JPS6024378A - Mass production type decomposing device by glow discharge - Google Patents

Mass production type decomposing device by glow discharge

Info

Publication number
JPS6024378A
JPS6024378A JP58132488A JP13248883A JPS6024378A JP S6024378 A JPS6024378 A JP S6024378A JP 58132488 A JP58132488 A JP 58132488A JP 13248883 A JP13248883 A JP 13248883A JP S6024378 A JPS6024378 A JP S6024378A
Authority
JP
Japan
Prior art keywords
electrode plate
gas
reaction chamber
glow discharge
amorphous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58132488A
Other languages
Japanese (ja)
Other versions
JPH0532472B2 (en
Inventor
Takao Kawamura
河村 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP58132488A priority Critical patent/JPS6024378A/en
Publication of JPS6024378A publication Critical patent/JPS6024378A/en
Publication of JPH0532472B2 publication Critical patent/JPH0532472B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To form efficiently an amorphous layer having uniform quality on a substrate by disposing concentrically a cylindrical outside electrode plate having a triple construction and a cylindrical inside electrode plate, providing the substrate between both electrode plates and performing the supply, diffusion and suction of gas with the electrodes. CONSTITUTION:A cylindrical outside electrode plate 10 having a triple construction is constituted of an electrode plate 12 for ejecting gas provided uniformly with plural ejecting holes 18, an electrode plate 13 for diffusing gas provided uniformly with plural diffusing holes 19 and an electrode plate 14 for a circumferential wall constituting the outside wall of a reaction chamber 9. An inside electrode plate 11 provided uniformly with plural suction holes 20 is concentrically disposed at the center thereof. Plural photosensitive drums 8 are installed uniformly between the plates 10 and 11 and gaseous raw material is introduced through an introducing pipe 15 into the reaction chamber 9 and is directed toward the central axis of the chamber 9 through the plates 13, 13. An amorphous layer is formed on the surface of each drum 8 and the gas is sucked through the suction holes 20 of the plate 11. The amorphous layer having uniform quality is thus formed.

Description

【発明の詳細な説明】 本発明は量産型グロー放電分解装置の改良に関する。[Detailed description of the invention] The present invention relates to an improvement in a mass-produced glow discharge decomposition device.

近時、アモルアアスシリコン(以下、ε、 −Siと略
す)などのアモルファス(非晶質) 4J tt カラ
成る光電部月が電子写真感光体、太陽電池及び光センサ
ーなどに利用され、侵れた充電適性と共に、効率よく非
晶質膜が生成されるなどの利点を有し、非常に注目され
ている。例えば、電子写真感光体の分野ではa −Si
を光キヤリア発生層とし、 その成膜にグロー放電分解
表罫を利用することにより品品質な感光体を得るに至っ
ている。
Recently, amorphous (non-crystalline) 4J tt color photoelectric parts such as amorphous silicon (hereinafter abbreviated as ε, -Si) have been used in electrophotographic photoreceptors, solar cells, optical sensors, etc. It is attracting a lot of attention because it has advantages such as high charging suitability and the ability to efficiently produce an amorphous film. For example, in the field of electrophotographic photoreceptors, a-Si
By using this as a photocarrier generation layer and using glow discharge decomposition rules for film formation, a photoreceptor with high quality has been obtained.

しかしながら、一度の操作で複数個の基板上に成膜する
量産型グロー放電分解装置においては、導入ガスの利用
効率が悪いばかりか、各々の基板に対し噴出されるガス
量にムラが生じ、その結果、出来た個々の感光体に品質
上の着が認められ、b点造歩留りの低下及び感光体の信
頼性を1負うという問題がある。
However, in mass-produced glow discharge decomposition equipment that forms films on multiple substrates in one operation, not only is the efficiency of using the introduced gas inefficient, but the amount of gas ejected to each substrate is uneven. As a result, quality deposits are observed in each of the photoreceptors produced, resulting in problems such as a decrease in the b-point production yield and a decrease in the reliability of the photoreceptor.

即ち、第1図に示すように、容量結合型グロー放電法に
よる従来の量産型グロー放電分解装置肯では、一つの反
応室(1)内に所定形状のグロー放電用電極板(2)が
形成され、−直線車に並んだ複数個の感光体ドラム(3
)がそれぞれガス噴出部(4a)(4b)(4c) (
4d)及びガス吸引部(sa) (5b) (50) 
(5a)の間にできるガス流通状態の中に電力・れると
Qiこ、このTii極板(2)に列内しつつ回転駆動さ
れ、更に、高周波電源(6)によって電極板(2)と感
光体1′ラム(3)にa −Si層が形成されていた。
That is, as shown in Fig. 1, in a conventional mass-produced glow discharge decomposition device using a capacitively coupled glow discharge method, a glow discharge electrode plate (2) of a predetermined shape is formed in one reaction chamber (1). - A plurality of photoreceptor drums (3
) are respectively gas ejection parts (4a) (4b) (4c) (
4d) and gas suction part (sa) (5b) (50)
When electric power is applied to the gas flow state created during (5a), Qi is driven to rotate while being aligned with this Tii electrode plate (2), and is further connected to the electrode plate (2) by a high frequency power source (6). An a-Si layer was formed on the photoreceptor 1' ram (3).

しかしながら、上記の量産型装置【こよれ(f、電極板
(2)が反応室(1)内に独自のスペースをとり、その
ためにドラムの本数に列し反応室(1)の容積力(比穀
的大きくなり、反応室(1)内に余分なガスを心入せね
ばならなかった。
However, in the above-mentioned mass-produced device, the electrode plate (2) takes up its own space in the reaction chamber (1), and therefore the volumetric force of the reaction chamber (1) is As the grain size increased, extra gas had to be introduced into the reaction chamber (1).

加えて、ガス導入部(7)から各々のガス噴出部(4a
)乃至(4α)へ至る距離が異なるため、ガスの流速及
びガス配管の形状にもよるが、各々のガス噴出部(4a
)乃至(4d)から必ずしも同一のガス量が噴出されず
、その結果、反応室内のドラム相互間でそのn)囲のガ
ス密度や成膜ヌビードが昇なり、a −Si層の層厚や
ドーピング」い、等、 ドラム411互間に品質の差が
生じていた。
In addition, each gas ejection part (4a
) to (4α), so depending on the gas flow rate and the shape of the gas piping, each gas jetting part (4a)
) to (4d) do not necessarily eject the same amount of gas, and as a result, the gas density and film formation nuvides of n) increase between the drums in the reaction chamber, and the layer thickness and doping of the a-Si layer increase. There was a difference in quality between drums 411 and 411.

そこで、本発明の目的は導入ガスの利用効率を高めると
ともに各々の基板に噴出されるガスをほぼ均等量にし、
その結果、個々の尤(板上の非晶質);’1の品質を均
一にし、製造歩留り及び非晶質層の信頼性を向上するこ
とができる縫産型りロー放電分解装埴を提供することに
ある。
Therefore, the purpose of the present invention is to increase the utilization efficiency of the introduced gas and to make the amount of gas ejected to each substrate approximately equal.
As a result, it is possible to provide a sewing mold raw discharge disassembly machine that can make the quality of each layer (amorphous on a plate) uniform and improve manufacturing yield and reliability of the amorphous layer. It's about doing.

本発明によれば、上記目的を達成するために、非晶質層
生成ガスが心入される反応室内部に、所定の間隔を置い
て設けられ且つ心太されたガスが反応室内部に拡散され
るように−1、(↓数個のガス通過孔が団設された複数
個の電極板から成る外部電極板と、ガス吸引部を有した
円筒状内部電極板が同心円状に配置されると共に、両電
極板が非晶質層形成用表面を有する複数個の筒状基板を
介して対向し、該反応室内に発生したグロー放電により
該基板の表面上に非晶質層を生成するようにした量産型
グロー放電分解装置が提供される。
According to the present invention, in order to achieve the above object, a gas is provided at a predetermined interval in the reaction chamber into which the amorphous layer forming gas is introduced, and the gas is diffused into the reaction chamber. -1, (↓An external electrode plate consisting of a plurality of electrode plates with several gas passage holes arranged in a group, and a cylindrical internal electrode plate having a gas suction part are arranged concentrically. , both electrode plates face each other via a plurality of cylindrical substrates having surfaces for forming an amorphous layer, and an amorphous layer is formed on the surface of the substrate by glow discharge generated in the reaction chamber. A mass-produced glow discharge decomposition device is provided.

以下、本発明を感光体ドラム上にa −Si層を成層す
るだめのグロー放電分解装費を例にとって詳細に説明す
る。
Hereinafter, the present invention will be explained in detail by taking as an example the cost of disassembling glow discharge for forming an a-Si layer on a photoreceptor drum.

第2図は一度の操作で8木の感光体下ラム(8)にa−
3i[を成層するだめの容量結合方式による。
Figure 2 shows that a-
3i [by a capacitive coupling method that does not require stratification.

量産型グロー放電分解装置における円筒状の反応室(9
)を示し、同図中、(10)は三重1t’J造から成る
円筒状の外部電極板、(111は円筒状の内部電極板で
あり、両電極板(101flllは同心円状となるよう
に配置されている。
Cylindrical reaction chamber (9) in a mass-produced glow discharge decomposition device
), in the same figure, (10) is a cylindrical external electrode plate made of triple 1t'J construction, (111 is a cylindrical internal electrode plate, and both electrode plates (101flll are concentric circles). It is located.

前記外部電極板0■は内側からガス噴出用型4′へ板1
121 、ガス拡散用電極板イ1311並びに反応室(
9)の外壁を構成する周壁用電極板(14)から成り、
適当なスペーサ(図示せず)により間隔を置いて順次周
設されている。
The external electrode plate 0■ is connected to the gas injection mold 4' from the inside of the plate 1.
121, gas diffusion electrode plate 1311 and reaction chamber (
9) consists of a peripheral wall electrode plate (14) constituting the outer wall of
They are successively arranged around the circumference at intervals with appropriate spacers (not shown).

前記周壁用電極板(141に反応室(9)の外壁を兼用
させると、電極の付設に伴うスペースが不要となり、反
応室(9)の容積は小さくてすみ、導入ガスの利耳」効
率を高めることができる点で好ましい。尚、との周壁用
電極板04)は反応室(9)の周壁のすべてを置換する
必要はなく、余分なグロー放電の発生により受ける影費
が無視できる範囲内で置換してもよい。
If the peripheral wall electrode plate (141) is also used as the outer wall of the reaction chamber (9), the space required for attaching the electrodes is not required, the volume of the reaction chamber (9) can be reduced, and the efficiency of introducing gas can be increased. It is preferable that the peripheral wall electrode plate 04) does not need to replace the entire peripheral wall of the reaction chamber (9), and the cost incurred due to the generation of extra glow discharge can be ignored. You may replace it with

前記ガス11N出用電(屓板(121と内部電極板旧)
の間には、8本の感光体ドラム(8)が正八角形の各頂
点に位;13するように配置され、各感光体ドラム(8
)は回6天!5区17カされるようになっている。
Gas 11N output power (back plate (121 and old internal electrode plate)
In between, eight photoreceptor drums (8) are arranged at each vertex of a regular octagon so that each photoreceptor drum (8)
) is 6 days! There are now 17 locations in 5 wards.

前記電極板旧1(121+131 +141は同電位と
するだめに導通されており、外部の高周波電源(図示せ
ず)から印加されている。これにより、ガス噴出用電極
板(I21と感光体ドラム(8)の表面、及び内部型(
“g板([11とFに光体ドラム(8)の表面間にグロ
ー放電が発生し、電極板+t21++3+ a41の相
互間ではグロー放電が発生しないため、電力の無駄な消
費がなく、且つ電極板(11)(121と感光体ドラム
(8)との間に発生する本来のり゛ロー放電をかき乱す
こともなく、反応室(9)の内部に均一な高周波電界が
うまれることになる。
The electrode plates 1 (121 + 131 + 141) are electrically connected to have the same potential and are applied from an external high-frequency power source (not shown). 8) surface and internal mold (
G plate ([11 and F, glow discharge occurs between the surfaces of the light drum (8), and no glow discharge occurs between the electrode plates +t21++3+a41, so there is no wasteful consumption of power, and the electrode A uniform high-frequency electric field is generated inside the reaction chamber (9) without disturbing the original low discharge generated between the plate (11) (121) and the photoreceptor drum (8).

−のガス供給源(図示せず)が共通の龜管(図示せず)
を介して4木に分岐された77%人管(151に接続さ
れ、各−5人管(19が反応室(9)の中心軸に対し直
交すると共に、反応室(8)の円周を四等分するように
周壁用電極板(I4)にば役された4個の導入口(16
)のそれぞれに接続されることにより(;4成されてい
る。
− gas supply source (not shown) is common to the tube (not shown)
It is connected to the 77% human tube (151) which is branched into 4 trees through the Four inlets (16
) are connected to each of the (;4).

前記導入管09が導入口(Llilと接続される端部に
は絶縁性リング(171が接続され、周壁用電極板(1
滲と2a入管+t51が絶縁されている。
An insulating ring (171) is connected to the end where the introduction pipe 09 is connected to the inlet (Llil), and an electrode plate (1
The leak and the 2a entry pipe +t51 are insulated.

前記ガス噴出用電極板(12)及び前記ガス拡散用″准
憧板(131には、それぞれ複数個の噴出孔(181及
び拡ff’j孔(I9が各板面全体に亘って均一に員゛
設されている。
The gas ejection electrode plate (12) and the gas diffusion "quasi-diffuse plate (131) each have a plurality of ejection holes (181 and enlarged ff'j holes (I9) uniformly distributed over the entire surface of each plate. It has been set up.

噴出孔(l&及び拡散孔(Iglはいずれも円形、四角
形など任意の形状でよく、それぞれの孔径或いは孔の大
きさ及び孔数は、導入管<151を介して反応室(8)
内に導入したa −Si層生成ガスがガス噴出用rH4
’fA板(12の噴出孔0&を通過する際に、ガスの拡
散が十分行われ、ガス噴出用電極板(12の全面に亘っ
て実質上均一にガスが噴出されるように適宜設定すれば
よい。例えば、噴出孔a&及び拡散jL +1!1が円
形の場合、噴出孔1.18Iの孔径を0.5〜2間、拡
散孔(+91の孔径を1〜4間の範囲で、噴出孔(18
1の孔径を拡11に孔([!1に比べて小さくすること
が好適である。また、噴出孔(18)を拡散孔「[(ト
)よりも多く設けることが好適であり、例えば噴出孔(
18)は511m〜I Cmの間隔でガス噴出用電極板
t121の全面に亘って設けることが好ましい。
The injection hole (l&) and the diffusion hole (Igl) can both be of any shape such as circular or square, and the diameter or size of each hole and the number of holes are determined by the injection hole (Igl) and the diffusion hole (Igl).
The a-Si layer forming gas introduced into the rH4
'fA plate (12) When passing through the ejection holes 0&, the gas is sufficiently diffused and the gas ejection electrode plate (12) is appropriately set so that the gas is ejected substantially uniformly over the entire surface. For example, if the nozzle a & and the diffusion jL +1!1 are circular, the nozzle diameter of the nozzle 1.18I should be between 0.5 and 2, and the diameter of the diffusion hole (+91) between 1 and 4. (18
It is preferable to enlarge the hole diameter of 1 and make it smaller than the hole 11 ([! Hole (
18) are preferably provided over the entire surface of the gas ejection electrode plate t121 at intervals of 511 m to I Cm.

かくして、芯入管(151を通して反応室(9)の内部
にに(入しだa −Si層生成ガスはガス拡散用i’i
fi化板(13)を介して拡散が著しく進行するため、
ガス噴出用電極板(121から反応室(9)の中心軸へ
向かって、その板面全体に亘り、ガスがほぼ均等量噴出
され、グロー放電に晒される。
In this way, the gas forming the Si layer is introduced into the reaction chamber (9) through the core entry tube (151) for gas diffusion.
Since diffusion progresses significantly through the fi plate (13),
A substantially equal amount of gas is ejected over the entire plate surface from the gas ejection electrode plate (121) toward the central axis of the reaction chamber (9), and is exposed to glow discharge.

一方、円筒状の内部電極板旧1にはその板面の全体に亘
って複数個の吸引孔列が【1設されている。
On the other hand, the cylindrical internal electrode plate 1 is provided with a plurality of suction hole rows over the entire plate surface.

この吸引孔QOは噴出孔(+81と同程度の孔径と密度
で設けられることが好ましい。該内部電極板(lυは第
3図に示すように、ガス吸引用回転ポンプ(図示せず)
に接続されたガス吸引管(20が上方もしくは下方から
導入され、且つ該ガス吸引管(21)の開放端部(、(
2を内部電極板(1,11の中心軸に位11tさせると
、内部電極板旧)の吸引孔C2υからその内方に向って
全周面に亘って均等に残余ガスが吸引されるととになる
It is preferable that this suction hole QO is provided with the same hole diameter and density as the ejection hole (+81).The internal electrode plate (lυ is a gas suction rotary pump (not shown) as shown in FIG. 3).
The gas suction pipe (20) connected to the gas suction pipe (20) is introduced from above or below, and the open end of the gas suction pipe (21)
When 2 is placed 11t on the central axis of the internal electrode plate (1, 11), the residual gas is evenly sucked inward from the suction hole C2υ of the internal electrode plate (old internal electrode plate) over its entire circumferential surface. become.

このように、反応室(8)の中心部に配置された円筒状
の内部電極板旧)からガスを吸引すると、グロー放電領
域に均一な高周波電界が生じるとともtこ、反応室(9
)内のすべての感光体ドラム(8)の周囲はいずれも均
一なガス流通状態となり、均質なa−8iK1が形成さ
れることになる。
In this way, when gas is sucked from the cylindrical internal electrode plate placed at the center of the reaction chamber (8), a uniform high-frequency electric field is generated in the glow discharge area, and the reaction chamber (9)
), a uniform gas flow is created around all the photoreceptor drums (8), and a homogeneous a-8iK1 is formed.

更に、反応室(9)に導入したガスを−JΔ拡散された
状態でガス噴出用電極板1121から噴出°させるだめ
に、2個以上のガス拡散用電極板を設けることもできる
Furthermore, two or more gas diffusion electrode plates may be provided in order to cause the gas introduced into the reaction chamber (9) to be ejected from the gas ejection electrode plate 1121 in a -JΔ diffused state.

以上の通り、一度の操作で複数個の基板上に成膜する本
発明の量産型グロー放電分解装置によれば、導入ガスの
利用効率を高めるのに加え、グロー放電領域が均一な高
周波電界となり、且つ各基板の周囲に均一なガス流通状
態がうまれ、その結果、各基板上に均質な非晶質nが形
成芒れることになり、製造歩留りが顕著に向上し、信頼
性の高い優れた非晶質P’dが得られる。
As described above, according to the mass-produced glow discharge decomposition apparatus of the present invention, which forms films on multiple substrates in a single operation, in addition to increasing the utilization efficiency of the introduced gas, the glow discharge area becomes a uniform high-frequency electric field. In addition, a uniform gas flow condition is created around each substrate, and as a result, a homogeneous amorphous layer is formed on each substrate, resulting in a marked improvement in manufacturing yield and a highly reliable and excellent Amorphous P'd is obtained.

尚、本発明は実施例に限定されるものではなく、内部に
グロー放電用の電(7板を備え、複数個の基板上に非晶
質層を形成するグロー放電分解装置であれば、すべてに
適用されることは当梁者には容易に理解されよう。
Note that the present invention is not limited to the examples, and can be applied to any glow discharge decomposition device that is equipped with an internal glow discharge electrode (7 plates) and forms an amorphous layer on a plurality of substrates. Those skilled in the art will easily understand that this applies to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の量産型グロー、放電分解装置を示す概略
区1、第2図は本発明の実施例に使われる反応室の破断
面図、第3図は本発明のガス吸引i’g’3.4’:□
’jを示す斜視し1である。 3.8・・・感光体ドラム、10・・・外部電極板、1
1・・・内部電極板、12・ガス噴出用′成極板、13
・・・ガス拡散用電極板、14・・1M壁用電俺板出願
人京セラ株式会社 同 河 村 孝 夫 第1図 第2図 1θ
Fig. 1 is a schematic section 1 showing a conventional mass-produced glow and discharge decomposition device, Fig. 2 is a cutaway cross-sectional view of a reaction chamber used in an embodiment of the present invention, and Fig. 3 is a gas suction i'g of the present invention. '3.4': □
It is 1 with a perspective view showing 'j. 3.8... Photosensitive drum, 10... External electrode plate, 1
1... Internal electrode plate, 12. Polarization plate for gas jetting, 13
...Electrode plate for gas diffusion, 14...1M wall electrode plate Applicant: Kyocera Corporation Takao Kawamura Figure 1 Figure 2 1θ

Claims (3)

【特許請求の範囲】[Claims] (1) 非晶質層生成ガスが導入される反応室内部に、
所定の間隔を置いて設けられ且つ4(入されたガスが反
応室内部に拡散されるように複数個のガス通過孔が貫設
された複数個の電極板から成る外部電極板と、ガス吸引
部を有した円筒状内部電極板が同心円状に配置されると
共に、両電極板が非晶質層形成用表面を有する複数個の
筒状基板を介して対向し、該反応室内に発生したグロー
放電により該基板の表面上に非晶質Hを生成するように
した量産型グロー放電分解装置。
(1) Inside the reaction chamber into which the amorphous layer forming gas is introduced,
an external electrode plate consisting of a plurality of electrode plates provided at predetermined intervals and having a plurality of gas passage holes through them so that the gas introduced into the reaction chamber is diffused into the reaction chamber; cylindrical internal electrode plates having a cylindrical inner electrode plate are arranged concentrically, and both electrode plates face each other via a plurality of cylindrical substrates having surfaces for forming an amorphous layer, and the glow generated in the reaction chamber is A mass-produced glow discharge decomposition device that generates amorphous H on the surface of the substrate by electric discharge.
(2)前記複数個の外部電極板のうち、内側に配置され
た電極板に設けられたガス通過孔の大きさを外側に配置
された電極板に設けられたガス通過孔よりも小さくした
ことを特徴とする特許請求の範囲第1項記載の量産型グ
ロー放電分解装置。
(2) Among the plurality of external electrode plates, the size of the gas passage hole provided in the electrode plate placed on the inside is made smaller than the gas passage hole provided in the electrode plate placed on the outside. A mass-produced glow discharge decomposition device according to claim 1, characterized in that:
(3) 前記複数個の外部電極板のうち、内側に配置さ
れた電極板に設けられたガス通過孔の孔数を外側に配置
された電極板に設けられたガス通過孔の孔数よりも多く
しだことを特徴とする特許請求の範囲第1項記載の量産
型グロー放電分解装置。
(3) Among the plurality of external electrode plates, the number of gas passage holes provided in the electrode plate placed on the inside is greater than the number of gas passage holes provided in the electrode plate placed on the outside. A mass-produced glow discharge decomposition apparatus according to claim 1, characterized in that the glow discharge decomposition device has a large number of oxidants.
JP58132488A 1983-07-19 1983-07-19 Mass production type decomposing device by glow discharge Granted JPS6024378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132488A JPS6024378A (en) 1983-07-19 1983-07-19 Mass production type decomposing device by glow discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132488A JPS6024378A (en) 1983-07-19 1983-07-19 Mass production type decomposing device by glow discharge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP58178797A Division JPS6036664A (en) 1983-09-26 1983-09-26 Mass production type glow discharge decomposition apparatus

Publications (2)

Publication Number Publication Date
JPS6024378A true JPS6024378A (en) 1985-02-07
JPH0532472B2 JPH0532472B2 (en) 1993-05-17

Family

ID=15082540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132488A Granted JPS6024378A (en) 1983-07-19 1983-07-19 Mass production type decomposing device by glow discharge

Country Status (1)

Country Link
JP (1) JPS6024378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029470A (en) * 1983-07-27 1985-02-14 Kyocera Corp Mass production type decomposing device by glow discharge
US7799381B2 (en) 2001-09-17 2010-09-21 Frank Lian Caulking or grouting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185971A (en) * 1981-05-11 1982-11-16 Oki Electric Ind Co Ltd Formation of glow discharge film
JPS5889943A (en) * 1981-11-26 1983-05-28 Canon Inc Plasma cvd device
JPS58101735A (en) * 1981-12-11 1983-06-17 Canon Inc Plasma cvd device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185971A (en) * 1981-05-11 1982-11-16 Oki Electric Ind Co Ltd Formation of glow discharge film
JPS5889943A (en) * 1981-11-26 1983-05-28 Canon Inc Plasma cvd device
JPS58101735A (en) * 1981-12-11 1983-06-17 Canon Inc Plasma cvd device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029470A (en) * 1983-07-27 1985-02-14 Kyocera Corp Mass production type decomposing device by glow discharge
JPH0545672B2 (en) * 1983-07-27 1993-07-09 Kyocera Corp
US7799381B2 (en) 2001-09-17 2010-09-21 Frank Lian Caulking or grouting method

Also Published As

Publication number Publication date
JPH0532472B2 (en) 1993-05-17

Similar Documents

Publication Publication Date Title
US4526805A (en) Film-fabricating method and apparatus for the same
JPS6024378A (en) Mass production type decomposing device by glow discharge
JPS61110768A (en) Device for manufacturing amorphous silicon photosensitive body
JPS6137354B2 (en)
CN112853325A (en) Cavity structure of tubular PECVD equipment
JPH0549751B2 (en)
JPS59215475A (en) Grow discharge decomposing device of mass production type
JPS5938375A (en) Plasma cvd device
JPH0545672B2 (en)
JPS6043488A (en) Apparatus for producing thin film
JPS5889943A (en) Plasma cvd device
JPS61239677A (en) Photosensor
JPS59213439A (en) Capacity coupling type glow discharge decomposition apparatus
JP2553331B2 (en) Deposited film forming apparatus by plasma CVD method
JPS58132755A (en) Method and device for production of amorphous silicon photoreceptor
JPH0694591B2 (en) Plasma CVD equipment
JPS6119779A (en) Plasma cvd apparatus
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPS6164128A (en) Treating device for sample
JPS58202040A (en) Capacity coupling type glow discharge decomposition apparatus
JPS60179133A (en) Plasma reaction apparatus
JPH0135075B2 (en)
JPH02250975A (en) Glow-discharge decomposing device
JP2577397Y2 (en) Glow discharge decomposition equipment
JPS5830125A (en) Apparatus for film formation using glow discharge