JPS6353854B2 - - Google Patents

Info

Publication number
JPS6353854B2
JPS6353854B2 JP18966381A JP18966381A JPS6353854B2 JP S6353854 B2 JPS6353854 B2 JP S6353854B2 JP 18966381 A JP18966381 A JP 18966381A JP 18966381 A JP18966381 A JP 18966381A JP S6353854 B2 JPS6353854 B2 JP S6353854B2
Authority
JP
Japan
Prior art keywords
cylindrical
film
raw material
material gas
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18966381A
Other languages
Japanese (ja)
Other versions
JPS5889943A (en
Inventor
Osamu Kamya
Yasutomo Fujama
Kyosuke Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18966381A priority Critical patent/JPS5889943A/en
Publication of JPS5889943A publication Critical patent/JPS5889943A/en
Publication of JPS6353854B2 publication Critical patent/JPS6353854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は複写機等の円筒状感光体を同時に多量
製造し得るプラズマCVD法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma CVD method that allows simultaneous mass production of cylindrical photoreceptors for copying machines and the like.

薄膜製造法の一つとして近年脚光を浴びている
ものにプラズマCVD法がある。この方法は反応
室を高真空に減圧し、原料ガスを反応室に供給し
た後、直流又は高周波による、グロー放電で原料
ガスを分解し反応室内に配置された基体上に薄膜
を形成する方法で、例えば非晶質硅素膜の生成に
応用されている。この方法でシランガス(SiH4
を原料ガスとして作成した非晶質硅素膜は、非晶
質硅素の禁止帯中に存在する局在準位が比較的少
なく、高抵抗でかつ光導伝性が大きい為、電子写
真用感光体として有効である。しかしこのプラズ
マCVD法は、非晶質硅素膜の成長速度が10Å/
秒程度と遅い欠点がある。例えば電子写真用の感
光体を作る場合、非晶質膜の厚さは15〜20μm程
度必要であり、この膜厚にまで形成するのに要す
る時間は約5時間となり、生産性難点を有してい
る。
One of the thin film manufacturing methods that has been attracting attention in recent years is the plasma CVD method. In this method, the reaction chamber is depressurized to a high vacuum, a raw material gas is supplied to the reaction chamber, and then the raw material gas is decomposed by glow discharge using direct current or high frequency to form a thin film on a substrate placed inside the reaction chamber. For example, it is applied to the production of amorphous silicon films. In this method silane gas (SiH 4 )
The amorphous silicon film prepared using amorphous silicon as a raw material gas has relatively few localized levels in the forbidden band of amorphous silicon, has high resistance, and has high photoconductivity, so it is used as a photoreceptor for electrophotography. It is valid. However, with this plasma CVD method, the growth rate of the amorphous silicon film is 10 Å/
It has the disadvantage of being slow, about seconds. For example, when making a photoreceptor for electrophotography, the thickness of the amorphous film is required to be about 15 to 20 μm, and it takes about 5 hours to form the film to this thickness, which poses productivity problems. ing.

一方この原料ガスはかなり高価なものであり、
反応室内に導入される原料ガスの何パーセントが
有効に基体上に膜として形成されるかという事が
プラズマCVD法を実施する装置の効率を決める
重要な要素である。
On the other hand, this raw material gas is quite expensive,
The percentage of the raw material gas introduced into the reaction chamber that is effectively formed as a film on the substrate is an important factor that determines the efficiency of the equipment that performs the plasma CVD method.

電子写真用感光体の様な円筒状基体に成膜する
プラズマCVD装置として例えば第1図1の様な
型式のプラズマCVD装置1が知られている。
As a plasma CVD apparatus for forming a film on a cylindrical substrate such as an electrophotographic photoreceptor, for example, a plasma CVD apparatus 1 of the type shown in FIG. 1 is known.

図中6は円筒状基体であり、その周りを中空の
二重構造となつた電極円筒4によつて、囲まれて
いる。円筒状基体6の内部には加熱ヒーター8が
あり、基体を内部より加熱する。基体の取り付け
られている軸5は回転し、膜の均一化が計られて
いる。
In the figure, reference numeral 6 denotes a cylindrical base, which is surrounded by an electrode cylinder 4 having a hollow double structure. A heater 8 is provided inside the cylindrical base 6 to heat the base from the inside. The shaft 5 to which the substrate is attached is rotated to ensure uniformity of the film.

電極及び基体は、更に外側で、円筒2及び上下
の蓋3及び7により電気的にシールドして、反応
プラズマをとじ込めている。これら全体の系は、
真空槽9により覆われており真空ポンプにより1
0から排気される。
The electrode and the substrate are further electrically shielded on the outside by the cylinder 2 and the upper and lower lids 3 and 7 to contain the reactive plasma. These whole systems are
It is covered by a vacuum chamber 9 and is heated by a vacuum pump 1.
Exhausted from 0.

プラズマ分解される原料ガスは電極4の中空部
に外部より供給され電極の内側に明けられた孔を
通し、プラズマ中に放出される。
Raw material gas to be plasma decomposed is supplied from the outside into the hollow part of the electrode 4, passes through a hole formed inside the electrode, and is emitted into the plasma.

この様な装置では、成膜する為の円筒状基体
は、1本に限られ、多量に処理する事は困難であ
る。
In such an apparatus, the number of cylindrical substrates for film formation is limited to one, and it is difficult to process a large amount.

一方、プラズマCVD装置ではプラズマにさら
される装置の総ての面に膜が形成される為、成膜
されるべき基体の有効面積の電極面等の炉内表面
積に対する割合が、有効に膜として利用される原
料ガスの割合を決定する。
On the other hand, in plasma CVD equipment, a film is formed on all surfaces of the equipment exposed to plasma, so the ratio of the effective area of the substrate on which the film is to be formed to the surface area of the furnace, such as the electrode surface, is used effectively as a film. Determine the proportion of raw material gas to be used.

前記従来のプラズマCVD装置では円筒状基体
を円筒型電極が囲む構造となつている為、原料ガ
スの有効利用率は30%以下である。
Since the conventional plasma CVD apparatus has a structure in which a cylindrical electrode surrounds a cylindrical substrate, the effective utilization rate of the raw material gas is less than 30%.

本発明の目的は上記欠点を克服するものであ
る。すなわち多数の円筒状基体を同時に処理で
き、かつ原料ガスの利用効率を大巾に高める事で
あり、その要旨とするところは反応室内に同じ極
性を持つた大小二つの円筒型電極を同心円状に配
設し、これら二つの円筒型電極間に挾まれた空間
内に、その空間間隔より小なる直径を有する複数
の円筒状基体を他の極性の電極として同心状に並
べて配設して、前記空間内で前記複数の円筒状基
体を自転させながら該円筒状基体表面上に成膜を
行なうことを特徴とするプラズマCVD法にある。
The object of the invention is to overcome the above-mentioned drawbacks. In other words, it is possible to simultaneously process a large number of cylindrical substrates, and to greatly increase the efficiency of raw material gas utilization. A plurality of cylindrical substrates each having a diameter smaller than the spacing between the two cylindrical electrodes are concentrically arranged as electrodes of the other polarity in a space sandwiched between the two cylindrical electrodes. The plasma CVD method is characterized in that a film is formed on the surface of the plurality of cylindrical substrates while rotating the plurality of cylindrical substrates in a space.

以下に本発明を実施するのに使用する装置につ
いてその構成及び作用を詳細に説明する。
The structure and operation of the apparatus used to carry out the present invention will be explained in detail below.

第2図は本発明のプラズマCVD法を実施する
装置の1例を示す。
FIG. 2 shows an example of an apparatus for carrying out the plasma CVD method of the present invention.

17は円筒状基体であり、第3図の17に示す
様に円型に多数個配置されている。この円筒状基
体は同時に一方の電極も兼る。
Reference numeral 17 denotes a cylindrical base body, and as shown in 17 in FIG. 3, a large number of base bodies are arranged in a circular shape. This cylindrical substrate also serves as one electrode at the same time.

他方の電極は円筒状基体17を挟んで、空洞二
重構造を成す大小二つの円筒型電極15及び18
である。
The other electrode is composed of two large and small cylindrical electrodes 15 and 18 forming a hollow double structure with a cylindrical base 17 in between.
It is.

また円筒型電極15及び18は、両者間に挟ま
れた空間部分に外部より、原料ガスが導入され
る。導入された原料ガスは、円筒型電極15及び
18の円筒状基体側の側面に多数明けられた孔か
ら炉内に放出される。同時に15,18の電極と
17の基体の間に高周波又は直流電圧を印加する
事により炉内にプラズマを発生させる。
Further, source gas is introduced into the space between the cylindrical electrodes 15 and 18 from the outside. The introduced raw material gas is discharged into the furnace through a number of holes formed in the side surfaces of the cylindrical electrodes 15 and 18 on the cylindrical substrate side. At the same time, plasma is generated in the furnace by applying high frequency or DC voltage between the electrodes 15 and 18 and the substrate 17.

プラズマは炉を覆う様に配置されている円筒1
3及び円筒24、更に上下の円板14,22によ
つて電気的にシールドされる。
The plasma is placed in a cylinder 1 that is placed to cover the furnace.
3 and the cylinder 24, and further electrically shielded by the upper and lower disks 14, 22.

一方円筒状基体17は回転軸16に取り付けら
れており20の歯車、及び21のチエーンにより
自転させる。一方複数の円筒状基体は回転軸19
の周りに方射状に取り付けられているので回転軸
19を回転させる事により、円筒状基体は公転す
る。
On the other hand, the cylindrical base 17 is attached to the rotating shaft 16 and rotated by gears 20 and chains 21. On the other hand, a plurality of cylindrical bases are connected to a rotating shaft 19.
Since it is attached in a radial pattern around the cylindrical base body, by rotating the rotating shaft 19, the cylindrical base body revolves.

この様に円筒状基体が自公転する事により、プ
ラズマの不均一性に起因する膜の厚さ、電気的性
質の不均一がとり除かれる。これらの炉及び回転
機構は真空槽11及び上昇可能なフタ12によつ
て密閉されており、排気ポンプにより26の開口
部より排気され、適当な圧力に保たれる。
By rotating the cylindrical substrate in this manner, non-uniformity in film thickness and electrical properties caused by non-uniformity in plasma is eliminated. These furnaces and rotating mechanisms are sealed by a vacuum chamber 11 and a liftable lid 12, and are evacuated through an opening 26 by an exhaust pump to maintain an appropriate pressure.

本実施例の円筒型電極15及び18は、電極と
原料ガスの放出器の役目を兼ねているが、電極を
単純な円筒構造とし、別途に絶縁した管を炉内に
導入し、ガス放出器としても良い。
The cylindrical electrodes 15 and 18 of this embodiment serve both as electrodes and source gas emitters, but the electrodes have a simple cylindrical structure, a separately insulated tube is introduced into the furnace, and the gas emitters are It's good as well.

本発明の特徴は上述の構造をもつた装置を使用
することから明らかな様に、同時に多数の円筒状
基体に成膜出来、量産性に富んでいる。
As is clear from the use of the apparatus having the above-described structure, the feature of the present invention is that it can simultaneously form films on a large number of cylindrical substrates, and is highly suitable for mass production.

また円筒状基体表面積の総計/炉内表面積比が
従来の装置に比較して大きく取れる為、原料ガス
の成膜にかかわる有効成分比を大きく取れる事も
有利な特徴である。本実施例装置の場合、原料ガ
スの有効利用率は50%程度となる。
Furthermore, since the ratio of the total surface area of the cylindrical substrate to the surface area inside the furnace can be increased compared to conventional apparatuses, it is also an advantageous feature that the ratio of active ingredients involved in film formation of the raw material gas can be increased. In the case of the apparatus of this embodiment, the effective utilization rate of the raw material gas is approximately 50%.

以上本発明を円筒状基体に非晶質硅素膜を形成
する場合について説明して来たが、原料ガスとし
て、SiH4+NH3等により保護膜として有用な窒
化硅素膜、SiH4+O2により酸化硅素膜、又表面
硬化膜として有用な炭化硅素膜はSiH4+C2H2
はSiH4+CH4等の原料ガスで成膜可能である。
The present invention has been described above with respect to the case where an amorphous silicon film is formed on a cylindrical substrate. However, as a raw material gas, a silicon nitride film useful as a protective film is formed using SiH 4 +NH 3 , etc., and a silicon nitride film useful as a protective film is oxidized using SiH 4 + O 2. A silicon film or a silicon carbide film useful as a surface hardening film can be formed using a raw material gas such as SiH 4 +C 2 H 2 or SiH 4 +CH 4 .

更にAlCl3+O2によりアルミナ膜、GeH4によ
り非晶質ゲルマニウム膜、B2H6+NH3により
BN膜等が形成できる。又、ほとんどすべての有
機モノマーを原料とする事により、本発明の実施
例装置の使用により、円筒状基体上に重合膜を形
成する事も可能である。例えばシロキサン、スチ
レンモノマー等が有効である。その他微量なドー
ピングガス、例えばB2H6、PH3ガス等を混合す
る事も非晶質硅素膜の電気特性を制御する為に必
要である。
Furthermore, AlCl 3 + O 2 creates an alumina film, GeH 4 creates an amorphous germanium film, and B 2 H 6 + NH 3 creates an alumina film.
BN film etc. can be formed. Further, by using almost all organic monomers as raw materials, it is also possible to form a polymer film on a cylindrical substrate by using the apparatus according to the embodiment of the present invention. For example, siloxane, styrene monomer, etc. are effective. It is also necessary to mix a small amount of other doping gas, such as B 2 H 6 or PH 3 gas, in order to control the electrical properties of the amorphous silicon film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の円筒基体用プラズマCVD装置
の説明図、第2図は本発明を実施するのに使用す
るプラズマCVD装置の縦断面図、第3図は同横
断面図。 1…プラズマCVD装置、2…円筒、3,7…
シールド蓋、4…電極兼原料ガス吐出管、5…回
転軸、6…基体円筒、8…加熱ヒーター、10…
排気口、11…実施例プラズマCVD装置、12
…真空槽、13,14,22,24…プラズマシ
ールド、15,18…電極兼原料ガス吹出管、1
6…回転軸、17…基体円筒、19,25…回転
軸、20…ギヤー、21…回転用チエーン、23
…加熱ヒーター、26…排気口。
FIG. 1 is an explanatory diagram of a conventional plasma CVD apparatus for cylindrical substrates, FIG. 2 is a longitudinal cross-sectional view of the plasma CVD apparatus used to carry out the present invention, and FIG. 3 is a cross-sectional view of the same. 1... Plasma CVD device, 2... Cylinder, 3, 7...
Shield lid, 4... Electrode/raw material gas discharge pipe, 5... Rotating shaft, 6... Base cylinder, 8... Heater, 10...
Exhaust port, 11...Example plasma CVD apparatus, 12
...Vacuum chamber, 13, 14, 22, 24...Plasma shield, 15, 18...Electrode/raw material gas blow-off pipe, 1
6... Rotating shaft, 17... Base cylinder, 19, 25... Rotating shaft, 20... Gear, 21... Rotating chain, 23
...heater, 26...exhaust port.

Claims (1)

【特許請求の範囲】[Claims] 1 反応室内に同じ極性を持つた大小二つの円筒
型電極を同心円状に配設し、これら二つの円筒型
電極間に挟まれた空間内に、その空間間隔より小
なる直径を有する複数の円筒状基体を他の極性の
電極として同心状に並べて配設して、前記空間内
で前記複数の円筒状基体を自転させながら該円筒
状基体表面上に成膜を行なうことを特徴とするプ
ラズマCVD法。
1 Two large and small cylindrical electrodes with the same polarity are arranged concentrically in the reaction chamber, and in the space sandwiched between these two cylindrical electrodes, a plurality of cylinders with a diameter smaller than the space interval are placed. Plasma CVD characterized in that a plurality of cylindrical substrates are arranged concentrically as electrodes of other polarity, and a film is formed on the surface of the cylindrical substrates while rotating the plurality of cylindrical substrates within the space. Law.
JP18966381A 1981-11-26 1981-11-26 Plasma cvd device Granted JPS5889943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18966381A JPS5889943A (en) 1981-11-26 1981-11-26 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18966381A JPS5889943A (en) 1981-11-26 1981-11-26 Plasma cvd device

Publications (2)

Publication Number Publication Date
JPS5889943A JPS5889943A (en) 1983-05-28
JPS6353854B2 true JPS6353854B2 (en) 1988-10-25

Family

ID=16245085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18966381A Granted JPS5889943A (en) 1981-11-26 1981-11-26 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS5889943A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615716B2 (en) * 1983-07-05 1994-03-02 キヤノン株式会社 Plasma CVD equipment
JPS6024378A (en) * 1983-07-19 1985-02-07 Kyocera Corp Mass production type decomposing device by glow discharge
JPS6029470A (en) * 1983-07-27 1985-02-14 Kyocera Corp Mass production type decomposing device by glow discharge
JPS6036664A (en) * 1983-09-26 1985-02-25 Kyocera Corp Mass production type glow discharge decomposition apparatus
JPS6088955A (en) * 1983-10-21 1985-05-18 Stanley Electric Co Ltd Plasma cvd device
JPS60114573A (en) * 1983-11-22 1985-06-21 Semiconductor Energy Lab Co Ltd Manufacture of silicon nitride film

Also Published As

Publication number Publication date
JPS5889943A (en) 1983-05-28

Similar Documents

Publication Publication Date Title
US4612207A (en) Apparatus and process for the fabrication of large area thin film multilayers
US4452828A (en) Production of amorphous silicon film
JPS6314875A (en) Functional deposited film forming device by plasma chemical vapor deposition method
JPS6353854B2 (en)
JPS5933251B2 (en) Plasma vapor phase processing equipment
JPS6153431B2 (en)
JPH0364466A (en) Production of amorphous silicon-based semiconductor film
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPS62174383A (en) Thin film deposition device
JPS63479A (en) Device for forming functional deposited film by plasma cvd method
JPH0615716B2 (en) Plasma CVD equipment
JPS624872A (en) Film formation device
JPS62146262A (en) Apparatus for producing electrophotographic sensitive body
JP2577397Y2 (en) Glow discharge decomposition equipment
JPS6362880A (en) Device for forming functional deposited film by microwave plasma cvd
JPS62146263A (en) Apparatus for producing electrophotographic sensitive body
JPH06167823A (en) Amorphous silicon photosensitive body and device for forming thin film
JPS5871369A (en) Producing device for photosensitive body
JPS6013075A (en) Plasma cvd device
JPH0211771A (en) Glow discharge cracking device
JPH07233477A (en) Plasma cvd apparatus and production of amorphous silicon photoreceptor using the same
JPS6010619A (en) Film formation by glow discharge
JPS62127473A (en) Apparatus for forming film by plasma
JPS62196377A (en) Device for forming deposited film by plasma chemical vapor deposition method
JPS6250464A (en) Device for producing electrophotographic sensitive body