JPS5938374A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS5938374A
JPS5938374A JP57147931A JP14793182A JPS5938374A JP S5938374 A JPS5938374 A JP S5938374A JP 57147931 A JP57147931 A JP 57147931A JP 14793182 A JP14793182 A JP 14793182A JP S5938374 A JPS5938374 A JP S5938374A
Authority
JP
Japan
Prior art keywords
gas
holes
chamber
electrode
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57147931A
Other languages
Japanese (ja)
Inventor
Yasutomo Fujiyama
藤山 靖朋
Osamu Kamiya
神谷 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57147931A priority Critical patent/JPS5938374A/en
Publication of JPS5938374A publication Critical patent/JPS5938374A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit uniformly a photoreceptor film, etc. having good reproducibility on a base body, by forming a cathode electrode disposed in a vacuum chamber into a discoid double construction to form a gas chamber, and providing gas releasing ports to the electrode in a radial array. CONSTITUTION:A discoid base body 2 is set in a vacuum chamber 3, and a cathode electrode 1 formed with a gas chamber by a discoid double-walled construction is disposed to the body 2. Gas releasing holes 11 are opened in a radial array from the center of such electrode 1. A gaseous raw material is fed through a gas supply pipe 8 to the gas chamber in the electrode 1 to fill the chamber; thereafter, the gas is released through the respective holes 1 toward the body 2. Screw holes are worked in the holes 11 and the unnecessary holes 11 are closed with screws, etc. whereby the flow rate of the releasing gas is controlled. An amorphous silicon film, etc. having good uniformity and reproducibility in the thickness of the vapor deposited film are formed on the body 2 by the above- mentioned device.

Description

【発明の詳細な説明】 本発明は、基体上に堆積膜を形成するだめのプラズマC
VD装置に関するもので、例えばアモルファス・シリコ
ン感光体使用の受光素子の生産、特にプラズマCVD技
術を用いて平板基体表面にアモルファス・シリコン膜を
堆゛積し、受光素子を生産するのに使用することのでき
るフ0ラズマCVD装置、更に反応室内に各種原料ガス
を適当に供給することにより、シリコンナイトライド(
SiN ) k、シリコンオキシナイトライド(81O
N )膜、シリコンオキナイ ド(5iO2) M、シ
リコンカーバイト(SiC)膜を上記感光体嵌面に連続
的に積層堆積し、受光素子の耐湿・耐摩耗特性を向上さ
せることも可能なプラズマCVD装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides plasma C for forming a deposited film on a substrate.
It relates to VD equipment, for example, the production of photodetectors using amorphous silicon photoreceptors, and in particular, the production of photodetectors by depositing an amorphous silicon film on the surface of a flat substrate using plasma CVD technology. Silicon nitride (
SiN ) k, silicon oxynitride (81O
N) film, silicon oxide (5iO2) M, and silicon carbide (SiC) film are continuously deposited on the photoreceptor fitting surface to improve the moisture resistance and wear resistance characteristics of the light receiving element. This relates to CVD equipment.

尚、以下の説明においては、主として成膜される基体を
受光素子用平板基体とした実施例について本発明を説明
するが、本発明プラズマCVD装置は金型、バイト等の
摩耗、劣化しゃすい工具等の表面にシリコンカーバイト
(SiC)膜などの硬質膜を堆積することによシ、工具
の耐摩耗性を向上させ、その使用寿命を延ばす目的にも
利用することができ、また、アクリル非球面レンズ等の
表面にアンダーコート材としてシリコンオキサイド(s
to2)gなどの膜を堆積し、アクリル非球面レンズ表
面への光学薄膜の堆積を可能とする目的にも利用するこ
とができる。
In the following description, the present invention will mainly be explained with reference to an embodiment in which the substrate on which a film is formed is a flat substrate for a light receiving element. By depositing a hard film such as silicon carbide (SiC) film on the surface of acrylic materials, etc., it can be used to improve the wear resistance of tools and extend their service life. Silicon oxide (s) is used as an undercoat material on the surface of spherical lenses, etc.
It can also be used for the purpose of depositing a film such as to2)g and enabling the deposition of an optical thin film on the surface of an acrylic aspheric lens.

上記のように基体上に堆積膜を形成する装置として使用
される従来型の平行平板壁面放出型のプラズマCVD装
置の代表的な一例を第1図に示す。
FIG. 1 shows a typical example of a conventional parallel plate wall emission type plasma CVD apparatus used as an apparatus for forming a deposited film on a substrate as described above.

図中1はカソード電極、2はアノード電極を構成してい
る円形平板状の基体、3i43空チヤンバー、4は絶縁
ガイシ、5は基体加熱用ヒーター、6は基体回転用モー
ター、7は排気系、8は原料ガス供給・マイノ、9は真
空中でグロー放電を発生させるだめの高周波電源、1o
は円形平板基体をアノード電極L極とするためのアース
、11は原料ガスの放出穴である・図示のように、カソ
ード電、愼は円形平板二重構造となっていて、その内部
に原料ガスが供給される室が形成されている。
In the figure, 1 is a cathode electrode, 2 is a circular plate-shaped base forming an anode electrode, 3i43 empty chamber, 4 is an insulating insulator, 5 is a heater for heating the base, 6 is a motor for rotating the base, 7 is an exhaust system, 8 is a raw material gas supply/minor, 9 is a high frequency power source for generating glow discharge in vacuum, 1o
11 is the ground for using the circular flat plate base as the anode electrode L pole, and 11 is the discharge hole for the raw material gas. As shown in the figure, the cathode electrode and the hole have a circular flat plate double structure, inside which the raw material gas is A chamber is formed in which the gas is supplied.

上記の装置の動作は次の通りである。The operation of the above device is as follows.

まず、チャンバー3内に円盤状の基体2をセ。First, a disc-shaped base 2 is placed inside the chamber 3.

トし、排気系7によってチ曳・ンパー内を真空にする。Then, the exhaust system 7 evacuates the inside of the puller and pumper.

同時に、基体2をヒーター5によって加熱し、基体2を
モーター6によって回転し、基体の製産分布を均一にす
る。ξの時、ヒーターは固定されている。基体温度が一
定になったら、ガス供給・母イブ8から原料ガスを真空
チャンバー3内に供給する。ガスは放出穴11から基体
に向って放出され、真空チャンバー3内に原料ガスが供
給されている状態で13.56 Mllzの高周波゛電
源9によりカソード電極1に高周波電圧を印加し、アー
ス接地lOされた基体2の間でグロー放′iFLを発生
させ、カソードiB4から飛び出した電子のガス分子へ
の衝突により・ガス分子をラジカル反応させて基体上に
堆積させ、アモルファス・シリコン膜を成膜するO 上記のようなプラズマCVD装置において、堆積した膜
の膜厚分布は装置の排気口の位置や、原料ガス流量、放
電時の高周波電力の大きさによる膜の堆積速度、さらに
は真空度や、原料ガス放出口の位置によって変化する。
At the same time, the substrate 2 is heated by the heater 5 and rotated by the motor 6 to make the production distribution of the substrate uniform. When ξ, the heater is fixed. When the substrate temperature becomes constant, raw material gas is supplied into the vacuum chamber 3 from the gas supply/mother tube 8. The gas is discharged from the discharge hole 11 toward the substrate, and while the raw material gas is supplied into the vacuum chamber 3, a high frequency voltage of 13.56 Mllz is applied to the cathode electrode 1 by the high frequency power supply 9, and the cathode electrode 1 is connected to the earth ground lO. Glow emission iFL is generated between the substrates 2, and electrons ejected from the cathode iB4 collide with gas molecules to cause a radical reaction in the gas molecules and deposit them on the substrate, forming an amorphous silicon film. O In the above-mentioned plasma CVD apparatus, the thickness distribution of the deposited film depends on the position of the exhaust port of the apparatus, the flow rate of raw material gas, the film deposition rate depending on the magnitude of high-frequency power during discharge, and also the degree of vacuum, It changes depending on the position of the raw material gas discharge port.

アモルファス・シリコン感光体膜の利用目的からすれば
、大面積の基板上に広範囲な膜厚分布の均一性が要求さ
れる。
Considering the purpose of using an amorphous silicon photoreceptor film, uniformity of film thickness distribution over a wide range is required on a large-area substrate.

プラズマCVD装置では、ガス流量や、高周波電力の大
きさ、真空度等は、膜特性に影響をおよぼすため膜厚分
布を調整する手段として用いることはできない。排気口
の位置も、装置構成上自由に変更することは難しい。す
なわち、膜厚分布を調整する手段としては、ガス放出口
の穴径や位置を調整することが、最も容易な手段と考え
られる。
In a plasma CVD apparatus, the gas flow rate, the magnitude of high-frequency power, the degree of vacuum, etc. cannot be used as means for adjusting the film thickness distribution because they affect the film characteristics. It is also difficult to freely change the position of the exhaust port due to the device configuration. That is, adjusting the hole diameter and position of the gas discharge port is considered to be the easiest means for adjusting the film thickness distribution.

一方、プラズマCVD装置では特定の膜特性を得る為に
ガス流量や流速を選定する必要があり膜厚分布もそのつ
ど変動するために、ガス放出口の穴径や位置は選択の自
由度が高いものであることが要求される◎従来の平行平
板壁面放出型プラズマCVD装置には、原料ガス放出穴
を不規則に多数個開口したものや、円周上に多数個開口
したものがほとんどで、穴数が多過ぎるだめ、膜厚分布
の均一化のために最適な穴位置を選択するのが難しかっ
た。また、穴径の自由度に対してほとんど考慮されてい
なかったため、膜厚分布の調整は穴位置の選定のみにた
よっていた。このため、従来装置では有効堆積範囲が広
くなるのに比例して、その膜厚分布調整が難しくなると
いう欠点が有った〇本発明は、上述の従来のプラズマC
VD装置における膜厚分布調整を大幅に改善しようとす
るもので、カソード電極壁面に開口したガス放出穴を、
電極側面の中心から放出状の列をなして開口せしめ、こ
のガス放出穴の列を基体の界面積に比例して1〜10列
となし、円盤状二重壁構造の電極内にガス室を形成し、
膜厚分布上問題の無い程度にまで開口数を限定すること
によって、膜厚分布とガス放出口の開口位置との相関関
係を明確にし、膜厚分布調整を容易にすることを可能と
したものである。然して、上記の基体を中心軸のまわシ
に回転することで膜厚の均一化も保障される。さら1に
、ガス放出穴に取付けるネジに穴径の異なる放出口を設
けることによって膜厚分布の微調整が可能になシ、例え
ば大面積基体上へのアモルファス・シリコン感光体膜の
均一堆積を可能にするものである。
On the other hand, in plasma CVD equipment, it is necessary to select the gas flow rate and flow rate in order to obtain specific film characteristics, and the film thickness distribution also changes each time, so there is a high degree of freedom in selecting the hole diameter and position of the gas outlet. ◎Most conventional parallel plate wall-emission plasma CVD equipment has a large number of irregularly opened raw material gas discharge holes or a large number of openings on the circumference. Because the number of holes was too large, it was difficult to select the optimal hole positions to make the film thickness distribution uniform. Furthermore, since little consideration was given to the degree of freedom of the hole diameter, adjustment of the film thickness distribution relied only on the selection of hole positions. For this reason, the conventional apparatus had the disadvantage that it became difficult to adjust the film thickness distribution in proportion to the widening of the effective deposition range.
This is intended to significantly improve film thickness distribution adjustment in VD equipment, and gas release holes opened in the cathode electrode wall.
Openings are formed in a row of gas discharge holes from the center of the side surface of the electrode, and the rows of gas discharge holes are arranged in 1 to 10 rows in proportion to the interfacial area of the base, thereby creating a gas chamber within the disk-shaped double-walled electrode. form,
By limiting the numerical aperture to a level that causes no problems with the film thickness distribution, it is possible to clarify the correlation between the film thickness distribution and the opening position of the gas discharge port, making it possible to easily adjust the film thickness distribution. It is. However, by rotating the above-mentioned substrate around the central axis, uniformity of the film thickness is also ensured. Furthermore, by providing gas discharge holes with different hole diameters on the screws attached to the gas discharge holes, fine adjustment of the film thickness distribution is possible.For example, uniform deposition of an amorphous silicon photoreceptor film on a large area substrate is possible. It is what makes it possible.

以下に、実施例装置に基いて本発明の詳細な説明する。The present invention will be described in detail below based on an example device.

第2図は本発明に係るプラズマCVD装置の一実例を示
す。図中、第1図に示す装置における部分と同様の部分
は同じ参照数字によって指示し′″Cある。図中、1は
カソード電極、2はアノード電極を構成している円盤状
の基体てあり、回転用モーターによって堆積工程中回転
するようになっている。3は真空チャンバー、4はカソ
ード電極と真空チャンバーおよびアノード電極を電気的
に絶縁するだめの絶縁ガイシ、5はアノード電極に取付
けられた基体を加熱するだめのヒーター・6は内盛状基
体を回転するだめのモーター、7はチャンバーを真空に
保つための排気系、8は原料ガス供給パイプ、9はカソ
ード電極とアノード電極の間でグロー放電を発生させる
ための高周波電源、10はアノード電極と真空チャンバ
ーをアース接地するためのアースであり、11は原料ガ
スをグロー放電中に供給する原料ガス放出用の穴を示す
FIG. 2 shows an example of a plasma CVD apparatus according to the present invention. In the figure, parts similar to those in the apparatus shown in FIG. , which is rotated by a rotation motor during the deposition process. 3 is a vacuum chamber, 4 is an insulating insulator for electrically insulating the cathode electrode, the vacuum chamber, and the anode electrode, and 5 is attached to the anode electrode. A heater for heating the substrate; 6 is a motor for rotating the inner lining-shaped substrate; 7 is an exhaust system for keeping the chamber in vacuum; 8 is a raw material gas supply pipe; 9 is a heater between the cathode electrode and the anode electrode. A high frequency power source is used to generate glow discharge, 10 is a ground for grounding the anode electrode and the vacuum chamber, and 11 is a hole for releasing raw material gas to supply raw material gas during glow discharge.

アノード電極を構成している円盤状の基体2は真空チャ
ンバー3内に配置され、カソード電極lは該基体に対向
して平行に配置された円盤状二重壁構造の電極として構
成され、その中にガス室を形成している。この円盤状電
極1の側面に、原料を放出するための穴11が、該電極
側面の中心から放射状の列(図示の例では6列)をなし
て開口している。原料ガスを放出する穴11にはネジ加
工が施こされていて、基体の表面に堆積する膜の膜厚分
布調整を行う場合に不用な穴をネジにより基ぐことがで
きるようになっている。また、上記のネジ加工を施こし
た穴11には、中心にガス放出口を設けたネジをとりつ
け、該放出口の穴径を震えたネジをとりつけることによ
ってガス放出量t!えてJ膜厚分布を調整できるように
なっている。
A disk-shaped substrate 2 constituting an anode electrode is arranged in a vacuum chamber 3, and a cathode electrode 1 is configured as a disk-shaped double-walled electrode arranged in parallel to the substrate. A gas chamber is formed in the Holes 11 for releasing the raw material are opened in a radial row (six rows in the illustrated example) from the center of the electrode side surface on the side surface of the disk-shaped electrode 1. The hole 11 through which the raw material gas is released is threaded, so that when adjusting the film thickness distribution of the film deposited on the surface of the substrate, an unnecessary hole can be installed with a screw. . In addition, a screw with a gas release port in the center is attached to the threaded hole 11 described above, and a screw with a diameter of the hole of the release port is installed, so that the amount of gas released is t! The J film thickness distribution can be adjusted by adjusting the J film thickness distribution.

かくして、ガス放出穴の各列のガス放出量をそれぞれ単
独に調整できる・ 第3図は、上記の装置の円盤状二重壁構造のカソード電
極をアノード電極側から見た図を示し、図中、1はカソ
ード電極、11は二重壁構造カソード電極のアノード側
壁に中心から放射状に6列開口され、ネジ加工されたガ
ス放出穴である。
In this way, the amount of gas released from each row of gas release holes can be adjusted independently. Figure 3 shows the cathode electrode of the disc-shaped double wall structure of the above device, viewed from the anode side. , 1 is a cathode electrode, and 11 is a screw-processed gas discharge hole opened in six rows radially from the center in the anode side wall of the double-walled cathode electrode.

第4図は、上記の装置のカソード電極の断]■を示し、
図中、1aは真空チャン・ぐ−側力ソード電極壁であり
、1bはアノード側カソード電極壁であり、11はネジ
加工されたガス放出穴である。
FIG. 4 shows disconnection of the cathode electrode of the above device;
In the figure, 1a is a vacuum chamber side force sword electrode wall, 1b is an anode side cathode electrode wall, and 11 is a threaded gas discharge hole.

真空チャンバー側とブノード側の壁によってカソード電
極内にガス室が構成されている。
A gas chamber is configured within the cathode electrode by walls on the vacuum chamber side and the bunode side.

第5図(イ)(ロ)は、上記の装置のガス放出穴に取付
けるための六角穴付ネジを示す。第5図0)において、
12はガス放出口を設けた六角穴付ネジ、13はガス放
出口てあり、穴径を変えたネジを取り換えることによっ
てガス放出量を変え、膜厚制御を行なうことができる。
Figures 5(a) and 5(b) show hexagonal socket screws for attachment to the gas discharge hole of the above device. In Figure 5 0),
Reference numeral 12 indicates a hexagon socket head screw provided with a gas release port, and 13 indicates a gas release port. By replacing the screw with a different hole diameter, the amount of gas released can be changed and the film thickness can be controlled.

第5図(ロ)において、14はガス放出口の無い六角穴
付ネジであり、膜厚分布調整の際不用となったガス放出
口を塞ぐ目的に使用する。
In FIG. 5(b), 14 is a hexagon socket head screw without a gas discharge port, and is used for the purpose of closing the gas discharge port that is no longer needed when adjusting the film thickness distribution.

次に、上記の装置の各部の動作を順を追って説明する。Next, the operation of each part of the above device will be explained in order.

まず、チャンバー内に円盤状の基体2をセットし、排気
系7によってチャンバー内を真空にする。
First, a disk-shaped base 2 is set in a chamber, and the chamber is evacuated by the exhaust system 7.

同時に基体2をヒーター5によって加熱し、基体2をモ
ーター6によって回転し、基体の温度分布を均一にする
。この時、ヒーターは固定されている。基体温度が一定
になったら、ガス供給パイプ8から原料ガスをA窒チャ
ンバー内に供給する。
At the same time, the substrate 2 is heated by the heater 5 and rotated by the motor 6 to make the temperature distribution of the substrate uniform. At this time, the heater is fixed. When the substrate temperature becomes constant, raw material gas is supplied from the gas supply pipe 8 into the nitrogen chamber A.

掠料ガスは円盤状二重壁によって囲まれたカソード−1
臣l内のガス室に送られる。ここで、ガス供給・Pイノ
8は、カソード電極の中央部に取付けられているため、
ガス室に送られた原料ガスは直接ガス放出穴から放出さ
れず、一度ガス室内に充満し谷ガス放出穴から基体に向
って放出される。各放出穴から放出されるガス量は、放
出穴に取付けられたネジに開けられた穴の穴径によって
制御される。真空チャンバー内にガスが安定して供給さ
れている状態で13.56 MHy、の篩周波電源9に
よシカソード電極1に高周波電圧を印加し、アース接地
された基体2の間でグロー放電を発生させ、カソード電
(へから飛び出した電子のガス分子への衝突により、力
゛ス分子をラジカル反応させて基体上に堆積させ、アモ
ルファス・シリコン膜を成膜する。
The feed gas is fed to the cathode-1 surrounded by a disc-shaped double wall.
He was sent to the gas chamber inside the palace. Here, since the gas supply/P Inno 8 is attached to the center of the cathode electrode,
The raw material gas sent to the gas chamber is not directly discharged from the gas discharge hole, but once fills the gas chamber and is discharged from the valley gas discharge hole toward the substrate. The amount of gas released from each discharge hole is controlled by the diameter of the hole drilled in the screw attached to the discharge hole. While gas is stably supplied into the vacuum chamber, a high frequency voltage of 13.56 MHy is applied to the cathode electrode 1 by the sieve frequency power supply 9, and a glow discharge is generated between the grounded bases 2. The collision of electrons ejected from the cathode with gas molecules causes the force molecules to undergo a radical reaction and deposit on the substrate, forming an amorphous silicon film.

以上説明したように、本発明による)0ラズマCVD装
置は、カソード電極に開口した原料がス放出穴の穴数を
少なくシ、円盤状の基体の回転方向に対して法線方向に
直線配置することによって、法線方向の膜厚分布調整を
容易にする効果がある。
As explained above, in the zero plasma CVD apparatus according to the present invention, the raw material opened in the cathode electrode has a reduced number of sulfur discharge holes, and is arranged in a straight line in the direction normal to the rotational direction of the disk-shaped substrate. This has the effect of facilitating adjustment of the film thickness distribution in the normal direction.

さらに、力゛ス放出口に取付ける六角穴付ネジに穴径の
異なる】J゛ス放出口を開けることによって、ガス放出
量を法祿方向に沿って調材することができ、膜厚分布の
倣潤整を可能とする効果があるう1だ、従来りか置でQ
よ膜厚分布調整が複雑になる大面Al(基体への蒸着も
、本発明を使用することによって膜厚分布、i+、、l
整が容易となるばかりでなく、蒸着膜厚の均一性、蒸着
膜特性の再現性も良好となるという効果があり、本装置
の使用目的の一つでおる受光素子の生産を75定して行
ない得る効果がある。
Furthermore, by opening the hexagon socket head screws with different hole diameters to be attached to the force gas discharge port, the amount of gas released can be adjusted along the direction of the force, and the film thickness distribution can be controlled. Another effect is that it allows copying to be smoothed.
By using the present invention, the film thickness distribution, i+, l
This not only makes the process easier, but also improves the uniformity of the deposited film thickness and the reproducibility of the deposited film characteristics. There are effects that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマCVD装置を示す一部欠切斜視
図、第2図は、本発明プラズマCVD装置の一実施例を
示す一部欠切斜視図、第3図は第2図に示すカソード電
極をアノード電極側から見た図、第4図は上記のカソー
ド電極の断面図、第5図(イ)(ロ)は、それぞれガス
放出穴に取付ける六角穴付ネジの側面図である。 1は円盤状二重壁構造のカソード電極、2は円盤状の基
体、3は真空チャンバー、4は電気絶縁ガイシ、5は基
体加熱ヒーター、6は基体回転用モーター、7は排気系
、8は原料ガス供給パイプ、9は高周波電源、lOはア
ース%11はガス放出穴。12はガス放出口を有する六
角穴付ネジ、13はガス放出口、14はガス放出口を塞
ぐだめの六角穴付ネジである。 馬2図
Fig. 1 is a partially cutaway perspective view showing a conventional plasma CVD apparatus, Fig. 2 is a partially cutaway perspective view showing an embodiment of the plasma CVD apparatus of the present invention, and Fig. 3 is shown in Fig. 2. FIG. 4 is a cross-sectional view of the cathode electrode, and FIGS. 5(a) and 5(b) are side views of a hexagon socket head screw attached to a gas discharge hole, respectively. 1 is a cathode electrode with a disc-shaped double wall structure, 2 is a disc-shaped base, 3 is a vacuum chamber, 4 is an electrically insulated insulator, 5 is a base heater, 6 is a motor for rotating the base, 7 is an exhaust system, and 8 is a Raw material gas supply pipe, 9 is a high frequency power supply, 1O is earth, 11 is a gas discharge hole. 12 is a hexagon socket screw having a gas discharge port, 13 is a gas discharge port, and 14 is a hexagon socket screw for closing the gas discharge port. Horse 2

Claims (3)

【特許請求の範囲】[Claims] (1)真空チャンバー内に円盤状の基体を配置し、該基
体に対向して平行に配置された円盤状二重壁構造の電極
の基体側壁面に、原料ガスを放出するだめの穴を、該電
画の中心から放射状の列をなして多数個開口せしめ、上
記の円盤状二重壁構造の屯極内にガス室を形成したこと
を特徴とするプラズマCVD装置。
(1) A disc-shaped base is placed in a vacuum chamber, and a hole for releasing raw material gas is provided in the side wall surface of the base of an electrode with a disc-shaped double-walled structure that is placed parallel to and facing the base. A plasma CVD apparatus characterized in that a large number of openings are formed in a radial row from the center of the electrolyte, and a gas chamber is formed within the tube of the disc-shaped double wall structure.
(2)  原料ガスを放出する穴にネジ穴加工を施こし
、上記の一円盤状の基体表面に堆積する膜の膜厚分布調
整を行なう場合、不用な穴をネジにより塞ぐことができ
るようにした特許請求の範囲第(1)項記載のプラズマ
CVD装置。
(2) When adjusting the film thickness distribution of the film deposited on the surface of the disk-shaped substrate by drilling screw holes in the holes through which the raw material gas is released, the unnecessary holes can be closed with screws. A plasma CVD apparatus according to claim (1).
(3) 原料ガスを放出する穴にネジ穴加工を施こし、
このネジ穴に、中心にガス放出口を設けたネジをと9つ
け、該放出口の穴径を変えたネジを該ネジ穴に取り付け
ることにより、ガス放出液を変えて膜厚分布を調整でき
るようにした特許請求の範囲第(1)項記載のプラズマ
CVD装置。
(3) Machine a screw hole in the hole that releases the raw material gas,
By inserting a screw with a gas release port in the center into this screw hole, and attaching a screw with a different diameter hole to the screw hole, the film thickness distribution can be adjusted by changing the gas release liquid. A plasma CVD apparatus according to claim (1).
JP57147931A 1982-08-26 1982-08-26 Plasma cvd device Pending JPS5938374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147931A JPS5938374A (en) 1982-08-26 1982-08-26 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147931A JPS5938374A (en) 1982-08-26 1982-08-26 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS5938374A true JPS5938374A (en) 1984-03-02

Family

ID=15441305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147931A Pending JPS5938374A (en) 1982-08-26 1982-08-26 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS5938374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100587629B1 (en) * 2000-04-26 2006-06-08 액셀리스 테크놀로지스, 인크. Gas distribution plate assembly for providing laminar gas flow across the surface of a substrate
JP2015181152A (en) * 2014-02-27 2015-10-15 ラム リサーチ コーポレーションLam Research Corporation Apparatus and method for improving wafer uniformity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100587629B1 (en) * 2000-04-26 2006-06-08 액셀리스 테크놀로지스, 인크. Gas distribution plate assembly for providing laminar gas flow across the surface of a substrate
JP2015181152A (en) * 2014-02-27 2015-10-15 ラム リサーチ コーポレーションLam Research Corporation Apparatus and method for improving wafer uniformity

Similar Documents

Publication Publication Date Title
US4709655A (en) Chemical vapor deposition apparatus
US11049755B2 (en) Semiconductor substrate supports with embedded RF shield
US4400410A (en) Coating insulating materials by glow discharge
US6435428B2 (en) Showerhead apparatus for radical-assisted deposition
US5919332A (en) Plasma processing apparatus
US4715319A (en) Device for coating a substrate by means of plasma-CVD or cathode sputtering
KR20070038047A (en) Blocker plate bypass to distribute gases in a chemical vapor deposition system
JPS6063375A (en) Apparatus for producing deposited film by vapor phase method
JP2582553B2 (en) Functional deposition film forming apparatus by plasma CVD
JPS5938375A (en) Plasma cvd device
US4404076A (en) Film forming process utilizing discharge
JPS5938374A (en) Plasma cvd device
TWI721940B (en) Apparatus and method for static deposition of material on a substrate
JPS5938373A (en) Plasma cvd device
JPS5938377A (en) Plasma cvd device
JPS6010618A (en) Plasma cvd apparatus
EP1598442A1 (en) Amorphous carbon film forming method and device
JP2022514638A (en) Vacuum processing equipment and methods for vacuum plasma processing or manufacturing of at least one substrate.
US20220399192A1 (en) Substrate processing device having heat hole
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JPS60431B2 (en) Film formation method
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH057462B2 (en)
JPS5957910A (en) Gas introducing section of apparatus for manufacturing amorphous silicon photoreceptor
JPS62235471A (en) Deposited film forming device by plasma cvd method