JPS5938377A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS5938377A
JPS5938377A JP14793382A JP14793382A JPS5938377A JP S5938377 A JPS5938377 A JP S5938377A JP 14793382 A JP14793382 A JP 14793382A JP 14793382 A JP14793382 A JP 14793382A JP S5938377 A JPS5938377 A JP S5938377A
Authority
JP
Japan
Prior art keywords
raw material
holes
vacuum chamber
cylindrical
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14793382A
Other languages
Japanese (ja)
Inventor
Yasutomo Fujiyama
藤山 靖朋
Osamu Kamiya
神谷 攻
Shigeru Shirai
茂 白井
Junichiro Kanbe
純一郎 神辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14793382A priority Critical patent/JPS5938377A/en
Publication of JPS5938377A publication Critical patent/JPS5938377A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a titled device which can form films on a base body at a uniform thickness distribution by the constitution wherein many holes are provided on the wall surface of a cylindrical electrode in the arrays parallel with the central axis thereof and a gaseous raw material is released through said holes toward the base body of a counter electrode under rotation around the central axis. CONSTITUTION:Many holes 11 for releasing a gaseous raw material are provided on the wall surface of a cylindrical cathode electrode 1 constituting a vacuum chamber in the form of the arrays parallel with the central axis thereof and pipes 13 for supplying the gaseous raw material are provided, each piece for one array of the holes, on the outside wall surface of the electrode 1 in a plasma CVD device which forms deposited films on a base body 2 of an anode electrode under rotation around the central axis of the electrode 1 by blowing the gaseous raw material toward said body 2. Screw holes are worked in said holes 11 and adequate screws are fitted therein according to need to permit the adjustment of the distribution of the thickness in the deposited films. It is also possible to improve productivity by disposing plural pieces of rotary cylindrical base bodies in the vacuum chamber with their central axes in parallel with the axial center of the vacuum chamber.

Description

【発明の詳細な説明】 本発明は基体上に堆積膜を形成するプラズマCVD装置
に関するもので、例えば電子写真用感光体ドラムを連続
的に生産し、特にプラズマCVD技術を用いて円筒状基
体表面にアモルファス・ンリコン膜を堆積し、感光体ド
ラムを連続的に生産するのに使用することのできるプラ
ズマCVD装置(更に同一反応室内に各種原料ガスを適
当に供給する事によりシリコンナイトライド(SIN)
膜、シリコンオキシナイトライド(SiON)膜、シリ
コンオキサイド(S102)膜、シリコンカーバイド(
SiC)膜を上記感光体ドラム表面に連続的に積層堆積
し、感光体ドラムの帯電特性を向上させ、かつ感光体ド
ラム表面の耐湿・耐摩耗特性を向上させることも可能と
するグラズマCVD i置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma CVD apparatus for forming a deposited film on a substrate, for example, for continuously producing electrophotographic photoreceptor drums, and in particular for forming a deposited film on a cylindrical substrate surface using plasma CVD technology. Plasma CVD equipment that can be used to deposit an amorphous nitride film and continuously produce photoreceptor drums (silicon nitride (SIN)) by appropriately supplying various raw material gases into the same reaction chamber.
membrane, silicon oxynitride (SiON) membrane, silicon oxide (S102) membrane, silicon carbide (
A glazma CVD i-type device in which a SiC) film is continuously stacked and deposited on the surface of the photoreceptor drum to improve the charging characteristics of the photoreceptor drum and also to improve the moisture resistance and abrasion resistance characteristics of the photoreceptor drum surface. It is related to.

尚、以下の説明においては、主として堆積膜を形成する
基体を電子写真用円筒状基体とした実施例について本発
明を説明するが、本発明装置は、長方形の基体を円筒状
の対向電極上に多角形を成すように配置し、アモルファ
ス感光体膜や演算素子用アモルファス半導体膜を堆積す
る目的にも利用することができ、また、金型、バイト等
の摩耗し易い工具等の表面に超硬質膜を堆積することに
よって、耐摩耗性を向上させ、寿命を延ばす目的にも利
用することができる。
In the following explanation, the present invention will mainly be explained with reference to an embodiment in which the substrate on which the deposited film is formed is a cylindrical substrate for electrophotography. Arranged to form a polygon, it can also be used for the purpose of depositing amorphous photoreceptor films and amorphous semiconductor films for arithmetic elements, and can also be used to deposit ultra-hard materials on the surfaces of tools that easily wear out, such as molds and bits. By depositing a film, it can also be used to improve wear resistance and extend life.

このような従来型の円筒状プラズマCVD装置の代表的
な一例の概略を第1図に示す。第1図中、】は真空チャ
ンバーを構成している円筒状のカンード1%!極、2は
該真空チャンバーの中心軸の周りに回転するようKこれ
と同心に配置された対向電極たるアノード電極を構成し
ている円筒状の基体、3は該真空チャンバーの上下の壁
体、4は該壁体を該カソード電極から絶縁するだめのド
ーナツ形の絶縁ガイシ、5は高周波電源、6は原料ガス
供給パイプ、7は排気系、8はヒーター、9は上記の円
筒状の基体を回転する回転機構、】0はアース、Jlは
原料ガス放出穴を示す。
A typical example of such a conventional cylindrical plasma CVD apparatus is schematically shown in FIG. In Figure 1, ] is 1% of the cylindrical cand that makes up the vacuum chamber! A pole, 2 is a cylindrical base constituting an anode electrode as a counter electrode arranged concentrically with the pole so as to rotate around the central axis of the vacuum chamber, 3 is the upper and lower walls of the vacuum chamber, 4 is a donut-shaped insulating insulator for insulating the wall body from the cathode electrode, 5 is a high frequency power source, 6 is a raw material gas supply pipe, 7 is an exhaust system, 8 is a heater, and 9 is the cylindrical base mentioned above. In the rotating mechanism, ]0 indicates the ground, and Jl indicates the raw material gas discharge hole.

上記のプラズマCVD装置の動作を簡単に説明する。The operation of the above plasma CVD apparatus will be briefly explained.

まず、真空チャンバー内に円筒状の基体2をセットし、
排気系7によってチャンバー内を真空にする。同時に基
体2をヒーター8によって加熱し、基体2?]l−回転
機構9によって回転し、基体の温度分布を均一にする。
First, a cylindrical base 2 is set in a vacuum chamber,
The inside of the chamber is evacuated by the exhaust system 7. At the same time, the base 2 is heated by the heater 8, and the base 2? ]1-Rotated by the rotation mechanism 9 to make the temperature distribution of the substrate uniform.

この時、ヒーターは固定されている。基体温度が一足に
なったら、ガス供給パイグ6から原料ガスを真空チャン
バー内に供給する。原料ガスは円筒状の電極の多数のガ
ス放出穴から基体2に向けて放出される。真空チャンバ
ー内にガスが安定して供給されている状態で13.56
M1(zの高周波電源5によりカン〜ド′醒極1に高周
波電圧を印加し、アース接地された基体20間でグロー
放電を発生させ、カソード電極から飛び出した電子のガ
ス分子への衝突により、ガス分子をラジカル反応させて
基体上に堆積させ、基体2上に堆椎膜、例えばアモルフ
ァスシリコン膜を成膜する。
At this time, the heater is fixed. When the substrate temperature reaches a certain level, raw material gas is supplied from the gas supply pipe 6 into the vacuum chamber. The raw material gas is released toward the base 2 from a large number of gas release holes in the cylindrical electrode. 13.56 when gas is stably supplied to the vacuum chamber.
A high-frequency voltage is applied to the can-do' awakening electrodes 1 by the high-frequency power source 5 of M1 (z), a glow discharge is generated between the earthed base 20, and the electrons ejected from the cathode electrode collide with gas molecules. Gas molecules are subjected to a radical reaction and deposited on the substrate to form a deposited film, such as an amorphous silicon film, on the substrate 2.

上記のようなプラズマCVD装置において、堆積した膜
の膜厚分布は装置の排気口の位置や、原料ガス流量、放
電時の高周波電力の大きさによる膜の堆積速度、さらに
は真空度や、原料がス放出口の位置によって変化する。
In the above-mentioned plasma CVD apparatus, the thickness distribution of the deposited film depends on the position of the exhaust port of the apparatus, the flow rate of the raw material gas, the film deposition rate depending on the magnitude of high-frequency power during discharge, the degree of vacuum, and the raw material. varies depending on the position of the gas outlet.

アモルファス・シリコン感光体膜の利用目的からすれば
、大面積の基体上に広範囲な膜厚分布の均一性が要求さ
れる。
Considering the purpose of using an amorphous silicon photoreceptor film, uniformity of the film thickness distribution over a wide range is required on a large area substrate.

プラズマCVD装置では、ガス流量や、高周波電力の大
きさ、真空度等は膜特性に影響をおよほすため、膜厚分
布を調整する手段として用いることはでさない。排気口
の位置も、装置構成上自由に変更することは難しい。す
なわち、膜厚分布を調整する方法としては、ガス放出口
の穴径や位置を調整することが最も容易な手段と考えら
れる。
In a plasma CVD apparatus, the gas flow rate, the magnitude of high-frequency power, the degree of vacuum, etc. affect the film characteristics, so they cannot be used as means for adjusting the film thickness distribution. It is also difficult to freely change the position of the exhaust port due to the device configuration. That is, the easiest way to adjust the film thickness distribution is to adjust the hole diameter and position of the gas discharge port.

一方、ゾラズ−F CVD装置では、特定の膜特性を得
る為にガス流量や流速を選定する必要があり膜厚分布も
そのつど変動するために、ガス放出穴の穴径や位置は選
択の自由度が高いものであることが要求される。従来の
円筒状壁面放出型のプラズマCVD装置には、原料ガス
放出穴を不規則に多数個開口したものや、回転軸方向に
多数列開口したものがほとんどで、大数が多過ぎるため
、膜厚分布の均一化のために最適な穴位置を選択するの
が難しかった。また、穴径の自由度に対してほとんど考
慮されていなかったため、膜厚分布の調整は穴位置の選
定のみにたよっていた。このため、有効角穐範囲が広く
なるのに比例して、その膜厚分布調整が難しくなるとい
う欠点が有った。
On the other hand, with Zolaz-F CVD equipment, it is necessary to select the gas flow rate and flow rate in order to obtain specific film characteristics, and the film thickness distribution also changes each time, so the hole diameter and position of the gas release hole can be freely selected. It is required that the quality is high. Most of the conventional cylindrical wall discharge type plasma CVD devices have a large number of irregularly opened raw material gas discharge holes, or have many rows of openings in the direction of the rotation axis. It was difficult to select the optimal hole position for uniform thickness distribution. Furthermore, since little consideration was given to the degree of freedom of the hole diameter, adjustment of the film thickness distribution relied only on the selection of hole positions. Therefore, as the effective angle range becomes wider, it becomes difficult to adjust the film thickness distribution.

本発明は、上述の従来型円筒状グツズ−v CVD装置
における欠点を除去するとともに、プラズマCVD装置
における膜厚分布調整を大幅に改善しようとするもので
、その特徴とするところは、円間状軍極の壁面に、該電
極の中心軸に平行な列をなすように原料ガス放出穴を多
数個開口せしめ、1つの列の穴に対して1つのガス供給
パイプを、対向電極と反対側の電極壁面に配置したこと
にある。
The present invention aims to eliminate the drawbacks of the above-mentioned conventional cylindrical type CVD apparatus, and to significantly improve the film thickness distribution adjustment in the plasma CVD apparatus. A large number of raw material gas discharge holes are opened in the wall of the gun electrode in rows parallel to the central axis of the electrode, and one gas supply pipe is connected to each row of holes on the opposite side of the counter electrode. This is because the electrodes are placed on the wall surface.

然して、カソード電極壁面に開口したガス放出穴を基体
の表面積に比例して】〜JO列とし、膜厚分布上問題の
無い程度にまで開口数を限定することによって、膜厚分
布とガス放出穴の開口位置との相関関係を明確にするこ
とによって調整を容易にすることが可能となり、基体を
中心軸のまわりに回転することで膜厚の均一化も保障さ
れる。さらに、ガス放出穴にネジ穴加工を施こして、こ
の穴にとりつけるネジに穴径の異なる放出口を設けるこ
とによって膜厚分布の微調整が可能になり、大面積基体
上へのアモルファスシリコン感光体膜の均一堆積を可能
にするものである。更に本発明のもう一つの効果は、ガ
ス供給系をカソードを極や電気絶縁がイノなどと単純な
構造で一体化したことから、装置構成部品を簡単に分解
することができ、真空チャンバー内に堆積したポリシラ
ン等の付着物を容易に取り除くことができ、チャンバー
内の掃除を単純化することが可能になったことである。
Therefore, the gas release holes opened in the wall surface of the cathode electrode are arranged in a JO row in proportion to the surface area of the substrate, and the film thickness distribution and gas release holes are By clarifying the correlation with the aperture position, adjustment can be facilitated, and by rotating the substrate around the central axis, uniform film thickness can be ensured. Furthermore, by drilling a screw hole in the gas release hole and providing a screw with a different hole diameter to attach to this hole, fine adjustment of the film thickness distribution becomes possible, allowing amorphous silicon to be exposed to large-area substrates. This allows uniform deposition of body membranes. Another advantage of the present invention is that the gas supply system is integrated with the cathode and the electrodes, and the electrical insulation is in a simple structure, making it possible to easily disassemble the device components and place them inside the vacuum chamber. This makes it possible to easily remove deposits such as polysilane and simplify cleaning inside the chamber.

以下に、実施例装置に基いて本発明の詳細な説明する。The present invention will be described in detail below based on an example device.

第2図は本発明に係るプラズマCVD装置の第1の実施
例を示す。図中、第1図に示す装置における部分と同様
の部分は同じ参照数字によって指示しである。図中、1
iI′i真空チヤンバーを構成している円筒状のカソー
ド電極、極、2は該真空チャンバーの中心軸の周りに回
転するようにこれと同心に配置されたアノード電極を構
成する円筒状の基体、3は該カソード電極の上下で真空
チャンバーを構成している壁体、4は該壁体を該カソー
ド電極から絶縁するためのドーナツ形の絶縁ガイシ、5
はカソード電極に高周波′電力を供給しグロー放′亀を
起こすための^周波電源、6は原料ガス供給パイプ、7
は真空チャンバーを真空に保つための排気系、8は円筒
状の基体を加熱するだめのヒーター、9は円筒状の基体
を回転させて堆積膜の膜厚を均一にするための回転機構
、10は基体を接地するアース、1Jは原料ガス放出穴
、12は円筒状基体回転用のモータを示す。
FIG. 2 shows a first embodiment of a plasma CVD apparatus according to the present invention. In the figures, parts similar to parts in the apparatus shown in FIG. 1 are designated by the same reference numerals. In the figure, 1
iI'i A cylindrical cathode electrode constituting a vacuum chamber, a cylindrical substrate constituting an anode electrode arranged concentrically with the pole, 2 rotating around the central axis of the vacuum chamber; 3 is a wall forming a vacuum chamber above and below the cathode electrode; 4 is a donut-shaped insulating insulator for insulating the wall from the cathode electrode; 5
is a frequency power supply for supplying high frequency power to the cathode electrode to cause glow emission; 6 is a raw material gas supply pipe; 7 is a
10 is an exhaust system for keeping the vacuum chamber in a vacuum; 8 is a heater for heating the cylindrical substrate; 9 is a rotation mechanism for rotating the cylindrical substrate to make the thickness of the deposited film uniform; 10 1J indicates a source gas discharge hole, and 12 indicates a motor for rotating the cylindrical substrate.

カソード電極lは、真空チャン・9−の一部を兼ねた円
筒状に形成され、その中心軸方向に宿って4列に並らん
だ多数の原料ガス放出穴11が開口している。カソード
電極1の下部フランジ部内に溝加工されたガス室l&が
設けられ、このガス室に外部から原料ガスを供給するた
めに、ガス供給・臂イグ6の取付部とガス室1&を継ぐ
穴が一個所あけられていて、該ガス供給・9イデ6から
ガス室la内に原料ガスが供給される。然して、上記の
円筒状のカソード電極壁面の壁面に設けられた原料がス
放出穴の1つの列に対して、1個のガス供給・9イグ1
3が、アノード電極と反対側のカソード電極の壁面すな
わちカソード電極の大気側壁面に配置されていて、この
ガス供給パイプ13は、上記のガス室1畠から各ガス放
出穴にガスを供給するためにカソード電極の大気側壁面
に真空リークが無いように溶接された断面が半円形に加
工された金属・やイノより成る。
The cathode electrode 1 is formed in a cylindrical shape that also serves as a part of the vacuum chamber 9-, and has a large number of raw material gas discharge holes 11 arranged in four rows located in the direction of its central axis. A grooved gas chamber 1& is provided in the lower flange portion of the cathode electrode 1, and in order to supply raw material gas to this gas chamber from the outside, a hole is provided to connect the gas chamber 1& with the mounting portion of the gas supply arm 6. One location is opened, and raw material gas is supplied into the gas chamber la from the gas supply 9 id 6. However, the raw material provided on the wall surface of the cylindrical cathode electrode has one gas supply, 9 ignition holes, and 1
3 is disposed on the wall surface of the cathode electrode opposite to the anode electrode, that is, on the atmospheric side wall surface of the cathode electrode, and this gas supply pipe 13 is used to supply gas from the gas chamber 1 to each gas discharge hole. It is made of metal or ino and has a semicircular cross section that is welded to the atmospheric side wall of the cathode electrode to prevent vacuum leaks.

上記の原料ガス放出穴11は等間隔に配置されていて、
各原料ガス放出穴にはネジ加工が施こされており、円筒
状基体表面に堆積する膜の膜厚分布調整を行なう場合、
不用な穴をネジにより塞ぐことができ、まだ、原料ガス
を吹き付けるだめのネジ穴に取付けるネジの中心にガス
放出口を設け、該放出口の穴径を変えたネジを該ネジ穴
に取付けることにより、ガス放出量を変えて膜厚分布を
調整できるようになっている。
The raw material gas discharge holes 11 are arranged at equal intervals,
Each raw material gas discharge hole is threaded, and when adjusting the thickness distribution of the film deposited on the surface of the cylindrical substrate,
An unnecessary hole can be closed with a screw, and a gas release port is provided in the center of the screw that is attached to the screw hole that is used to spray raw material gas, and a screw with a different hole diameter of the release port is installed in the screw hole. This makes it possible to adjust the film thickness distribution by changing the amount of gas released.

第3図は、上記の実施例における円筒状カソード電極の
断面を示す図で、図中1はカソード電極の壁を示し、1
】はカソードを極に設けられた原料ガス放出穴、13は
カソード1!Lfflの大気側壁面に真空リークが無い
ように溶接された断面が半円形に加工されたガス供給用
の金属ノ母イブである。
FIG. 3 is a diagram showing a cross section of the cylindrical cathode electrode in the above embodiment, where 1 indicates the wall of the cathode electrode, and 1
] is the raw material gas discharge hole provided with the cathode as the pole, and 13 is the cathode 1! This is a metal base tube for gas supply that has a semicircular cross section and is welded to the atmospheric side wall of the Lffl so that there is no vacuum leakage.

原料ガス放出穴1】はネジ加工され等間隔に開けられて
いる。
The raw material gas discharge holes 1] are threaded and opened at equal intervals.

第4図(イ)(ロ)は、上記の装置のガス放出穴に取付
けるための六角穴付ネジを示す。第4図(イ)において
、】4はガス放出口を設けた六角穴付ネジ、15はガス
放出口であυ、穴径を変えたネジを取り換えることによ
りガス放出量を変え、膜厚制御を行なうことができる。
Figures 4(a) and 4(b) show hexagonal socket screws for attachment to the gas discharge hole of the above device. In Fig. 4 (a), ] 4 is a hexagonal socket screw with a gas release port, 15 is a gas release port υ, and by replacing the screw with a different hole diameter, the amount of gas released can be changed and the film thickness can be controlled. can be done.

第4図(ロ)において、16はガス放出口の無い六角ネ
ジであり、膜厚分布調整の際、不用となったガス放出口
を塞ぐ目的に使用する。
In FIG. 4(B), 16 is a hexagonal screw without a gas discharge port, and is used for closing an unnecessary gas discharge port when adjusting the film thickness distribution.

次に、上記の装置の各部の動作を順を追って説明する。Next, the operation of each part of the above device will be explained in order.

まず、真空チャン・ぐ−内に円筒状の基体2をセット(
〜、排気系7によってチャン・ぐ−内を真空にする。同
時に基体2をヒーター8によって加熱し、基体2をモー
ター12に連結された回転軸によって回転し、基体の温
度分布を均一にする。この時、ヒーターは固定されてい
る。基体温度が一定になったら、ガス供給)やイブ6か
ら原料ガスを真空チャンバー内に供給する。原料ガスは
電気絶縁ガイシ4の一部に開けられた穴を通り、カソー
ド電極1の下部フランツに設けられたガス室1aに入す
フランノ内を回って各金属パイf13に送られる。
First, set the cylindrical base 2 in the vacuum chamber (
〜The inside of the chamber is evacuated by the exhaust system 7. At the same time, the substrate 2 is heated by the heater 8 and rotated by a rotating shaft connected to the motor 12, thereby making the temperature distribution of the substrate uniform. At this time, the heater is fixed. When the substrate temperature becomes constant, raw material gas is supplied into the vacuum chamber from the gas supply) or the eve 6. The raw material gas passes through a hole made in a part of the electrically insulating insulator 4, enters the gas chamber 1a provided in the lower flange of the cathode electrode 1, goes around the flange, and is sent to each metal pie f13.

ここで原料ガスはパイプの空間が狭いため流縫を抑制さ
れ、各パイプに均等にガスが供給される。
Here, since the space between the pipes is narrow, the raw material gas is prevented from flowing, and the gas is evenly supplied to each pipe.

ノルイブを流れるガスは放出穴]】から基体に向って放
出される。各放出穴から放出されるガス量は、放出穴に
取付けられたネジに開けられたガス放出口の穴径によっ
て制御される。真空チャンバー内にガスが安定して供給
されている状態で、13.56MHzの高周波電源5に
よりカソード電極1に高周波電圧を印加し、アース接地
された基体2の間でグロー放電を発生させ、カソード電
極から飛び出した重子のガス分子への衝突により、ガス
分子をラジカル反応させて基体上に堆積させ、堆積膜例
えばアモルファスシリコン膜を成膜する。
The gas flowing through the Noribu is released from the release hole] towards the base. The amount of gas released from each discharge hole is controlled by the diameter of the gas discharge port drilled in the screw attached to the discharge hole. With gas being stably supplied into the vacuum chamber, a high frequency voltage is applied to the cathode electrode 1 by a 13.56 MHz high frequency power source 5 to generate a glow discharge between the grounded bases 2, and the cathode The collision of the deuterons ejected from the electrodes with the gas molecules causes the gas molecules to undergo a radical reaction and is deposited on the substrate, forming a deposited film such as an amorphous silicon film.

第5図は、本発明の他の実施例を示す。この実施例は、
基本的には第2図に示す実施例と同様力フード電極が真
空チャンバー壁の一部を兼ねる構造とし、カソード電極
に開けられた原料ガス放出口の列数と、真空チャンバー
内に収納されている円筒状基体の数、及び該円筒状基体
の回転機構が異なるのみで、他の部分は同様の構造を有
するものであるので、同様の部分は同じ参照数字によっ
て指示して、その詳細な説明は省略する。
FIG. 5 shows another embodiment of the invention. This example is
Basically, the structure is similar to the embodiment shown in Fig. 2, in which the power hood electrode also serves as a part of the wall of the vacuum chamber, and the number of rows of raw material gas discharge ports opened in the cathode electrode and the number of rows housed in the vacuum chamber are determined. The only difference is the number of cylindrical bases and the rotation mechanism of the cylindrical base, and other parts have similar structures, so similar parts will be designated by the same reference numerals and a detailed description thereof will be given. is omitted.

第5図の実施例において第2図の実施例と犬きく異なる
部分は、4本の円筒状の基体2 a r 2 b *2
c、2dがカンードを極1の中心軸を共有する円周上に
配置され、該カソード1#L極の中心軸に配置した円筒
状基体回転機構13′によって中心軸のまわりを自公転
するようにしたこと、および円筒状基体が4本となり堆
積面積が広くなったため、膜厚分布調整をより広範囲に
行なわなければならないことから、カソード電極】の壁
面に開口した原料ガス放出口】1と、これに伺属してカ
ソード電極】の大気側壁面に溶接した半円形金属パイプ
12をそれぞれ8列としたことである。
The difference between the embodiment shown in FIG. 5 and the embodiment shown in FIG. 2 is that four cylindrical base bodies 2 a r 2 b *2
c and 2d are placed on the circumference that shares the central axis of the cathode 1#L pole, and are rotated around the central axis by a cylindrical base rotation mechanism 13' placed on the central axis of the cathode 1#L pole. In addition, since there are four cylindrical substrates and the deposition area has become wider, it is necessary to adjust the film thickness distribution over a wider range. In conjunction with this, there are eight rows of semicircular metal pipes 12 welded to the atmospheric side wall of the cathode electrode.

第5図に示す実施例装置も各部の基本動作は同じである
が、基体回転機構(3′によって各基体2^。
The basic operation of each part of the embodiment shown in FIG. 5 is the same, but the base rotation mechanism (3' rotates each base 2^).

2b 、2c 、2dは自公転し均一成膜を可能として
いる。
2b, 2c, and 2d rotate around their axis and enable uniform film formation.

以上説明したように、本発明によるプラズマCVD装置
はカソード電極に開口した原料ガス放出口の大数を少な
くシ、円筒状基体の回転軸に平行に直列配置することに
よって、回転軸方向の膜厚分布調整を容易にする効果が
ある。さらに、ガス放出口に取付ける六角穴付ネジに穴
径の異なるガス放出口を開けることによって、ガス放出
量を回転軸に后って調整することができ、膜厚分布の倣
調整を可能とする効果がある。また、カソード電極に開
口した原料ガス放出口の同一列にはそれぞれ単独にガス
供給用の半円形金属パイプが付属しているため、他の列
のガス放出口の開閉によるガス流請の変化を受けにくく
、同一り1jでのガス放出量調整、すなわち膜厚分布調
整が容易となる効果がある。
As explained above, the plasma CVD apparatus according to the present invention reduces the number of raw material gas discharge ports opened in the cathode electrode, and by arranging them in series parallel to the rotation axis of the cylindrical substrate, the film thickness in the rotation axis direction is increased. This has the effect of facilitating distribution adjustment. Furthermore, by opening gas discharge ports with different hole diameters in the hexagonal socket screws attached to the gas discharge ports, the amount of gas released can be adjusted after the rotation axis, making it possible to adjust the film thickness distribution. effective. In addition, each row of raw material gas discharge ports opened to the cathode electrode is equipped with an independent semicircular metal pipe for gas supply, so changes in gas flow due to the opening and closing of gas discharge ports in other rows can be avoided. This has the effect of making it easier to adjust the gas release amount at the same time 1j, that is, adjust the film thickness distribution.

また、従来装置では膜厚分布調整が複雑になる大面積基
体への成膜も、本発明を使用することによって膜厚分布
調整が容易となるばかりでなく、堆積膜厚の均一性、堆
積膜特性の再現性も良好になるという効果があり、本装
置の使用目的の一つである電子写真用感光体ドラムの量
産を、安価にかつ安定して行ない得る効果がある。
In addition, by using the present invention, it is not only easy to adjust the film thickness distribution, but also improve the uniformity of the deposited film thickness, even when depositing a film on a large area substrate, for which adjustment of the film thickness distribution is complicated using conventional equipment. This has the effect of improving the reproducibility of characteristics, and has the effect of making it possible to mass-produce electrophotographic photosensitive drums, which is one of the purposes for which this apparatus is used, at low cost and stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来型の円面形プラズマCVD装置の代茨的−
例を示す断面図、第2図は本発明グツズ1CVD装置の
第]の実施例を示す一部矢切斜視図、第3図はカソード
電接の断面図、第4図(イ)(ロ)は、それぞれガス放
出穴にとシつける六角穴付ネジ、第5図は本発明プラX
7CVD装値の第2の実施例を示す一部矢切斜視図であ
る。 1・・・カソード電極   2・・・基体(アノード電
極)3・・・真空チャン・ぐ−の壁体 4・・・絶縁ガ
イシ5・・・高周波電源    6・・・原料ガス供給
・fイブ7・・・排気系      8・・・ヒーター
9・・・回転機構     10・・・アース11・・
・原料ガス放出穴  12・・・モーター】3・・・原
料ガス供給パイグ 14・・・放出口のあるネヅ 15・・・ガス放出口1
6・・・放出口のないネジ 馬2図 単3図      第4図 第5図
Figure 1 shows a typical example of a conventional circular plasma CVD device.
FIG. 2 is a partially cut-away perspective view showing an embodiment of the CVD apparatus of the present invention, FIG. 3 is a cross-sectional view of cathode electrical connection, and FIGS. 4 (A) and (B). are hexagon socket head screws that are installed in the gas release holes, and Figure 5 is the plastic X of the present invention.
7 is a partially cut-away perspective view showing a second embodiment of the CVD device; FIG. 1... Cathode electrode 2... Substrate (anode electrode) 3... Wall of vacuum chamber 4... Insulating insulator 5... High frequency power supply 6... Raw material gas supply/f-ve 7 ...Exhaust system 8...Heater 9...Rotation mechanism 10...Earth 11...
・Raw material gas discharge hole 12...Motor] 3...Raw material gas supply pipe 14...Nezu with a discharge port 15...Gas discharge port 1
6... Screw horse 2 figure AA figure without discharge port Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)  真空チャンバーを構成している円筒状電極お
よび該真空チャンバーの中心軸の周りに回転するように
配置された対向電極を備え、上記の電直に設けた多数の
穴から原料ガスを放出し、上記の対向電極上の基体に原
料ガスを吹付けて該基体上に堆積膜を形成するプラズマ
CVD装置において、上記の円筒状電極の壁面に、該を
極の中心軸に平行な列をなすように原料ガス放出穴を多
数個開口せしめ、1つの列の穴に対して1つのガス供給
パイグを、上記の対向電極と反対側の該電極壁面に配置
したことを特徴とするプラズマCVD技術。
(1) A vacuum chamber is equipped with a cylindrical electrode and a counter electrode arranged to rotate around the central axis of the vacuum chamber, and raw material gas is released from a number of holes provided in the above electric wire. In a plasma CVD apparatus that sprays raw material gas onto a substrate on the counter electrode to form a deposited film on the substrate, a row of the cylindrical electrodes is formed on the wall surface of the cylindrical electrode parallel to the central axis of the pole. A plasma CVD technology characterized in that a large number of raw material gas discharge holes are opened so as to form a hole, and one gas supply pipe for each row of holes is arranged on the wall surface of the electrode opposite to the counter electrode. .
(2)  該真空チャンバー内に、複数個の円筒状基体
を、その中心軸が該真空チャンバーの中心軸に平行にな
るように配置した特許請求の範囲第(1)項記載のプラ
ズマCVD装置。
(2) The plasma CVD apparatus according to claim (1), wherein a plurality of cylindrical substrates are arranged in the vacuum chamber so that their central axes are parallel to the central axis of the vacuum chamber.
(3)原料ガスを吹き付けるための穴にネジ穴加工を施
こし、円筒状基体表面に堆積する膜の膜厚分布調整を行
なう場合、不用な穴を才ソにより塞ぐことができるよう
にした特許請求の範囲第(1)項記載のプラズマCVD
装置。
(3) A patent that allows threaded holes to be machined in the holes for blowing the raw material gas, so that when adjusting the thickness distribution of the film deposited on the surface of a cylindrical substrate, unnecessary holes can be closed using a saw. Plasma CVD according to claim (1)
Device.
(4)  原料ガスを吹き付けるだめのネジ穴に取付け
る才ノの中心にガス放出口を設け、該放出口の穴径を変
えたネジを該ネジ穴に取付けることにより、ガス放出量
を変えて膜厚分布を調整できるようにした特許請求の範
囲第(2)項記載のプラズマCVD装置′6゛。
(4) A gas release port is provided at the center of the screw hole that is attached to the screw hole of the reservoir for spraying raw material gas, and a screw with a different hole diameter for the release port is installed in the screw hole to change the amount of gas released. A plasma CVD apparatus '6' according to claim (2), wherein the thickness distribution can be adjusted.
JP14793382A 1982-08-26 1982-08-26 Plasma cvd device Pending JPS5938377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14793382A JPS5938377A (en) 1982-08-26 1982-08-26 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14793382A JPS5938377A (en) 1982-08-26 1982-08-26 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS5938377A true JPS5938377A (en) 1984-03-02

Family

ID=15441346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14793382A Pending JPS5938377A (en) 1982-08-26 1982-08-26 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS5938377A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121734U (en) * 1985-01-18 1986-07-31
JPS61177375A (en) * 1985-01-30 1986-08-09 Shimadzu Corp Plasma cvd device
JPS62218572A (en) * 1986-03-19 1987-09-25 Canon Inc Device for forming deposited film by plasma cvd method
JPH0270822A (en) * 1988-09-06 1990-03-09 Fujita Corp Temporary post erection method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121734U (en) * 1985-01-18 1986-07-31
JPH0539624Y2 (en) * 1985-01-18 1993-10-07
JPS61177375A (en) * 1985-01-30 1986-08-09 Shimadzu Corp Plasma cvd device
JPH0542510B2 (en) * 1985-01-30 1993-06-28 Shimadzu Corp
JPS62218572A (en) * 1986-03-19 1987-09-25 Canon Inc Device for forming deposited film by plasma cvd method
JPH0270822A (en) * 1988-09-06 1990-03-09 Fujita Corp Temporary post erection method and device

Similar Documents

Publication Publication Date Title
US6435428B2 (en) Showerhead apparatus for radical-assisted deposition
KR20080015364A (en) Surface processing apparatus
JPH04231397A (en) Method for formation of diamond layer and apparatus therefor
US4545328A (en) Plasma vapor deposition film forming apparatus
KR100509666B1 (en) Device for vaccum coating of bulk material
JPS5938375A (en) Plasma cvd device
JPH09170078A (en) Apparatus for coating substrate from conductive target
US4404076A (en) Film forming process utilizing discharge
JPS60155676A (en) Plasma cvd device
US4539934A (en) Plasma vapor deposition film forming apparatus
JPS5938377A (en) Plasma cvd device
JPS5938373A (en) Plasma cvd device
US4915978A (en) Method and device for forming a layer by plasma-chemical process
JPS6010618A (en) Plasma cvd apparatus
JPS6137968A (en) Plasma cvd device
JPS5938374A (en) Plasma cvd device
US4599971A (en) Vapor deposition film forming apparatus
JPS6043488A (en) Apparatus for producing thin film
JPS60431B2 (en) Film formation method
JPS5889943A (en) Plasma cvd device
JPS6024376A (en) Plasma cvd device
JP2001196318A (en) Semiconductor treating method and equipment
JPS6013074A (en) Plasma cvd device
JPS6119779A (en) Plasma cvd apparatus
JPH0694591B2 (en) Plasma CVD equipment