH0225261B2 (en)
JPH06275839A (en) Manufacture of vertical semiconductor element