JPH0549751B2 - - Google Patents

Info

Publication number
JPH0549751B2
JPH0549751B2 JP58178797A JP17879783A JPH0549751B2 JP H0549751 B2 JPH0549751 B2 JP H0549751B2 JP 58178797 A JP58178797 A JP 58178797A JP 17879783 A JP17879783 A JP 17879783A JP H0549751 B2 JPH0549751 B2 JP H0549751B2
Authority
JP
Japan
Prior art keywords
gas
circumferential plate
reaction chamber
glow discharge
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58178797A
Other languages
Japanese (ja)
Other versions
JPS6036664A (en
Inventor
Takao Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP58178797A priority Critical patent/JPS6036664A/en
Publication of JPS6036664A publication Critical patent/JPS6036664A/en
Publication of JPH0549751B2 publication Critical patent/JPH0549751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は量産型グロー放電分解装置の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a mass-produced glow discharge decomposition device.

近時、アモルフアスシリコン(以下、a−Siと
略す)などのアモルフアス(非晶質)材料から成
る光電部材が電子写真感光体、太陽電池及び光セ
ンサーなどに利用され、優れた光電適性と共に、
効率よく非晶質膜が生成されるなどの利点を有
し、非常に注目されている。例えば、電子写真感
光体の分野ではa−Siを光キヤリア発生層とし、
その成膜にグロー放電分解装置を利用することに
より高品質な感光体を得るに至つている。
Recently, photoelectric components made of amorphous (non-crystalline) materials such as amorphous silicon (hereinafter abbreviated as a-Si) have been used for electrophotographic photoreceptors, solar cells, optical sensors, etc., and have excellent photoelectric properties.
It has the advantage of efficiently producing an amorphous film and is attracting a lot of attention. For example, in the field of electrophotographic photoreceptors, a-Si is used as a photocarrier generating layer,
By using a glow discharge decomposition apparatus for film formation, high quality photoreceptors have been obtained.

しかしながら、一度の操作で複数個の基板上に
成膜する量産型グロー放電分解装置においては、
導入ガスの利用効率が悪いばかりか、各々の基板
に対し噴出されるガス量にムラが生じ、その結
果、出来た個々の感光体に品質上の差が認めら
れ、製造歩留りの低下及び感光体の信頼性を損う
という問題がある。
However, in mass-produced glow discharge decomposition equipment that forms films on multiple substrates in one operation,
Not only is the introduced gas inefficiently used, but the amount of gas ejected to each substrate is uneven, resulting in differences in quality between individual photoconductors, resulting in a decrease in manufacturing yield and There is a problem that the reliability of the system is lost.

即ち、第1図に示すように、容量結合型グロー
放電法による従来の量産型グロー放電分解装置で
は、一つの反応室1内に所定形状のグロー放電用
電極板2が形成され、一直線上に並んだ複数個の
感光体ドラム3がそれぞれガス噴出部4a,4
b,4c,4d及び吸引部5a,5b,5c,5
dの間にできるガス流通状態の中に置かれると共
に、この電極板2に対向しつつ回転駆動され、更
に、高周波電源6によつて電極板2と感光体ドラ
ム3にa−Si層が形成されていた。
That is, as shown in FIG. 1, in a conventional mass-produced glow discharge decomposition device using a capacitively coupled glow discharge method, a glow discharge electrode plate 2 of a predetermined shape is formed in one reaction chamber 1, and the electrode plate 2 is arranged in a straight line. A plurality of photoconductor drums 3 lined up each have a gas ejection section 4a, 4.
b, 4c, 4d and suction parts 5a, 5b, 5c, 5
d, and is rotated while facing the electrode plate 2, and furthermore, an a-Si layer is formed on the electrode plate 2 and the photoreceptor drum 3 by the high frequency power source 6. It had been.

しかしながな、上記の量産型装置によれば、電
極板2が反応室1内に独自のスペースをとり、そ
のためにドラムの本数に対し反応室1の容積が比
較的大きくなり、反応室1内に余分なガスを導入
せねばならなかつた。
However, according to the mass-produced device described above, the electrode plate 2 occupies its own space within the reaction chamber 1, and as a result, the volume of the reaction chamber 1 becomes relatively large compared to the number of drums. Extra gas had to be introduced into the tank.

加えて、ガス導入部7から各々のガス噴出部4
a乃至4dへ至る距離が異なるため、ガスの流速
及びガス配管の形状にもよるが、各々のガス噴出
部4a乃至4dから必ずしも同一のガス量が噴出
されず、その結果、反応室内のドラム相互間でそ
の周囲のガス密度や成膜スピードが異なり、a−
Si層の層厚やドーピング量等、ドラム相互間に品
質の差が生じていた。
In addition, from the gas introduction section 7 to each gas ejection section 4
Since the distances from a to 4d are different, depending on the gas flow rate and the shape of the gas piping, the same amount of gas is not necessarily ejected from each gas ejection part 4a to 4d, and as a result, the drums in the reaction chamber The surrounding gas density and film formation speed differ between a-
There were differences in quality between drums, such as the thickness of the Si layer and the amount of doping.

そこで、本発明の目的は導入ガスの利用効率を
高めるとともに各々の基板に噴出されるガスをほ
ぼ均等量にし、且つ該噴出ガスの放電ムラをなく
し、その結果、個々の基板上の非晶質層の品質を
均一にし、製造歩留り及び非晶質層の信頼性を向
上することができる量産型グロー放電分解装置を
提供することにある。
Therefore, an object of the present invention is to improve the utilization efficiency of the introduced gas, make the amount of gas ejected to each substrate approximately equal, and eliminate uneven discharge of the ejected gas. It is an object of the present invention to provide a mass-produced glow discharge decomposition device that can make the quality of the layer uniform and improve the manufacturing yield and reliability of the amorphous layer.

本発明によれば、上記目的を達成するために、
非晶質層生成ガスが導入される円筒状反応室内部
に、それぞれ大小の径を有する円筒状の第1周板
と第2周板とが該反応室と同心円状に配置され、
該同心円状の中心に円筒状のガス吸引筒を配設す
るとともに、第2周板とガス吸引筒の間に、非晶
質層被形成面を有する複数個の筒状基板を上記同
心円状に配列し、第2周板に設けたガス通過孔の
径を第1周板のガス通過孔に比べて小さくする
か、もしくは孔数を多くして第2周板でもつてガ
スをより均等に供給し、且つ上記反応室と第2周
板と第1周板とを同電位にして一方電極に、上記
ガス吸引筒を他方電極にするとともに両電極間に
グロー放電を発生するようにした量産型グロー放
電分解装置が提供される。
According to the present invention, in order to achieve the above object,
Inside a cylindrical reaction chamber into which the amorphous layer forming gas is introduced, a cylindrical first circumferential plate and a second cylindrical circumferential plate each having a large and small diameter are arranged concentrically with the reaction chamber,
A cylindrical gas suction cylinder is disposed at the center of the concentric circles, and a plurality of cylindrical substrates each having an amorphous layer formation surface are arranged in the concentric circles between the second circumferential plate and the gas suction cylinder. The diameter of the gas passage holes provided in the second circumferential plate is made smaller than that of the gas passage holes in the first circumferential plate, or the number of holes is increased to supply gas more evenly on the second circumferential plate. and a mass-produced type in which the reaction chamber, the second circumferential plate, and the first circumferential plate are made to have the same potential as one electrode, the gas suction cylinder is used as the other electrode, and a glow discharge is generated between the two electrodes. A glow discharge decomposition device is provided.

以下、本発明を感光体ドラム上にa−Si層を成
層するためのグロー放電分解装置を例にとつて詳
細に説明する。
Hereinafter, the present invention will be explained in detail by taking as an example a glow discharge decomposition apparatus for forming an a-Si layer on a photoreceptor drum.

第2図は一度の操作で8本の感光体ドラム8に
a−Si層を成層するための容量結合方式による量
産型グロー放電分解装置における円筒状の反応室
9を示し、同図中、10は三重構造から成る円筒
状の外部電極板、11は円筒状の内部電極板とな
るガス吸引筒であり、両者10,11は同心円状
となるように配置されている。
FIG. 2 shows a cylindrical reaction chamber 9 in a mass-produced glow discharge decomposition device using a capacitive coupling method for layering an a-Si layer on eight photoreceptor drums 8 in one operation. 1 is a cylindrical external electrode plate having a triple structure, and 11 is a gas suction tube that serves as a cylindrical internal electrode plate. Both 10 and 11 are arranged concentrically.

前記外部電極板10は内側からガスが噴出する
第2周板12、ガス拡散する第1周板13、並び
に反応室9の外壁を構成する周壁用の周板14か
ら成り、適当なスペーサ(図示せず)により間隔
を置いて順次周設されている。
The external electrode plate 10 consists of a second circumferential plate 12 from which gas is ejected from the inside, a first circumferential plate 13 through which gas is diffused, and a circumferential plate 14 for the circumferential wall constituting the outer wall of the reaction chamber 9. (not shown) are arranged successively at intervals.

前記周板14に反応室9の外壁を兼用させる
と、電極の付設に伴うスペースが不要となり、反
応室9の容積は小さくてすみ、導入ガスの利用効
率を高めることができる点で好ましい。尚、この
周板14は反応室9の周壁のすべてを置換する必
要はなく、余分なグロー放電の発生により受ける
影響が無視できる範囲内で置換してもよい。
It is preferable that the circumferential plate 14 also serves as the outer wall of the reaction chamber 9, since it eliminates the need for space for electrodes, allows the volume of the reaction chamber 9 to be small, and improves the utilization efficiency of the introduced gas. Incidentally, it is not necessary to replace the entire peripheral wall of the reaction chamber 9 with the peripheral plate 14, and it may be replaced within a range where the influence caused by the generation of excess glow discharge can be ignored.

前記第2周板12とガス吸引筒11の間には、
8本の感光体ドラム8が正八角形の各頂点に位置
するように配置され、各感光体ドラム8は回転駆
動されるようになつている。
Between the second circumferential plate 12 and the gas suction tube 11,
Eight photoreceptor drums 8 are arranged so as to be located at each vertex of a regular octagon, and each photoreceptor drum 8 is configured to be rotationally driven.

前記電極板11,12,13,14は同電位と
するために導通されており、外部の高周波電源
(図示せず)から印加されている。これにより、
第2周板12と感光体ドラム8の表面、及びガス
吸引筒11と感光体ドラム8の表面間にグロー放
電が発生し、第2周板12と第1周板13の間、
並びに周板14と第1周板13の間ではグロー放
電が発生しないため、電力の無駄な消費がなく、
且つ第2周板12・ガス吸引筒11と感光体ドラ
ム8との間に発生する本来のグロー放電をかき乱
すことなく、反応室9の内部に均一な高周波電界
がうまれることになる。
The electrode plates 11, 12, 13, and 14 are electrically connected to have the same potential, which is applied from an external high-frequency power source (not shown). This results in
Glow discharge occurs between the second circumferential plate 12 and the surface of the photoconductor drum 8 and between the gas suction tube 11 and the surface of the photoconductor drum 8, and between the second circumferential plate 12 and the first circumferential plate 13,
In addition, since no glow discharge occurs between the circumferential plate 14 and the first circumferential plate 13, there is no wasteful consumption of power.
In addition, a uniform high-frequency electric field is generated inside the reaction chamber 9 without disturbing the original glow discharge generated between the second circumferential plate 12, gas suction cylinder 11, and photoreceptor drum 8.

反応室9内へのa−Si層生成ガスの導入経路
は、同一のガス供給源(図示せず)が共通の配管
(図示せず)を介して4本に分岐された導入管1
5に接続され、各導入管15が反応室9の中心軸
に対し直交すると共に、反応室8の円周を四等分
するように周板14に貫設された4個の導入口1
6のそれぞれに接続されることにより構成されて
いる。
The introduction path of the a-Si layer forming gas into the reaction chamber 9 is an introduction pipe 1 in which the same gas supply source (not shown) is branched into four through a common pipe (not shown).
5, each of the introduction pipes 15 is perpendicular to the central axis of the reaction chamber 9, and four introduction ports 1 are provided through the peripheral plate 14 so as to divide the circumference of the reaction chamber 8 into four equal parts.
6, respectively.

前記導入管15が導入口16と接続される端部
には絶縁性リング17が接続され、周板14と導
入管15が絶縁されている。
An insulating ring 17 is connected to the end of the introduction tube 15 where it is connected to the introduction port 16, so that the peripheral plate 14 and the introduction tube 15 are insulated.

前記第2周板12及び第1周板13には、それ
ぞれガス通過孔である多数の噴出孔18及び拡散
孔19が各周面全体に亘つて一様に貫設されてい
る。噴出孔18及び拡散孔19はいずれも円形、
四角形など任意の形状でよく、それぞれの孔径或
いは孔の大きさ及び孔数は、導入管15を介して
反応室8内に導入したa−Si層生成ガスが第2周
板12の噴出孔18を通過する際に、ガスの拡散
が十分行われ、第2周板12の全面に亘つて実質
上均一にガスが供給されるように適宜設定すれば
よい。例えば、噴出孔18及び拡散孔19が円形
の場合、噴出孔18の孔径を0.5〜2mm、拡散孔
19の孔径を1〜4mmの範囲で、噴出孔18の孔
径を拡散孔19に比べて小さくすることが好適で
ある。また、噴出孔18を拡散孔19よりも多く
設けることが好適であり、例えば噴出孔18は5
mm〜1cmの間隔で第2周板12の全面に亘つて一
様に設けることが好ましい。
In the second circumferential plate 12 and the first circumferential plate 13, a large number of jet holes 18 and diffusion holes 19, which are gas passage holes, are provided uniformly throughout the respective circumferential surfaces. Both the ejection hole 18 and the diffusion hole 19 are circular;
It may be any shape such as a square, and the diameter or size of each hole and the number of holes are such that the a-Si layer forming gas introduced into the reaction chamber 8 via the introduction pipe 15 is The setting may be appropriately set so that the gas is sufficiently diffused and is supplied substantially uniformly over the entire surface of the second circumferential plate 12 when passing through the second circumferential plate 12 . For example, when the ejection hole 18 and the diffusion hole 19 are circular, the hole diameter of the ejection hole 18 is set to be smaller than that of the diffusion hole 19, with the hole diameter of the ejection hole 18 being in the range of 0.5 to 2 mm, and the hole diameter of the diffusion hole 19 being in the range of 1 to 4 mm. It is preferable to do so. Further, it is preferable to provide more jet holes 18 than diffusion holes 19; for example, the number of jet holes 18 is five.
It is preferable that they are provided uniformly over the entire surface of the second circumferential plate 12 at intervals of mm to 1 cm.

かくして、導入管15を通して反応室9の内部
に導入したa−Si層生成ガスは第2周板12を介
して拡散が著しく進行するため、第2周板12か
ら反応室9の中心軸へ向かつて、その周面全体に
亘り、ガスがほぼ均等量供給され、グロー放電に
晒される。
In this way, the a-Si layer forming gas introduced into the reaction chamber 9 through the introduction pipe 15 diffuses significantly through the second circumferential plate 12, so that it is directed from the second circumferential plate 12 toward the central axis of the reaction chamber 9. Once, a substantially equal amount of gas was supplied over the entire circumferential surface and exposed to glow discharge.

一方、円筒状のガス吸引筒11にはその周面の
全体に亘つて複数個の吸引孔20が貫設されてい
る。この吸引孔20は噴出孔28と同程度の孔径
と密度で設けられることが望ましい。該ガス吸引
筒11は第3図に示すように、ガス吸引用回転ポ
ンプ(図示せず)に接続されたガス吸引管21が
上方もしくは下方から導入され、且つ該ガス吸引
管21の開放端部22をガス吸引筒11の中心軸
に位置させると、ガス吸引筒11の吸引孔20か
らその内方に向かつて全周面に亘つて均等に残余
ガスが吸引されることになる。
On the other hand, a plurality of suction holes 20 are provided through the cylindrical gas suction tube 11 over its entire circumferential surface. It is desirable that the suction holes 20 have the same hole diameter and density as the jet holes 28. As shown in FIG. 3, the gas suction tube 11 has a gas suction tube 21 connected to a gas suction rotary pump (not shown) introduced from above or below, and an open end of the gas suction tube 21. 22 is located at the central axis of the gas suction tube 11, the residual gas is evenly sucked inward from the suction hole 20 of the gas suction tube 11 over its entire circumferential surface.

このように、反応室8の中心部に配置された円
筒状のガス吸引筒11からガスを吸引すると、グ
ロー放電領域に均一な高周波電界が生じるととも
に、反応室9内のすべての感光体ドラム8の周囲
はいずれも均一なガス流通状態となり、均質なa
−Si層が形成されることになる。
In this way, when gas is sucked from the cylindrical gas suction cylinder 11 located at the center of the reaction chamber 8, a uniform high-frequency electric field is generated in the glow discharge area, and all the photoreceptor drums 8 in the reaction chamber 9 are There is a uniform gas flow around the area, and a homogeneous a
-A Si layer will be formed.

更に、反応室9に導入したガスを一層拡散され
た状態で第2周板12から噴出させるために、2
個以上のガス拡散用第1周板13を設けることも
できる。
Furthermore, in order to blow out the gas introduced into the reaction chamber 9 from the second circumferential plate 12 in a more diffused state,
It is also possible to provide more than one first circumferential plate 13 for gas diffusion.

以上の通り、一度の操作で複数個の基板上に成
膜する本発明の量産型グロー放電分解装置によれ
ば、導入ガスの利用効率を高めるのに加え、グロ
ー放電領域が均一な高周波電界となり、且つ各基
板の周囲に均一なガス流通状態がうまれ、その結
果、各基板上に均質な非晶質層が形成されること
になり、製造歩留りが顕著に向上し、信頼性の高
い優れた非晶質層が得られる。
As described above, according to the mass-produced glow discharge decomposition apparatus of the present invention, which forms films on multiple substrates in a single operation, in addition to increasing the utilization efficiency of the introduced gas, the glow discharge area becomes a uniform high-frequency electric field. , and a uniform gas flow condition is created around each substrate, resulting in the formation of a homogeneous amorphous layer on each substrate, which significantly improves the manufacturing yield and provides a highly reliable and excellent An amorphous layer is obtained.

尚、本発明は実施例に限定されるものではな
く、内部にグロー放電用の電極板を備え、複数個
の基板上に非晶質層を形成するグロー放電分解装
置であれば、すべてに適用されることは当業者に
は容易に理解されよう。
It should be noted that the present invention is not limited to the examples, but can be applied to any glow discharge decomposition device that is equipped with an electrode plate for glow discharge inside and forms an amorphous layer on a plurality of substrates. Those skilled in the art will readily understand that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の量産型グロー放電分解装置を示
す概略図、第2図は本発明の実施例に使われる反
応室の破断面図、第3図は本発明のガス吸引機構
を示す斜視図である。 3,8……感光ドラム、10……外部電極板、
11……内部電極板、12……第2周板、13…
…第1周板、14……周板。
Fig. 1 is a schematic diagram showing a conventional mass-produced glow discharge decomposition device, Fig. 2 is a broken sectional view of a reaction chamber used in an embodiment of the present invention, and Fig. 3 is a perspective view showing a gas suction mechanism of the present invention. It is. 3, 8...Photosensitive drum, 10...External electrode plate,
11... Internal electrode plate, 12... Second peripheral plate, 13...
...1st circumferential plate, 14... circumferential plate.

Claims (1)

【特許請求の範囲】[Claims] 1 非晶質層生成ガスが導入される円筒状反応室
内部に、それぞれ大小の径を有する円筒状の第1
周板と第2周板とが該反応室と同心円状に配置さ
れ、該円心円状の中心に円筒状のガス吸引筒を配
設するとともに、第2周板とガス吸引筒の間に、
非晶質層被形成面を有する複数個の筒状基板を上
記同心円状に配列し、第2周板に設けたガス通過
孔の径を第1周板のガス通過孔に比べて小さくす
るか、もしくは孔数を多くして第2周板でもつて
ガスをより均等に供給し、且つ上記反応室と第2
周板と第1周板とを同電位にして一方電極にする
とともにグロー放電を発生するようにした量産型
グロー放電分解装置。
1 Inside the cylindrical reaction chamber into which the amorphous layer forming gas is introduced, a first cylindrical chamber having a large and small diameter is provided.
A circumferential plate and a second circumferential plate are arranged concentrically with the reaction chamber, and a cylindrical gas suction tube is disposed at the center of the concentric circle. ,
A plurality of cylindrical substrates each having a surface on which an amorphous layer is formed are arranged concentrically, and the diameter of the gas passage hole provided in the second circumferential plate is made smaller than that of the gas passage hole in the first circumferential plate. Alternatively, the number of holes may be increased to supply gas more evenly on the second circumferential plate, and the reaction chamber and the second circumferential plate may be
A mass-produced glow discharge decomposition device in which a circumferential plate and a first circumferential plate are made to have the same potential and serve as one electrode, and generate glow discharge.
JP58178797A 1983-09-26 1983-09-26 Mass production type glow discharge decomposition apparatus Granted JPS6036664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178797A JPS6036664A (en) 1983-09-26 1983-09-26 Mass production type glow discharge decomposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178797A JPS6036664A (en) 1983-09-26 1983-09-26 Mass production type glow discharge decomposition apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58132488A Division JPS6024378A (en) 1983-07-19 1983-07-19 Mass production type decomposing device by glow discharge

Publications (2)

Publication Number Publication Date
JPS6036664A JPS6036664A (en) 1985-02-25
JPH0549751B2 true JPH0549751B2 (en) 1993-07-27

Family

ID=16054808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178797A Granted JPS6036664A (en) 1983-09-26 1983-09-26 Mass production type glow discharge decomposition apparatus

Country Status (1)

Country Link
JP (1) JPS6036664A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110768A (en) * 1984-11-05 1986-05-29 Sharp Corp Device for manufacturing amorphous silicon photosensitive body
JP2656021B2 (en) * 1986-01-14 1997-09-24 キヤノン株式会社 Deposition film forming equipment
WO2008018119A1 (en) * 2006-08-08 2008-02-14 Life Technology Reserch Institute, INC. Film deposition apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185971A (en) * 1981-05-11 1982-11-16 Oki Electric Ind Co Ltd Formation of glow discharge film
JPS5889943A (en) * 1981-11-26 1983-05-28 Canon Inc Plasma cvd device
JPS58101735A (en) * 1981-12-11 1983-06-17 Canon Inc Plasma cvd device
JPS58132488A (en) * 1982-01-28 1983-08-06 富士通フアナツク株式会社 Exchange system of hand for industrial robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185971A (en) * 1981-05-11 1982-11-16 Oki Electric Ind Co Ltd Formation of glow discharge film
JPS5889943A (en) * 1981-11-26 1983-05-28 Canon Inc Plasma cvd device
JPS58101735A (en) * 1981-12-11 1983-06-17 Canon Inc Plasma cvd device
JPS58132488A (en) * 1982-01-28 1983-08-06 富士通フアナツク株式会社 Exchange system of hand for industrial robot

Also Published As

Publication number Publication date
JPS6036664A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
JPH0456448B2 (en)
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
US4851256A (en) Apparatus and method for manufacturing photosensitive amorphous silicon objects
JPS6137354B2 (en)
JPH0549751B2 (en)
JPH0532472B2 (en)
JPS6137968A (en) Plasma cvd device
JPH0545672B2 (en)
US4418645A (en) Glow discharge apparatus with squirrel cage electrode
JPS59215475A (en) Grow discharge decomposing device of mass production type
JPS59215476A (en) Glow discharge decomposing device of mass production type
JPS6153431B2 (en)
JPH0438449B2 (en)
JP2553331B2 (en) Deposited film forming apparatus by plasma CVD method
JPS5889943A (en) Plasma cvd device
JP2608410B2 (en) Glow discharge decomposition equipment
JP2002299266A (en) Filming method for amorphous silicon membrane
JP2608460B2 (en) Thin film forming equipment
JP2577397Y2 (en) Glow discharge decomposition equipment
JPS5938377A (en) Plasma cvd device
JP2620939B2 (en) Glow discharge decomposition equipment
JPH0441178Y2 (en)
JPS6140773Y2 (en)
JPH08250439A (en) Deposited film forming equipment
JPH0135075B2 (en)