JPS5938373A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS5938373A
JPS5938373A JP57147930A JP14793082A JPS5938373A JP S5938373 A JPS5938373 A JP S5938373A JP 57147930 A JP57147930 A JP 57147930A JP 14793082 A JP14793082 A JP 14793082A JP S5938373 A JPS5938373 A JP S5938373A
Authority
JP
Japan
Prior art keywords
gas
electrode
holes
hole
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57147930A
Other languages
Japanese (ja)
Inventor
Yasutomo Fujiyama
藤山 靖朋
Osamu Kamiya
神谷 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57147930A priority Critical patent/JPS5938373A/en
Publication of JPS5938373A publication Critical patent/JPS5938373A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus

Abstract

PURPOSE:To deposit uniformly a photosensitive film, etc. on a substrate, by providing holes for releasing a gaseous raw material on a discoid electrode disposed in vacuum chamber radially from the center of the side face of the electrode and providing a pipe for supplying the gas to the array of said holes. CONSTITUTION:A discoid base body 2 is set in a vacuum chamber 3, and a discoid electrode 1 is disposed oppositely to the body 2. Holes 11 for releasing gas are opened in a radial array to the electrode 1 from the center of the side face and one metallic pipe 12 of a semicircular sectional shape for supplying gas for the same array of the holes 11 is mounted. The body 2 is rotated under heating with a heater 5 to make the temp. distribution of the body 2 uniform. The gaseous raw material fed through a gas supply pipe 8 is fed to the radially expanded pipe 12, and is released from the holes 11 toward the body 2. A high frequency voltage is applied to the electrode 1 to generate glow discharge between the electrode and the body 2 and to cause radical reaction of the gaseous molecules, thereby forming an amorphous silicon film, etc. on the body 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、基体上に堆積膜を形成する為のプラズマCV
D装置に関するもので、例えばアモルファス・シリコン
感光体使用の受光素子の生産、特にプラズマCVD技術
を用いて平板基体表面にアモルファス・シリコン膜を畦
積し、受光素子を生産するのに使用することのできるプ
ラズマCVD装置、更に反応室内に各種原料ガスを適当
に供給する事により、シリコンナイトライド(SIN)
膜、シリコンオキシナイトライド(SiON)膜、シリ
コンオキサイド(SI02)膜、シリコンカーバイド(
StC)膜を上記感光体表面に連続的に積層堆積し、受
光素子の耐湿・耐摩耗特性を向上させることも可能なプ
ラズマCVD装置に関するものである。 尚、以下の説明においては、主として基体を受光素子用
平板基体とした実施例について本発明を説明するが、本
発明に係るプラズマCVD装置は下記の実施例以外に金
型、バイト等の摩耗、劣化しやすい工具等の表面にシリ
コンカー・ぐイド(SiC)膜などの硬質膜を堆積する
ことにより、工具の耐摩耗性を向上させ、その使用寿命
を延ばす目的にも利用することができ、また、アクリル
非球面レンズ等の表面にアンダーコート材としてシリコ
ンオキサイド(Sin2)膜などの膜を堆積し、アクリ
ル非球面レンズ表面への光学薄膜の堆積を可能とする目
的にも利用することができる。 上記のように基体上に堆積膜を形成する装置として使用
される従来型の平行平板壁面放出型のプラズマCVD装
置の代表的な一例を第1図に示す。 図中1はカソード電極、2はアノード電極を構成してふ
る円形平板状の基体、3は真空チャン・ぐ−14は絶縁
ガイシ、5は基体加熱用ヒーター、6は基体回転用モー
ター、7は排気系、8は原料ガス供給パイプ、9は真空
中でグロー放電を発生させるだめの高周波電源、10は
円形平板基体をアノード電極とするだめのアース1.1
1は原料ガスの放出穴である。図示のように、カソード
°電極は円形平板二重構造となっていて、その内部に原
料ガスが供給される室が形成されている。 上記の装置の動作は次の通りである。 まず、チャンバー3内に円盤状の基体2をセットし、排
気系7によってチャンバー内を真空にする。同時に、基
体2をヒーター5によって加熱し、基体2をモーター6
によって回転し、基体の温度分布を均一にする。この時
、ヒーターは固定されている。基体温度が一定になった
ら、ガス供給IPイグ8から原料ガスを真空チャンバー
3内に供給する。ガスは放出穴】1から基体に向って放
出され、X空チャンバー3内に原料ガスが供給されてい
る状態で13.56 MJ(zの高周波電源9によりカ
ソード6極1に高周波電圧を印加し、アース接地]0さ
れた基体2の間でグロー放電を発生させ、カソード6極
から飛び出した電子のガス分子への衝突により、ガス分
子をラジカル反応させて基体上に唯積させ、アモルファ
スシリコン膜を成膜する。 上記のようなプラズマCVD装置において、堆積した膜
の膜厚分布は装置の排気口の位置や、原料ガス流量、放
電時の高周波電力の大きさによる膜の堆積速度、さらに
は真空度や、原料ガス放出穴の位置によって変化する。 アモルファス・/リコン感光体膜の利用目的からすれば
、大面積の基板上に広範囲な膜厚分布の均−注が要求さ
れる。 プラズマCVD装置では、ガス流量や、高周波電力の大
きさ、真空度等は膜特性に影響をおよ1↑すだめ、膜厚
分布を調整する手段として用いることはできない。排気
口の位置も装置構成上自由に変更することは難しい。す
なわち、膜厚分布を調整する手段としては、ガス放出穴
の穴径や位置を調整することが、最も容易な手段と考え
られる。 一方、プラズマCVD装置では特定の膜特性を得る為に
ガス流量や流速を選定する必要がちり膜厚分布もそのつ
ど変動するためにガス放出口の穴径や位置は選択の自由
度が高いものであることが要求される。従来の平行平板
壁面放出型プラズマCVD装置には、原料ガス放出穴を
不規則に多数個開口したものや、円周上に多数個開口し
たものがほとんどで、大数が多過ぎるため、膜厚分布の
均一化のために最適な穴位置を選択するのが難しかった
。また、穴径の自由度に対してほとんど考慮されていな
かったため、膜厚分布の調整は穴位置の選定のみにだよ
っていた。このため、従来装置では有効堆積範囲が広く
なるのに比例して、その膜厚分布調整が難しくなるとい
う欠点が有った。 本発明は、上述の従来のプラズマCVD装置における膜
厚分布調整を大幅に改善しようとするもので、カソード
電極を基体に対して平行に配置された円盤状のものとし
、その壁面に開口したガス放出穴を、
The present invention is a plasma CV method for forming a deposited film on a substrate.
D equipment relates to the production of photodetectors using amorphous silicon photoreceptors, in particular, the production of photodetectors using plasma CVD technology to deposit an amorphous silicon film on the surface of a flat substrate. Silicon nitride (SIN)
membrane, silicon oxynitride (SiON) membrane, silicon oxide (SI02) membrane, silicon carbide (
The present invention relates to a plasma CVD apparatus capable of continuously depositing a StC film on the surface of the photoreceptor to improve the moisture resistance and abrasion resistance of the light receiving element. In the following description, the present invention will mainly be explained with reference to embodiments in which the substrate is a flat substrate for a light-receiving element. By depositing a hard film such as silicon carbide (SiC) film on the surface of tools that are prone to deterioration, it can be used to improve the wear resistance of tools and extend their useful life. It can also be used for the purpose of depositing a film such as a silicon oxide (Sin2) film as an undercoat material on the surface of an acrylic aspheric lens, etc., to enable the deposition of an optical thin film on the surface of an acrylic aspheric lens. . FIG. 1 shows a typical example of a conventional parallel plate wall emission type plasma CVD apparatus used as an apparatus for forming a deposited film on a substrate as described above. In the figure, 1 is a cathode electrode, 2 is a circular plate-like base that constitutes an anode electrode, 3 is a vacuum chamber, 14 is an insulating insulator, 5 is a heater for heating the base, 6 is a motor for rotating the base, and 7 is a base for rotating the base. Exhaust system, 8 is a raw material gas supply pipe, 9 is a high frequency power source that generates glow discharge in vacuum, 10 is a ground 1.1 that uses a circular flat substrate as an anode electrode.
1 is a discharge hole for raw material gas. As shown in the figure, the cathode electrode has a circular flat plate double structure, and a chamber to which source gas is supplied is formed inside the cathode electrode. The operation of the above device is as follows. First, the disc-shaped base 2 is set in the chamber 3, and the inside of the chamber is evacuated by the exhaust system 7. At the same time, the base 2 is heated by the heater 5, and the base 2 is heated by the motor 6.
rotates to make the temperature distribution of the substrate uniform. At this time, the heater is fixed. When the substrate temperature becomes constant, raw material gas is supplied into the vacuum chamber 3 from the gas supply IP igu 8. The gas is released from the release hole] 1 toward the substrate, and with the raw material gas being supplied into the , earthing] A glow discharge is generated between the substrates 2 which are set to 0, and electrons ejected from the cathode 6 poles collide with gas molecules, causing a radical reaction of the gas molecules and depositing them on the substrate, forming an amorphous silicon film. In the above-mentioned plasma CVD apparatus, the thickness distribution of the deposited film depends on the position of the exhaust port of the apparatus, the flow rate of the raw material gas, the film deposition rate depending on the magnitude of the high-frequency power during discharge, and even It varies depending on the degree of vacuum and the position of the raw material gas discharge hole. Considering the purpose of using the amorphous/licon photoreceptor film, it is required to uniformly distribute the film thickness over a wide range on a large substrate. Plasma CVD In the device, the gas flow rate, the magnitude of high-frequency power, the degree of vacuum, etc. affect the film properties and cannot be used as a means to adjust the film thickness distribution.The position of the exhaust port also depends on the device configuration. It is difficult to freely change the film thickness distribution.In other words, the easiest way to adjust the film thickness distribution is to adjust the hole diameter and position of the gas discharge holes.On the other hand, in plasma CVD equipment, specific It is necessary to select the gas flow rate and flow rate in order to obtain the film characteristics, and since the dust film thickness distribution changes each time, it is required that the hole diameter and position of the gas discharge port have a high degree of freedom in selection. Most conventional parallel plate wall-emission plasma CVD devices have a large number of raw material gas discharge holes opened irregularly or a large number of holes arranged around the circumference. It was difficult to select the optimal hole position to make the distribution uniform.Also, since little consideration was given to the degree of freedom of the hole diameter, adjustment of the film thickness distribution depended only on the selection of the hole position. For this reason, the conventional apparatus had the disadvantage that as the effective deposition range became wider, it became more difficult to adjust the film thickness distribution. In order to significantly improve the adjustment, the cathode electrode is made into a disk shape arranged parallel to the substrate, and gas release holes opened in the wall surface of the cathode electrode are placed in parallel to the substrate.

【は極1則面の中
心から放出状のソリをなして開口せしめ、このガス放出
穴のクリを基体の表面積に比例して1〜10クリとなし
、且つ1つの列の穴に対して″IL他+lil+壁面に
1本のガス供給用・9イグを設け、膜J:J−分(H上
問題の無い程度にまで開口数を限定することによって、
膜厚分布とガス放出穴の開口位置との相関関係を明確に
し、膜厚分布調整を容易にすることを可能としたもので
ある。然して、上記の基体を中心軸のまわりに回転する
ことで膜厚の均一化が保障される。さらに、ガス放出穴
に取付けるネジに穴径の異なる放出口を設けることによ
って膜厚分布の微調整が可能になり、例えば大面積基体
上へのアモルファスシリコン感光体膜の均一堆積を可能
にするものである。 以下に、実施例装置に基いて本発明の詳細な説明する。 第2図は本発明に係るプラズマCVD装置の一実施例を
示す。図中、第1図に示す装置における部分と同様の部
分は同じ参照数字によって指示しである。図中、1はカ
ソード電極、2はアノード電極を構成している円盤状の
基体であり、回転用モーターによって堆積工程中回転す
るようになっている。3は真空チャンバー、4はカソー
ド電極と真空チャンバーおよびアノード電極を電気的に
絶縁するだめの絶縁ガイシ、5はアノード電極に取付け
られた基体を加熱するためのヒーター、6は円盤状基体
を回転するためのモーター、7はチャンバーを真空に保
つための排気系、8は原料ガス供給パイプ、9はカソー
ド電極とアノード電極の間でグロー放電を発生させるだ
めの高周波電源、10はアノード電極と真空チャンバー
をアース接地するだめのアースであり、11は原料ガス
をグロー放′屯中に供給する原料ガス放出用の穴を示す
。 アノードを槍を構成している円盤状の基体2は真空チャ
ンバー3内に配置され、カソード電極1は該基体に対向
して平行に配置された円盤状に構成され、この円盤状電
極】の側面に、原料を放出するだめの穴】1が、該電極
側面の中心から放射状の列(図示の例では6列)をなし
て開口し、且つ同一の列に対して1つの断面半円形のガ
ス供給用金属パイf12が溶接により該電極の側面にと
りつけられている。原料ガスを放出する穴11にはネジ
加工が施こされていて、基体の表面に堆積する膜の膜厚
分布調整を行う場合に不用な穴をネジにより塞ぐことが
できるようになっている。また、上記のネジ加工を施こ
した穴11には、中心にガス放出口を設けたネジをとり
つけ、該放出口の穴径を変えたネジをとりつけることに
よってガス放出量を変えて膜厚分布を調整できるように
なっている。かくして、ガス放出穴の各列のガス放出量
をそれぞれ単独に調整できる。 第3図は、上記の装置のカソード電極をアノード電極側
から見た図を示し、図中、】はカソード電極であり、1
1は中心から放射状に6列開口されたガス放出穴である
。 第4図は、上記の装置のカソード電極をA空チャンバー
側から見た図を示し、図中、】はカソード電極であり、
12は同一列のガス放出口に対応するように中心から放
射状に6本溶接された金属パイプであり、各列のガス放
出口に原料ガスを供給する。8は各金属パイプに原料ガ
スを供給するだめのガス供給ノ母イゾである。 第5図は、上記の装置のカソードt4tAりの断面を示
す。図中1はカソード電極、11はカソード′電極中心
から放射状に開口したガス放出穴、12は各ガス放出穴
にガスを供給するためにカソード電極の真空チャンバー
側壁面に溶接された断面が半円形をなす金属パイプであ
る。 第6図(イ)(ロ)は、上記装置のガス放出穴に取付け
るだめの六角穴付オシを示し、第C図(イ)において、
13はガス放出口を設けた六角穴付ネジ、14はガス放
出口であり、穴径を変えたネジを取9換えることによっ
てガス放出量を変え、膜厚制御を行なうことができる。 第6図(ロ)においで、】5はガス放出口の無い六角穴
伺ネジであり、膜厚分布調整の際不用となったガス放出
口を塞ぐ目的に使用する。 次に、上記装置の各部の動作を順を追って説明する。 まず、チャンバー内に円盤状の基体2をセットし、排気
系7によってチャンバー内を32にする。 同時に、基体2全ヒーター5によって加熱し、基体2を
モーター6によって回転し、基体の温度分布を均一にす
る。この時、ヒーターは固定されている。基体温度が一
定になったら、ガス供給・ぞイノ8から原料ガスを真空
チャンバー内に供給する。 原料ガスは放射状にひろがった金属パイプ12に送られ
るが、゛パイプの空間が狭くなるため流量を抑制され、
各i4イブに均等にガスが供給される。 ・ぞイノを流れるガスは放出穴1】がら基体に向りて放
出される。各放出穴から放出されるガス量は、放出穴に
取付けられたネジに開けられた穴の穴径によって制御さ
れる。真空チャン・9−内にガスが安定して供給されて
いる状態で13.56 MHzの高周波電源9によりカ
ソード電極1に高周波′電圧を印加し、アース接地され
た基体2の間でグロー放電を発生させ、カソード電極か
ら飛び出した電子のガス分子への衝突により、ガス分子
をラジカル反応させて基体上に堆積させ、アモルファス
ンリコン膜全成膜する。 以上説明したように、本発明によるプラズマCVD装置
は、カソード電極に開口した原料ガス放出穴の大数を少
なくし、円盤状の基体の回転方向に対して法線方向に直
線配置することによって、法線方向の膜厚分布調整を容
易にする効果がある。 さらに、ガス放出穴に取付ける六角穴付ネジに穴径の異
なるガス放出口を開けることによって、がス飲出嶽を法
線方向に削って調整することかでき、膜厚分布の微調整
を可能とする効果がある。また、カソード′屯極に開口
した原料ガス放出穴の同一列には、それぞれ単独にガス
供給用の半円形パイプが付属しているため、他の列のガ
ス放出穴の開閉によるガス原型の変化を受けにくく、同
一クリでのガス放出量調整、すなわち膜厚分布調整が容
易となる効果がちる。 また、従来装置では膜厚分布調整が複雑になる大面積基
体への成膜も、本発明を使用することによって膜厚分布
調整が容易となるばか9でなく、唯積膜厚の均一性、唯
積膜特性の再現性も良好となるという効果があり、本h
twの使用目的の一つである受光素子の生産を安定して
行ない得る効果がある。
[ is opened with a radiating warp from the center of the polar one law surface, and the number of holes of this gas release hole is set to 1 to 10 holes in proportion to the surface area of the base, and for one row of holes " IL and others + lil + One gas supply 9 Ig is installed on the wall surface, and the membrane J: J-min (by limiting the numerical aperture to the extent that there is no problem with H,
This clarifies the correlation between the film thickness distribution and the opening position of the gas release hole, making it possible to easily adjust the film thickness distribution. However, by rotating the above-mentioned substrate around the central axis, uniformity of the film thickness is ensured. Furthermore, by providing discharge ports with different hole diameters on the screws attached to the gas discharge holes, it is possible to finely adjust the film thickness distribution, making it possible, for example, to uniformly deposit an amorphous silicon photoreceptor film on a large-area substrate. It is. The present invention will be described in detail below based on an example device. FIG. 2 shows an embodiment of a plasma CVD apparatus according to the present invention. In the figures, parts similar to parts in the apparatus shown in FIG. 1 are designated by the same reference numerals. In the figure, 1 is a cathode electrode, and 2 is a disk-shaped base forming an anode electrode, which is rotated by a rotation motor during the deposition process. 3 is a vacuum chamber; 4 is an insulating insulator for electrically insulating the cathode electrode, the vacuum chamber, and the anode electrode; 5 is a heater for heating the base attached to the anode electrode; 6 is a rotating disc-shaped base 7 is an exhaust system for keeping the chamber in a vacuum, 8 is a raw material gas supply pipe, 9 is a high frequency power source for generating glow discharge between the cathode electrode and anode electrode, 10 is the anode electrode and the vacuum chamber is a ground for grounding, and numeral 11 indicates a hole for discharging the raw material gas for supplying the raw material gas into the glow chamber. A disk-shaped base 2 forming an anode spear is arranged in a vacuum chamber 3, and a cathode electrode 1 is formed in a disk-shape and arranged parallel to the substrate. The gas holes 1 for discharging the raw material are opened in radial rows (6 rows in the illustrated example) from the center of the side surface of the electrode, and one gas hole with a semicircular cross section is opened for each row. A supply metal pipe f12 is attached to the side surface of the electrode by welding. The holes 11 through which the source gas is released are threaded so that unnecessary holes can be closed with screws when adjusting the thickness distribution of the film deposited on the surface of the substrate. In addition, a screw with a gas release port in the center is installed in the threaded hole 11 described above, and a screw with a hole diameter of the gas release port is installed to change the amount of gas released and thereby distribute the film thickness. can be adjusted. In this way, the amount of gas released from each row of gas release holes can be adjusted independently. FIG. 3 shows the cathode electrode of the above device viewed from the anode electrode side, where ] is the cathode electrode and 1
Reference numeral 1 denotes gas discharge holes opened in six rows radially from the center. FIG. 4 shows a view of the cathode electrode of the above device viewed from the A empty chamber side, where ] is the cathode electrode;
Reference numeral 12 denotes six metal pipes welded radially from the center so as to correspond to the gas discharge ports in the same row, and supply raw material gas to the gas discharge ports in each row. Reference numeral 8 denotes a gas supply source for supplying raw material gas to each metal pipe. FIG. 5 shows a cross section of the cathode t4tA of the above device. In the figure, 1 is a cathode electrode, 11 is a cathode with gas release holes opening radially from the center of the electrode, and 12 is a semicircular cross section welded to the side wall of the vacuum chamber of the cathode electrode to supply gas to each gas release hole. It is a metal pipe. Figures 6(a) and 6(b) show a hexagon socket head to be attached to the gas discharge hole of the above device, and in Figure C(a),
Reference numeral 13 denotes a hexagon socket head screw provided with a gas discharge port, and 14 a gas discharge port. By replacing the screws with different hole diameters, the amount of gas released can be changed and the film thickness can be controlled. In FIG. 6(b), 5 is a hexagonal hole screw without a gas discharge port, and is used for the purpose of closing the gas discharge port that is no longer needed when adjusting the film thickness distribution. Next, the operation of each part of the above device will be explained in order. First, a disk-shaped base 2 is set in a chamber, and the inside of the chamber is made 32 by an exhaust system 7. At the same time, the entire base 2 is heated by the heater 5, and the base 2 is rotated by the motor 6 to make the temperature distribution of the base uniform. At this time, the heater is fixed. When the temperature of the substrate becomes constant, raw material gas is supplied from the gas supply tube 8 into the vacuum chamber. The raw material gas is sent to the metal pipe 12 that spreads out radially, but the flow rate is suppressed because the space in the pipe becomes narrow.
Gas is supplied evenly to each i4 Eve.・The gas flowing through the tube is released toward the base through the release hole 1]. The amount of gas released from each discharge hole is controlled by the diameter of the hole drilled in the screw attached to the discharge hole. With gas being stably supplied into the vacuum chamber 9, a high frequency voltage is applied to the cathode electrode 1 by a 13.56 MHz high frequency power source 9, and a glow discharge is generated between the grounded base 2. The electrons generated and ejected from the cathode electrode collide with the gas molecules, causing the gas molecules to undergo a radical reaction and deposited on the substrate, thereby forming the entire amorphous silicon film. As explained above, the plasma CVD apparatus according to the present invention reduces the number of raw material gas discharge holes opened in the cathode electrode and arranges them in a straight line in the direction normal to the rotation direction of the disk-shaped base. This has the effect of facilitating adjustment of film thickness distribution in the normal direction. Furthermore, by opening gas discharge ports with different hole diameters in the hexagonal socket screws attached to the gas discharge holes, the gas outlet can be adjusted by cutting in the normal direction, making it possible to fine-tune the film thickness distribution. This has the effect of In addition, the same row of raw material gas release holes opened at the cathode's end pole each has its own semicircular pipe for gas supply, so the gas pattern changes when the gas release holes in other rows are opened or closed. This has the effect of making it easier to adjust the amount of gas released from the same film, that is, adjust the film thickness distribution. Furthermore, even when depositing a film on a large-area substrate, for which adjustment of the film thickness distribution would be complicated using conventional equipment, the use of the present invention makes it easy to adjust the film thickness distribution. This has the effect of improving the reproducibility of the laminated film characteristics.
This has the effect of stably producing light receiving elements, which is one of the purposes for which TW is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマCVD装置を示す一部欠切斜視
図、第2図は、本発明プラズマCVD装置の一実施例を
示す一部欠切斜視図、第3図は第2図に示すカソード電
極をアノード電極側から見た図、第4図はカソード電極
を真空チャンバー11111から見た図、第5図はカソ
ード電極の断面図、第6図離H)(ロ)は、それぞれガ
ス放出穴に取付ける六角穴付ネジの11111面図であ
る。 1・・・カソード電極   2・・・円盤状の基体3・
・・真空チャンバー 4・・・電気絶縁ガイシ5・・・
基体加熱用ヒーター 6・・・基体回転用モーター7・
・・排気系      8・・・原Mガス供給パイノ9
・・・高周波′@源    10・・・アース11・・
・ガス放出穴    12・・・半円形金属/J’イノ
J3・・・ガス放出口を有する六角穴付才ソ】4・・・
ガス放出口 】5・・・ガス放出口を塞ぐこめの六角穴付ネノ壓1図
Fig. 1 is a partially cutaway perspective view showing a conventional plasma CVD apparatus, Fig. 2 is a partially cutaway perspective view showing an embodiment of the plasma CVD apparatus of the present invention, and Fig. 3 is shown in Fig. 2. Figure 4 is a view of the cathode electrode viewed from the vacuum chamber 11111, Figure 5 is a cross-sectional view of the cathode electrode, and Figure 6 (I) (B) shows gas release. It is a 11111 side view of a hexagon socket head screw attached to a hole. 1... Cathode electrode 2... Disc-shaped base 3.
...Vacuum chamber 4...Electric insulation insulator 5...
Heater for heating the substrate 6...Motor for rotating the substrate 7.
・・Exhaust system 8・・Original M gas supply pino 9
...High frequency'@source 10...Earth 11...
・Gas release hole 12...Semi-circular metal/J'ino J3...Hexagonal hole with gas release port]4...
Gas release port] 5... Hexagonal socket with a hole to block the gas release port (Figure 1)

Claims (1)

【特許請求の範囲】 (1ン  真空チャン・9−内に円盤状の基体を配置し
、該基体に対向して平行に配置された円盤状電極の側面
に、原料ガスを放出するだめの穴を、該電極側面の中心
から放射状の列をなして多数個開口せしめ、1つの列の
穴に対して電極側壁面に一本のガス供給用)臂イブを設
けたことを特徴とするプラズマCVD装置。 (2)原料ガスを放出する穴にネジ穴加工を施こし、上
記の円盤状の基体の表面に堆積する膜の膜厚分布調整を
行なう場合、不用な穴をネジによシ塞ぐことができるよ
うにした特許請求の範囲第(1)項記載のプラズマCV
D装置。 (3) 原料ガスを放出する穴にネジ穴加工を施こし、
このネジ穴に、中心にガス放出口を設けたネジを取付け
、該放出口の穴径を変えたネジを該ネジ穴に取付けるこ
とにより、ガス放出量を変えて膜厚分布を調整できるよ
うにした特許請求の範囲第(1)項記載のプラズマCV
D装置。
[Claims] (1) A disc-shaped base is placed in a vacuum chamber 9-, and a reservoir hole for releasing source gas is provided on the side of a disc-shaped electrode placed parallel to the base. A plasma CVD characterized in that a large number of openings are formed in a radial row from the center of the side surface of the electrode, and one arm (for gas supply) is provided on the side wall surface of the electrode for each row of holes. Device. (2) When adjusting the film thickness distribution of the film deposited on the surface of the disk-shaped substrate by drilling a screw hole into the hole through which the raw material gas is released, the unnecessary hole can be plugged with a screw. The plasma CV according to claim (1), which is
D device. (3) Machine a screw hole in the hole that releases the raw material gas,
By attaching a screw with a gas release port in the center to this screw hole, and installing a screw with a different hole diameter for the release port into the screw hole, you can change the amount of gas release and adjust the film thickness distribution. Plasma CV according to claim (1)
D device.
JP57147930A 1982-08-26 1982-08-26 Plasma cvd device Pending JPS5938373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147930A JPS5938373A (en) 1982-08-26 1982-08-26 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147930A JPS5938373A (en) 1982-08-26 1982-08-26 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS5938373A true JPS5938373A (en) 1984-03-02

Family

ID=15441282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147930A Pending JPS5938373A (en) 1982-08-26 1982-08-26 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS5938373A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645895A (en) * 1984-04-12 1987-02-24 Ramot University Authority For Applied Research & Industrial Development Method and apparatus for surface-treating workpieces
WO1987007310A1 (en) * 1986-05-19 1987-12-03 Novellus Systems, Inc. Deposition apparatus
US5773100A (en) * 1987-08-14 1998-06-30 Applied Materials, Inc PECVD of silicon nitride films
US6497118B1 (en) 2000-09-19 2002-12-24 Corning Incorporated Method and apparatus for reducing refractory contamination in fused silica processes
KR101255719B1 (en) 2006-09-18 2013-04-17 주성엔지니어링(주) Gas injection device of which injector is integrated with plasma electrode and substrate processing apparatus comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645895A (en) * 1984-04-12 1987-02-24 Ramot University Authority For Applied Research & Industrial Development Method and apparatus for surface-treating workpieces
WO1987007310A1 (en) * 1986-05-19 1987-12-03 Novellus Systems, Inc. Deposition apparatus
US5773100A (en) * 1987-08-14 1998-06-30 Applied Materials, Inc PECVD of silicon nitride films
US6040022A (en) * 1987-08-14 2000-03-21 Applied Materials, Inc. PECVD of compounds of silicon from silane and nitrogen
US6497118B1 (en) 2000-09-19 2002-12-24 Corning Incorporated Method and apparatus for reducing refractory contamination in fused silica processes
KR101255719B1 (en) 2006-09-18 2013-04-17 주성엔지니어링(주) Gas injection device of which injector is integrated with plasma electrode and substrate processing apparatus comprising the same

Similar Documents

Publication Publication Date Title
US5919332A (en) Plasma processing apparatus
US4400410A (en) Coating insulating materials by glow discharge
US5554255A (en) Method of and apparatus for a direct voltage arc discharge enhanced reactive treatment of objects
US5443645A (en) Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
JPH04231397A (en) Method for formation of diamond layer and apparatus therefor
JPH0387372A (en) Formation of deposited film
US4545328A (en) Plasma vapor deposition film forming apparatus
US5016565A (en) Microwave plasma chemical vapor deposition apparatus for forming functional deposited film with means for stabilizing plasma discharge
US6786176B2 (en) Diamond film depositing apparatus and method thereof
JPS5938373A (en) Plasma cvd device
JPS5938375A (en) Plasma cvd device
JPS6137354B2 (en)
JPS60155676A (en) Plasma cvd device
JPS5938377A (en) Plasma cvd device
JPS5938374A (en) Plasma cvd device
US7803433B2 (en) Amorphous carbon film forming method and device
JPS62146268A (en) Apparatus for producing thin film
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JPS60431B2 (en) Film formation method
JPS5889943A (en) Plasma cvd device
US4699799A (en) Method for forming a deposition film
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPS6024376A (en) Plasma cvd device
JPH057462B2 (en)
JPS6257710B2 (en)