JPS5938375A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS5938375A
JPS5938375A JP57147932A JP14793282A JPS5938375A JP S5938375 A JPS5938375 A JP S5938375A JP 57147932 A JP57147932 A JP 57147932A JP 14793282 A JP14793282 A JP 14793282A JP S5938375 A JPS5938375 A JP S5938375A
Authority
JP
Japan
Prior art keywords
electrode
gas
raw material
cylindrical
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57147932A
Other languages
Japanese (ja)
Inventor
Yasutomo Fujiyama
藤山 靖朋
Osamu Kamiya
神谷 攻
Shigeru Shirai
茂 白井
Junichiro Kanbe
純一郎 神辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57147932A priority Critical patent/JPS5938375A/en
Publication of JPS5938375A publication Critical patent/JPS5938375A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit uniformly a photosensitive film, etc. having good reproducibility on a base body, by forming a cylindrical electrode for forming a vacuum chamber into a double-walled construction to form a gas chamber, and opening many holes for releasing a gaseous raw material in parallel arrays on the surface of the electrode wall. CONSTITUTION:A cathode electrode 1 for forming a part of a vacuum chamber 3 is made into a double-walled construction to form a gas chamber in the electrode. Plural arrays of holes 11 for releasing a gaseous raw material are formed to the inside wall on the chamber 3 side along the central axis. A cylindrical base body 2 is set in the chamber 3 and while the base body is rotated, the gaseous raw material is supplied through a gas supply pipe 6 into the chamber 3. The gaseous raw material is filled once in the gas chamber and is then released through the respective holes 11 toward the body 2. A photosensitive drum for electrophotography, etc. are stably mass-produced by the above-mentioned device.

Description

【発明の詳細な説明】 本発明は、基体上に堆積膜を形成するプラズマCVD装
置に関するもので、例えば電子写真用感光体ドラムΣ・
連続的に生産し、特にプラズマCVD技術を用いて円筒
状基体表面にアモルファス・シリコン膜を堆積し、感光
体ドラムを連続的に生産するのに使用することのできる
プラズマCVD装置−更に同一反応室内に各種原料ガス
を適当に供給する事によシシリコンナイトライド(Si
N )膜、シリコンオキシナイトライド(5soN )
膜、シリコンオキサイド(8102)膜、シリコンカー
バイト(StC)膜を上記感光体ドラム表面に連続的に
積層堆積し、感光体ドラムの帯電特性を向上させ、かつ
感光体ドラム表面の耐湿・耐摩耗特性を向上させること
も可能とするプラズマCVD装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma CVD apparatus for forming a deposited film on a substrate.
A plasma CVD apparatus which can be used for continuous production and in particular for the continuous production of photoreceptor drums by depositing an amorphous silicon film on the surface of a cylindrical substrate using plasma CVD technology - and also within the same reaction chamber. Silicon nitride (Si
N) membrane, silicon oxynitride (5soN)
A film, a silicon oxide (8102) film, and a silicon carbide (StC) film are continuously deposited on the surface of the photoreceptor drum to improve the charging characteristics of the photoreceptor drum and to improve the moisture resistance and wear resistance of the photoreceptor drum surface. The present invention relates to a plasma CVD apparatus that also makes it possible to improve characteristics.

尚、以下の説明においては、主として堆積膜を形成する
基体を電子写真用円筒状基体とした実施例に関して本発
明を説明するが、本発明装置は長方形の基体を円筒状の
対向電極上に多角形を成すように配置し、アモルファス
感光体膜や演算素子用アモルファス半導体膜を堆積する
目的にも利用することができ、また、金型。
In the following explanation, the present invention will be mainly explained with reference to an embodiment in which the substrate on which the deposited film is formed is a cylindrical substrate for electrophotography, but the present invention apparatus uses a rectangular substrate on a cylindrical counter electrode. Arranged to form a rectangular shape, it can also be used for the purpose of depositing an amorphous photoreceptor film or an amorphous semiconductor film for arithmetic elements, and can also be used as a mold.

バイト等の摩耗し易い工具等の表面に超硬質膜を堆積す
ることによって、耐摩耗性を向上させ、寿命を延ばす目
的にも利用することができる。
By depositing an ultra-hard film on the surface of tools that are prone to wear, such as bits, it can be used to improve wear resistance and extend the life of tools.

このような従来型の円筒状プラズマCVD装置の代表的
な一例の概略を第1図に示す。第1図中、1は真空チャ
ンバーを構成している円筒状のカソード電極、2は該真
空チャンバーの中心軸の周りに回転するようにこれと同
心に配置された対向電極たるアノード電極を溝底してい
る円筒状の基体、3は該真空チャンバーの上下の壁体、
4は該壁体を該カソード電極から絶縁するだめのドーナ
ツ形の絶縁がイシ、5は高周波電源、6は原料ガス供給
パイノ°、7は排気系、8はヒーター、9は上記の円筒
状の基体を回転する回転機構、10はアース、11は原
料ガス放出穴を示す。
A typical example of such a conventional cylindrical plasma CVD apparatus is schematically shown in FIG. In Fig. 1, 1 is a cylindrical cathode electrode constituting a vacuum chamber, and 2 is an anode electrode that is a counter electrode arranged concentrically with the vacuum chamber so as to rotate around the central axis of the vacuum chamber. 3 is the upper and lower walls of the vacuum chamber;
4 is a donut-shaped insulator that insulates the wall from the cathode electrode, 5 is a high frequency power source, 6 is a raw material gas supply pipe, 7 is an exhaust system, 8 is a heater, and 9 is the cylindrical insulator mentioned above. A rotation mechanism for rotating the base body, 10 is a ground, and 11 is a raw material gas discharge hole.

上記のプラズマCVD装置の動作を簡単に説明する。The operation of the above plasma CVD apparatus will be briefly explained.

まず、真空チャンバー内に円筒状の基体2をセットし、
排気系7によってチャンバー内を真空にする。同時に基
体2をヒータ8によって加熱し、基体2を回転機構9に
よって回転し、基体の温度分布を均一にする。この時、
ヒーターは固定されている。基体温度が一定になったら
、ガス供給パイf6から原料ガスを真空チャンバー内に
供給する・原料ガスは円筒状の電極の多数のガス放出穴
から基体2に向けて放出される。真空チャンバー内にガ
スが安定して供給されている状態で13.56MHzの
高周波電源5によりカソード電極1に高周波電圧を印加
し、アース接地された基体20間でグロー放電を発生さ
せ、カソード電極から飛び出した電子のガス分子への衝
突により、ガス分子をラジカル反応させて基体上に堆積
させ、基体2上に堆積膜、例えばアモルファスシリコン
膜を成膜する。
First, a cylindrical base 2 is set in a vacuum chamber,
The inside of the chamber is evacuated by the exhaust system 7. At the same time, the base body 2 is heated by the heater 8, and the base body 2 is rotated by the rotation mechanism 9, thereby making the temperature distribution of the base body uniform. At this time,
The heater is fixed. When the temperature of the substrate becomes constant, raw material gas is supplied into the vacuum chamber from the gas supply pipe f6. The raw material gas is discharged toward the substrate 2 from the numerous gas discharge holes of the cylindrical electrode. With gas being stably supplied into the vacuum chamber, a high frequency voltage is applied to the cathode electrode 1 by a 13.56 MHz high frequency power source 5 to generate a glow discharge between the grounded bases 20 and from the cathode electrode. The collision of the ejected electrons with the gas molecules causes the gas molecules to undergo a radical reaction and is deposited on the substrate, forming a deposited film, for example, an amorphous silicon film, on the substrate 2.

上記のようなプラズマCVD装置において、堆積した膜
の膜厚分布は装置の排気口の位置や、原料ガス流量、放
電時の高周波電力の大きさによる膜の堆積速度、さらに
は真空度や、原料ガス放出穴の位置によって変化する。
In the above-mentioned plasma CVD apparatus, the thickness distribution of the deposited film depends on the position of the exhaust port of the apparatus, the flow rate of the raw material gas, the film deposition rate depending on the magnitude of high-frequency power during discharge, the degree of vacuum, and the raw material. Varies depending on the position of the gas release hole.

アモルファス・シリコン感光体膜の利用目的からすれば
、大面積の基体上に広範囲な膜厚分布の均一性が要求さ
れる。
Considering the purpose of using an amorphous silicon photoreceptor film, uniformity of the film thickness distribution over a wide range is required on a large area substrate.

プラズマCVD装置では、ガス流量や、高周波電力の大
きさ、真空度等は膜舜性に影響をおよぼすため、膜厚分
布を調整する手段として用いることはできない。排気口
の位置も、装置構成上自由に変更することは難しい。す
なわち、膜厚分布を調整する方法としては、ガス放出穴
の穴径や位置を調整することが、最も容易な手段と考え
られる。
In a plasma CVD apparatus, the gas flow rate, the magnitude of high-frequency power, the degree of vacuum, etc. affect the film flexibility, and therefore cannot be used as means for adjusting the film thickness distribution. It is also difficult to freely change the position of the exhaust port due to the device configuration. That is, as a method for adjusting the film thickness distribution, adjusting the hole diameter and position of the gas discharge hole is considered to be the easiest means.

一方、プラズマCVD装置では、特定の膜特性を得る為
にガス流量や流速を選定する必要があり膜厚分布もその
つど変動するために、ガス放出穴の穴径や位置は選択の
自由度が高いものであることが要求される。従来の円筒
状壁面放出型のプラズマCVD装置には、原料ガス放出
穴を不規則に多数個開口したものや、回転軸方向に多数
列開口したものがほとんどで、穴数が多過ぎるため、膜
厚分布の均一化のために最適な穴位置を選択するのが難
しかった。また、穴径の自由度に対してほとんど考慮さ
れていなかったため、膜厚分布の調整は穴位置の選定の
みにたよっていた。このため、有効権扶範囲が広くなる
のに比例して、その膜厚分布調整が難しくなるという欠
点が有った0本発明は、上述の従来型円筒状プラズマC
VD装置における欠点を除去するとともに、プラズマC
VD装置における膜厚分布調整を大幅に改善しようとす
るもので、その特徴とするところは、円筒状心極の壁面
に、該電極の中心軸に平行な列をなすように原料ガス放
出穴を多数個開口せしめ、且つ該円筒状電極を二重壁構
造として電極間にガス室を形成したことにある。然して
カソードを極壁面に開口したガス放出穴を基体の表面積
に比例して1〜10列とし、膜厚分布上問題の無い程度
にまで開口数を限定することによって、膜厚分布とガス
放出穴の開口位置との相関関係を明確にし、膜厚分布調
整を容易にすることが可能となり、基体を中心軸のまわ
りに回転することで膜厚の均一化も保障される。さらに
、ガス放出穴にネジ穴〃口工を施こして、この穴にとり
つけるネジに穴径の異なる放出口を設けることによって
膜厚分布の微調整が可能になり、大面積基体上へのアモ
ルファスシリコン感光体膜の均一堆積を可能にするもの
である。
On the other hand, in plasma CVD equipment, it is necessary to select the gas flow rate and flow rate in order to obtain specific film characteristics, and the film thickness distribution also changes each time, so there is a degree of freedom in selecting the hole diameter and position of the gas release hole. It is required to be high. Most conventional cylindrical wall discharge type plasma CVD apparatuses have many irregularly opened raw material gas discharge holes or many rows of openings in the direction of the rotation axis. It was difficult to select the optimal hole position for uniform thickness distribution. Furthermore, since little consideration was given to the degree of freedom of the hole diameter, adjustment of the film thickness distribution relied only on the selection of hole positions. For this reason, the present invention has the disadvantage that it becomes difficult to adjust the film thickness distribution in proportion to the wider range of effective rights.
In addition to eliminating the drawbacks of VD equipment, plasma C
This is intended to significantly improve the film thickness distribution adjustment in VD equipment, and its feature is that raw material gas discharge holes are formed on the wall of the cylindrical core electrode in a row parallel to the central axis of the electrode. The cylindrical electrode has a double-walled structure, and a gas chamber is formed between the electrodes by providing a large number of openings. However, by arranging 1 to 10 rows of gas release holes opened in the cathode's extreme wall surface in proportion to the surface area of the substrate, and by limiting the number of openings to an extent that does not cause problems in film thickness distribution, the film thickness distribution and gas release holes can be improved. This makes it possible to clarify the correlation with the opening position of the substrate, making it possible to easily adjust the film thickness distribution, and by rotating the base body around the central axis, it is possible to ensure uniform film thickness. Furthermore, fine adjustment of the film thickness distribution is possible by drilling a screw hole in the gas release hole and providing a screw with a different hole diameter to attach it to the hole. This enables uniform deposition of a silicon photoreceptor film.

以下に、実施例装置に基いて本発明の詳細な説明する。The present invention will be described in detail below based on an example device.

第2図は本発明に係るプラズマCVD装置の第1の実施
例を示す。図中、第1図に示す装置における部分と同様
の部分は同じ参照数字によって指示しである・図中、1
は真空チャンバーを構成している円筒状のカソード電極
、2は該真空チャンバーの中心軸の周りに回転するよう
にこれと同心に配置されたアノード電極を構成する円筒
状の基体、3は該カソード電極の上下で真空チャンバー
を構成している壁体、4は該壁体を該カソード正極がら
絶縁するためのドーナツ形の絶縁ガイシ、5はカソード
正極に高周波電力を供給しグロー放′FL71!−起こ
すだめの高周波電源、6は原料ガス供給パイプ、7は真
空チャンバーを真空に保つだめの排気系、8は円筒状の
基体を加熱するだめのヒーター、9は円筒状の基体を回
転させて堆積膜の膜厚を均一にするだめの回転機構、1
0はアース、11は原料ガス放出穴、12は円筒状基体
回転用のモータを示す。
FIG. 2 shows a first embodiment of a plasma CVD apparatus according to the present invention. In the figures, parts similar to those in the apparatus shown in Figure 1 are designated by the same reference numerals.In the figures, 1
2 is a cylindrical cathode electrode constituting a vacuum chamber; 2 is a cylindrical base body constituting an anode electrode arranged concentrically with the central axis of the vacuum chamber; 3 is the cathode; A wall body forming a vacuum chamber above and below the electrode, 4 a donut-shaped insulating insulator for insulating the wall body from the cathode positive electrode, 5 supplying high frequency power to the cathode positive electrode and emitting glow 'FL71! - A high-frequency power supply to wake up, 6 a raw material gas supply pipe, 7 an exhaust system to keep the vacuum chamber in a vacuum, 8 a heater to heat the cylindrical base, 9 to rotate the cylindrical base. Rotating mechanism for making the thickness of the deposited film uniform, 1
0 indicates a ground, 11 indicates a raw material gas discharge hole, and 12 indicates a motor for rotating the cylindrical base body.

カソード電極1は、真空チャンバーの一部を兼ねた円筒
状二重壁構造のものとして構成されて電極内にガス室全
形成している◎然して、その真空チャン・9−側の内壁
に、中心軸方向に沿って4列をなして並らんだ多数の原
料ガス放出穴11が開口している。各原料ガス放出穴1
1にはネジ加工が施こされていて、円筒状の基体の表面
に堆積する膜の膜厚分布調整を行なう場合、不用な穴を
ネジにより塞ぐことができ、また、原料ガスを吹き付け
るだめのネジ穴に取付けるネジの中心にガス放出口を設
け、該放出口の穴径を変えたネジを該ネジ穴に取付ける
ことにより、ガス放出量を変えて膜厚分布を調整できる
ようになっている。
The cathode electrode 1 is constructed as a cylindrical double-walled structure that also serves as a part of the vacuum chamber, and a gas chamber is entirely formed within the electrode. A large number of raw material gas discharge holes 11 are opened in four rows along the axial direction. Each raw material gas release hole 1
1 is threaded, so that when adjusting the thickness distribution of the film deposited on the surface of the cylindrical substrate, unnecessary holes can be plugged with the screws. A gas release port is provided in the center of the screw that is installed in the screw hole, and by installing screws with different hole diameters in the screw hole, the amount of gas released can be changed and the film thickness distribution can be adjusted. .

第3図は、上記の本発明の第1の実施例によるプラズマ
CVD装置の円筒状二重構造カソード正極の断面を示す
。図中1mは該′カソード正極の大気側壁面でちり、1
bはガス放出穴を開けた真空側壁面、11はネジ加工さ
れ等間隔に開けられた原料ガス放出穴である。
FIG. 3 shows a cross section of a cylindrical double structure cathode positive electrode of a plasma CVD apparatus according to the first embodiment of the present invention. In the figure, 1 m is the atmospheric side wall surface of the cathode positive electrode, and 1 m is the dust.
b is a vacuum side wall surface with gas release holes, and 11 is a threaded raw material gas release hole opened at equal intervals.

第4図(イ)(ロ)は、上記の装置のガス放出穴に取付
けるだめの六角穴付ネジを示す。第4図(イ)において
、13はガス放出口を設けた六角穴付ネジ、14はガス
放出口を示し、ガス放出口14の穴径を変えたネジを取
り換えることによってガス放出量を変え、膜厚制御を行
なうことができる◎第4図←)の15はガス放出口の無
い六角穴付ネジであシ、膜厚分布調整の際不用となった
ガス放出口を塞ぐ目的に使用する。
Figures 4(a) and 4(b) show hexagon socket head screws to be attached to the gas discharge hole of the above device. In FIG. 4(A), 13 is a hexagonal socket screw with a gas discharge port, 14 is a gas discharge port, and by replacing the screw with a different hole diameter of the gas discharge port 14, the amount of gas released can be changed. Film thickness can be controlled. ◎ Figure 4 ←) 15 is a hexagon socket head screw without a gas discharge port, and is used to close the gas discharge port that is no longer needed when adjusting the film thickness distribution.

次に、上記の装置の各部の動作を順を追って説明する。Next, the operation of each part of the above device will be explained in order.

まず、真空チャンバー内に円筒状の基体2をセットし、
排気系7によってチャンバー内を真空にする。同時に基
体2をヒーター8によって加熱し、基体2をモーター1
2に連結された回転軸によって回転し、基体の温度分布
を均一にする。この時、ヒーターは固定されている。基
体温度が一定になったら、ガス供給バイブロから原料ガ
スを真空チャンバー内に供給する。原料ガスは円筒二重
壁によって囲まれたカソード電極1内のガス室に送られ
る。ζこで、ガス供給ノ?イグ6はガス放出穴11の列
の中間位置に取り付けられているため、ガス室に送られ
た原料ガスは直接ガス放出穴から放出されず、一度ガス
室内に充満し各ガス放出穴から基体に向って放出される
。各放出穴から放出されるガス量は、放出穴に取付けら
れたネジに開けられたガス放出口の穴径によって制御さ
れる。真空チャンバー内にガスが安定して供給されてい
る状態で13.56 ?vIHzO高周波電源5によシ
カソード電極1に高周波電圧を印加し、アース接地され
た基体2の間でグロー放電を発生させ、カソード電極か
ら飛び出した電子のガス分子への衝突によシ、ガス分子
をラジカル反応させて基体上に堆積させ、堆積膜例えば
アモルファスシリコン膜を成膜する。
First, a cylindrical base 2 is set in a vacuum chamber,
The inside of the chamber is evacuated by the exhaust system 7. At the same time, the base 2 is heated by the heater 8, and the base 2 is heated by the motor 1.
It is rotated by a rotating shaft connected to 2 to make the temperature distribution of the substrate uniform. At this time, the heater is fixed. When the substrate temperature becomes constant, raw material gas is supplied into the vacuum chamber from the gas supply vibro. The source gas is sent to a gas chamber within the cathode electrode 1 surrounded by a cylindrical double wall. ζWhere is the gas supply? Since the IG 6 is installed in the middle of the row of gas discharge holes 11, the raw material gas sent to the gas chamber is not directly discharged from the gas discharge holes, but is once filled in the gas chamber and then released from each gas discharge hole into the base. It is released towards the target. The amount of gas released from each discharge hole is controlled by the diameter of the gas discharge port drilled in the screw attached to the discharge hole. 13.56 when gas is stably supplied to the vacuum chamber. A high frequency voltage is applied to the cathode electrode 1 by the vIHzO high frequency power supply 5, a glow discharge is generated between the earthed base 2, and the electrons ejected from the cathode electrode collide with the gas molecules, causing the gas molecules to A radical reaction is caused to deposit on the substrate to form a deposited film such as an amorphous silicon film.

第5図は、本発明の他の実施例を示す。この実施例は、
基本的には第2図に示す実施例と同様カソード電極が真
空チャンバー壁の一部を兼ねる構造とし、カソード電極
に開けられた原料ガス放出口の列数と、真空チャンバー
内に収納されている円筒状基体の数、及び該円筒状基体
の回転機構が異なるのみで、池の部分は同様の構造を有
するものであるので、同様の部分は同じ参照数字により
指示して、その詳細な説明は省略する。
FIG. 5 shows another embodiment of the invention. This example is
Basically, the structure is similar to the embodiment shown in Fig. 2, in which the cathode electrode also serves as a part of the wall of the vacuum chamber, and the number of rows of raw material gas discharge ports opened in the cathode electrode and the number of rows of raw material gas discharge ports that are housed in the vacuum chamber are determined. Since the pond parts have the same structure except for the number of cylindrical base bodies and the rotation mechanism of the cylindrical base bodies, similar parts will be designated by the same reference numerals and detailed description thereof will be omitted. Omitted.

第5図の実施例において第2図の実施例と大きく異なる
部分は、4本の円筒状の基体2a 、 2b2c、2d
がカソード電極1の中心軸を共有する円周上に配置され
、該カソード電極の中心軸に配置した円筒゛状基体回転
機構12によって中心軸のまわシを自公転するようにし
たことおよび円筒状基体が4本となり堆積面積が広くな
ったため、膜厚分布調整をより広範囲に行なわなければ
ならないことから、カソード電極lの真空側内壁に開口
した原料ガス放出口11を8列にしたことである。
The major difference between the embodiment shown in FIG. 5 and the embodiment shown in FIG. 2 is that the four cylindrical base bodies 2a, 2b2c, 2d
are arranged on a circumference sharing the central axis of the cathode electrode 1, and the rotation of the central axis is made to rotate around itself by a cylindrical base rotation mechanism 12 arranged at the central axis of the cathode electrode, and the cylindrical Since there are four substrates and the deposition area is wider, it is necessary to adjust the film thickness distribution over a wider range, so the raw material gas discharge ports 11 opened in the vacuum side inner wall of the cathode electrode l are arranged in eight rows. .

第5図に示す実施例装置も各部の基本動作は同じである
が、基体回転機構9によって各基体2a+2b 、2c
 、2aは自公転し均一成膜を可能としている。
The basic operation of each part is the same in the embodiment shown in FIG.
, 2a rotate around their axis and enable uniform film formation.

以上説明したように、本発明によるプラズマCVD装置
は、カソード電極に開口した原料ガス放出口の大数を少
なくシ、円筒状基体の回転軸に平行に直列配置すること
によって、回転軸方向の膜厚分布調整を容易にする効果
がある@さらに、ガス放出口に取付ける六角穴付ネジに
穴径の異なるガス放出口を開けることによって、ガス放
出量を回転軸に沿って調整することができ、膜厚分布の
微調整を可能とする効果がある。1だ、従来装置では膜
厚分布調整が複雑になる大面積基体への成膜も、本発明
を使用することによっ−C膜厚分布調整が容易となるば
かシでなく、堆積膜厚の均一性、堆積膜特性の再現性も
良好になるという効果があり、本装置の使用目的の一つ
である電子写真用感光体ドラムの量産を、安価にかつ安
定して行ない得る効果がある。
As explained above, the plasma CVD apparatus according to the present invention reduces the number of raw material gas discharge ports opened in the cathode electrode, and by arranging them in series parallel to the rotation axis of the cylindrical base, the film is formed in the direction of the rotation axis. It has the effect of making it easier to adjust the thickness distribution@Furthermore, by drilling gas discharge ports with different hole diameters in the hexagonal socket screw attached to the gas discharge port, the amount of gas discharge can be adjusted along the rotation axis. This has the effect of making it possible to finely adjust the film thickness distribution. 1. By using the present invention, it becomes easy to adjust the thickness distribution of -C even when depositing a film on a large area substrate, where adjustment of the film thickness distribution is complicated using conventional equipment. This has the effect of improving the uniformity and reproducibility of the deposited film characteristics, and has the effect of making it possible to mass-produce electrophotographic photosensitive drums, which is one of the purposes for which this apparatus is used, at low cost and stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来型の円筒形プラズマCVD装置の代表的な
一例を示す概略断面図、第2図は本発明フ。 ラズマCVD装誼の第1の実施例を下す一部矢切斜視図
、第3図はカソード電極の断面図、第4図G)(ロ)は
、それぞれ、ガス放出穴に取付ける六角穴付ネジのIl
1面図、第5図は本発明プラズマCVD装置の第2の実
施例を示す一部矢切斜視図でおる01は円筒状カソード
電極、2は円筒状基体、3は真・空チャンバーの壁体、
4はドーナッツ状絶縁ガイシ、5は高周波電源、6は原
料ガス供給・ξイン0.7は排気系、8は基体加熱用ヒ
ーター、9は基体回転機構、10はアース、11は原料
ガス放出穴、12は基体回転用のモータ、13はガス放
出口を有する六角穴付ネジ、14はガス放出口、15は
ガス放出口を塞ぐだめの六角穴付ネジであるO 馬1図
FIG. 1 is a schematic cross-sectional view showing a typical example of a conventional cylindrical plasma CVD apparatus, and FIG. 2 is a diagram showing the present invention. Fig. 3 is a cross-sectional view of the cathode electrode, and Fig. 4 (G) (b) is a hexagon socket head screw installed in the gas discharge hole. Il of
1 and 5 are partially arrow-cut perspective views showing a second embodiment of the plasma CVD apparatus of the present invention. 01 is a cylindrical cathode electrode, 2 is a cylindrical base, and 3 is a wall of a vacuum/empty chamber. body,
4 is a donut-shaped insulating insulator, 5 is a high-frequency power supply, 6 is a raw material gas supply/ξin 0.7 is an exhaust system, 8 is a heater for heating the base body, 9 is a base rotation mechanism, 10 is ground, 11 is a raw material gas discharge hole , 12 is a motor for rotating the base, 13 is a hexagon socket screw with a gas discharge port, 14 is a gas discharge port, and 15 is a hexagon socket screw for blocking the gas discharge port.

Claims (4)

【特許請求の範囲】[Claims] (1)真空チャンバーを構成している円筒状電極および
該真空チャンバーの中心軸の周りに回転するように配置
された対向電極を備え、上記の電極に設けた多数の穴か
ら原料ガスを放出し、上記の対向電極上の基体に原料ガ
スを吹付けて該基体上に堆積膜を形成するプラズマCV
D装置において、上記の円筒状電極の壁面に、該電極の
中心軸に平行な列をなすように原料ガス放出穴を多数個
開口せしめ、且つ該円筒状電極を二重壁構造として、電
極内にガス室を形成したことを特徴とするプラズマCV
D装置。
(1) A vacuum chamber is equipped with a cylindrical electrode and a counter electrode arranged to rotate around the central axis of the vacuum chamber, and raw material gas is released from a number of holes provided in the electrode. , plasma CV in which a source gas is sprayed onto the substrate on the counter electrode to form a deposited film on the substrate;
In apparatus D, a large number of raw material gas discharge holes are opened in the wall surface of the cylindrical electrode in a row parallel to the central axis of the electrode, and the cylindrical electrode has a double wall structure, so that the inside of the electrode is A plasma CV characterized by forming a gas chamber in
D device.
(2)該真空チャンバー内に、複数個の円筒状基体を、
その中心軸が該真空チャンバーの中心軸に平行になるよ
うに配置した特許請求の範囲第(1)項記載のプラズマ
CVD装置。
(2) A plurality of cylindrical substrates are placed in the vacuum chamber,
The plasma CVD apparatus according to claim 1, wherein the plasma CVD apparatus is arranged so that its central axis is parallel to the central axis of the vacuum chamber.
(3)原料ガスを吹き付けるだめの穴に不ノ穴加工を施
こし、円筒状基体表面に堆積する膜の膜厚分布調整を行
なう場合、不用な穴をネジによシ塞ぐことができるよう
にした特許請求の範囲第(1)項記載のプラズマCVD
装置。
(3) When adjusting the film thickness distribution of the film deposited on the surface of the cylindrical substrate by applying a hole-free process to the hole in which the source gas is sprayed, unnecessary holes can be plugged with screws. Plasma CVD according to claim (1)
Device.
(4)原料ガスを吹き付けるだめのネジ穴に取付けるネ
ジの中心にガス放出口を設け、該放出口の穴径を変えた
ネジを該ネジ穴に取付けることによシ、ガス放出量を変
えて膜厚分布を調整できるようにした特許請求の範囲第
(2)項記載のプラズマCVD装置。
(4) The amount of gas released can be changed by providing a gas release port in the center of the screw that is attached to the screw hole for spraying the raw material gas, and installing a screw with a different diameter of the release port into the screw hole. A plasma CVD apparatus according to claim (2), wherein the film thickness distribution can be adjusted.
JP57147932A 1982-08-26 1982-08-26 Plasma cvd device Pending JPS5938375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147932A JPS5938375A (en) 1982-08-26 1982-08-26 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147932A JPS5938375A (en) 1982-08-26 1982-08-26 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS5938375A true JPS5938375A (en) 1984-03-02

Family

ID=15441326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147932A Pending JPS5938375A (en) 1982-08-26 1982-08-26 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS5938375A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213439A (en) * 1983-05-18 1984-12-03 Kyocera Corp Capacity coupling type glow discharge decomposition apparatus
JPS62180086A (en) * 1986-01-31 1987-08-07 Kyocera Corp Glow dicharge decomposition device
JPS62218572A (en) * 1986-03-19 1987-09-25 Canon Inc Device for forming deposited film by plasma cvd method
JPS6481215A (en) * 1987-09-22 1989-03-27 Nec Corp Vapor growth apparatus
JPH01119057U (en) * 1988-01-30 1989-08-11
JPH0737832A (en) * 1993-07-24 1995-02-07 Yamaha Corp Vertical heat-treating device
JP2011242424A (en) * 2010-05-14 2011-12-01 Canon Inc Electrophotographic photoreceptor production apparatus
CN106622824A (en) * 2016-11-30 2017-05-10 无锡荣坚五金工具有限公司 Plasma polymerized coating device
US11332829B2 (en) 2016-11-30 2022-05-17 Jiangsu Favored Nanotechnology Co., LTD Plasma polymerization coating with uniformity control
US11339477B2 (en) 2016-11-30 2022-05-24 Jiangsu Favored Nanotechnology Co., LTD Plasma polymerization coating apparatus and process

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438449B2 (en) * 1983-05-18 1992-06-24
JPS59213439A (en) * 1983-05-18 1984-12-03 Kyocera Corp Capacity coupling type glow discharge decomposition apparatus
JPS62180086A (en) * 1986-01-31 1987-08-07 Kyocera Corp Glow dicharge decomposition device
JPS62218572A (en) * 1986-03-19 1987-09-25 Canon Inc Device for forming deposited film by plasma cvd method
JPS6481215A (en) * 1987-09-22 1989-03-27 Nec Corp Vapor growth apparatus
JPH0623567Y2 (en) * 1988-01-30 1994-06-22 京セラ株式会社 Film forming equipment
JPH01119057U (en) * 1988-01-30 1989-08-11
JPH0737832A (en) * 1993-07-24 1995-02-07 Yamaha Corp Vertical heat-treating device
JP2011242424A (en) * 2010-05-14 2011-12-01 Canon Inc Electrophotographic photoreceptor production apparatus
CN106622824A (en) * 2016-11-30 2017-05-10 无锡荣坚五金工具有限公司 Plasma polymerized coating device
WO2018098980A1 (en) * 2016-11-30 2018-06-07 江苏菲沃泰纳米科技有限公司 Device for forming plasma polymerized coating
CN106622824B (en) * 2016-11-30 2018-10-12 江苏菲沃泰纳米科技有限公司 A kind of plasma polymerized coating device
US10424465B2 (en) 2016-11-30 2019-09-24 Jiangsu Favored Nanotechnology Co., LTD Plasma polymerization coating apparatus
US11332829B2 (en) 2016-11-30 2022-05-17 Jiangsu Favored Nanotechnology Co., LTD Plasma polymerization coating with uniformity control
US11339477B2 (en) 2016-11-30 2022-05-24 Jiangsu Favored Nanotechnology Co., LTD Plasma polymerization coating apparatus and process

Similar Documents

Publication Publication Date Title
US6435428B2 (en) Showerhead apparatus for radical-assisted deposition
JPS5938375A (en) Plasma cvd device
JPS6063375A (en) Apparatus for producing deposited film by vapor phase method
JPS6314875A (en) Functional deposited film forming device by plasma chemical vapor deposition method
JPH06177056A (en) Gas treatment device
US4404076A (en) Film forming process utilizing discharge
JPS60155676A (en) Plasma cvd device
US4539934A (en) Plasma vapor deposition film forming apparatus
JPS5938377A (en) Plasma cvd device
JPS5938373A (en) Plasma cvd device
JPS6137968A (en) Plasma cvd device
JPS6010618A (en) Plasma cvd apparatus
JPS5938374A (en) Plasma cvd device
JPS6043488A (en) Apparatus for producing thin film
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JPS6353854B2 (en)
JPS6024376A (en) Plasma cvd device
JPS6013074A (en) Plasma cvd device
JPH0694591B2 (en) Plasma CVD equipment
JPS60431B2 (en) Film formation method
JPH0438449B2 (en)
JPS6036660A (en) Plasma cvd device
JPS6132851A (en) Manufacture of amorphous silicon photoconductor
JPS6119779A (en) Plasma cvd apparatus
JPS637373A (en) Deposited film forming device by plasma cvd method