JPS6362880A - Device for forming functional deposited film by microwave plasma cvd - Google Patents

Device for forming functional deposited film by microwave plasma cvd

Info

Publication number
JPS6362880A
JPS6362880A JP20546186A JP20546186A JPS6362880A JP S6362880 A JPS6362880 A JP S6362880A JP 20546186 A JP20546186 A JP 20546186A JP 20546186 A JP20546186 A JP 20546186A JP S6362880 A JPS6362880 A JP S6362880A
Authority
JP
Japan
Prior art keywords
deposited film
substrates
substrate
functional deposited
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20546186A
Other languages
Japanese (ja)
Inventor
Shigehira Iida
茂平 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20546186A priority Critical patent/JPS6362880A/en
Publication of JPS6362880A publication Critical patent/JPS6362880A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Abstract

PURPOSE:To uniformize the thickness and quality of a deposited film to be formed between substrates and on the same substrate by providing a means for rotating plural functional deposited film forming substrates arranged in a vacuum vessel and rotating on their axes. CONSTITUTION:Plural cylindrical substrates 7 are arranged on a concentric circle in the vacuum vessel 1 of the film forming device, and the rotary table 14 as a means for rotating the substrates 7 is provided. The table 14 is connected to a rotating motor 16 through a gear 15, and rotated. The inside of the vacuum vessel 1 is firstly evacuated through an evacuation pipe 5, the cylindrical substrates 7, 7,... are heated by respective built-in heaters 8 and kept at a specified temp., and each substrate 7 is rotated on its axis and rotated. A raw gas is then introduced into the vacuum vessel 1 through raw gas feed pipes 6, 6,... while keeping a specified vacuum, and a deposited film is formed on the substrates 7, 7,....

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、基体上に堆積膜、とりわけ機能性膜、特に半
導体ディバイス、電子写臭用感光ディバイス、画像入力
用ラインセンサー、撮像ディバイス、光起電力素子等に
用いるアモルファス半導体等の機能性堆積膜を形成する
装置に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention relates to a film deposited on a substrate, particularly a functional film, particularly a semiconductor device, a photosensitive device for electrophotography, a line sensor for image input, an imaging device, and a photosensitive device. The present invention relates to an apparatus for forming functional deposited films such as amorphous semiconductors used in electromotive force elements and the like.

〔従来技術の説明〕[Description of prior art]

従来、半導体ディバイス、電子写真用窓光ディバイス、
画像入力用ラインセンサー、撮像ディバイス、光起電力
素子、その他各種のエレクトロニクス素子、光学素子等
に用いる素子部材として、アモルファスシリコン、例え
ば水素又は/及びハロゲン(例えばフッ素、塩素等)で
補償されたアモルファスシリコン(以下、「a−Sl 
(H,X)Jと記す。)等のアモルファス半導体等の堆
積膜が提案され、その中のいくつかは実用に付されてい
る。
Conventionally, semiconductor devices, window optical devices for electrophotography,
Amorphous silicon, such as amorphous silicon compensated with hydrogen or/and halogen (e.g. fluorine, chlorine, etc.), is used as an element member for image input line sensors, imaging devices, photovoltaic elements, and various other electronic elements, optical elements, etc. Silicon (hereinafter referred to as "a-Sl"
It is written as (H,X)J. ) have been proposed, and some of them have been put into practical use.

そして、こうした堆積膜は、プラズマCVD法、即ち、
原料ガスを直流又は高周波、マイクロ波、グロー放電に
よって分解し、ガラス、石英、ステンレス、アルミニウ
ムなどの基体上に薄膜状の堆積膜を形成する方法により
形成されることが知られており、そのための装置も各種
提案されている。
Then, such a deposited film is deposited using a plasma CVD method, that is,
It is known to be formed by a method in which a raw material gas is decomposed by direct current, high frequency, microwave, or glow discharge to form a thin film deposited on a substrate such as glass, quartz, stainless steel, or aluminum. Various devices have also been proposed.

ところで近年、マイクロ波を使用するブラズ7 CVD
法(以下、r MW −PCVD法」と表記する。)が
注目され、そのための装置がいくつか提案されて、MW
 −PCVD法による前述した堆積膜の工業的規模での
生産がはかられて来ている。そうした従来提案されてい
るMW −PC:VD法による装置は、代表的には第3
図の透視略図で示される装置構成のものである。
By the way, in recent years, Braz 7 CVD using microwave
The MW-PCVD method (hereinafter referred to as MW-PCVD method) has attracted attention, and several devices have been proposed for it.
- Efforts have been made to produce the above-mentioned deposited film on an industrial scale by the PCVD method. Such conventionally proposed devices using the MW-PC:VD method typically
The device configuration is shown in a schematic perspective view in the figure.

第3図において、1は真空容器、2はアルミナ・セラミ
ックス又は石英等の誘電体窓、3はマイクロ波を伝送す
る導波部、4はマイクロ波、5は排気管、6は原料ガス
供給管、7は円筒状基体、8は基体加熱ヒーターを示す
、なお、真空容器lは放電トリガー等を用いることなく
自助放電にて放電を開始せしめるため、該マイクロ波1
) (図示せず)の発振周波数に共振するような空胴共
振器構造とするのが一般的である。
In Fig. 3, 1 is a vacuum container, 2 is a dielectric window made of alumina ceramics or quartz, 3 is a waveguide for transmitting microwaves, 4 is a microwave, 5 is an exhaust pipe, and 6 is a raw material gas supply pipe. , 7 indicates a cylindrical substrate, and 8 indicates a substrate heating heater. In addition, since the vacuum container 1 starts the discharge by self-help discharge without using a discharge trigger, etc., the microwave 1
) (not shown) It is common to use a cavity resonator structure that resonates at the oscillation frequency of (not shown).

そしてこうした装置による堆積膜の形成は次のようにし
て行われる。即ち、真空容器1内部を、排気管5を介し
て真空排気すると共に、円筒状基体7を基体加熱ヒータ
ー8により所定温度に加熱、保持する。次に、原料ガス
供給管6を介して、例えばアモルファスシリコン堆積膜
を形成する場合であれば、シランガス、水素ガス等の原
料ガスが該原料ガス供給管に開口せられた複数のガス放
出孔6’、O’、・・・・・・・・・を通して真空容器
1内に放出される。これと同時併行的に、マイクロ波電
H(図示せず)から周波数500MHz以上の、好まし
くは2.45GHzのマイクロ波4を発生し、該マイク
ロ波は、導波部3を通り誘電体窓2を介して真空容器1
内に導入される。かくして、真空容器1内の導入原料ガ
スは、マイクロ波のエネルギーにより励起されて解離し
、中性ラジカル粒子、イオン粒子、電子等が生成され、
それ等が相互に反応し円筒状基体7の表面に堆積膜が形
成される。
Formation of a deposited film using such an apparatus is performed in the following manner. That is, the inside of the vacuum container 1 is evacuated via the exhaust pipe 5, and the cylindrical substrate 7 is heated and maintained at a predetermined temperature by the substrate heating heater 8. Next, in the case of forming, for example, an amorphous silicon deposited film, a raw material gas such as silane gas or hydrogen gas is supplied to a plurality of gas discharge holes 6 opened to the raw material gas supply pipe 6 through the raw material gas supply pipe 6. ', O', . . . are discharged into the vacuum container 1. Simultaneously, microwaves 4 with a frequency of 500 MHz or more, preferably 2.45 GHz, are generated from a microwave electric H (not shown), and the microwaves pass through the waveguide 3 and pass through the dielectric window 2. Vacuum vessel 1 through
be introduced within. In this way, the raw material gas introduced into the vacuum container 1 is excited and dissociated by the microwave energy, and neutral radical particles, ion particles, electrons, etc. are generated.
These react with each other to form a deposited film on the surface of the cylindrical substrate 7.

ところで、本発明者は、上述のごとき従来のMW −P
CVD法による機能性堆積膜形成装置における量産化を
可能にするため、真空容器内に複数本の円筒状基体を配
置しうるようにすればよいことを見い出した。第4.5
図はこうした量産化を可能とする装置の典型的−例を示
すものであり、第4図は透視略図、第5図は断面略図で
ある。
By the way, the present inventor has discovered that the above-mentioned conventional MW-P
In order to enable mass production of a functional deposited film forming apparatus using the CVD method, it has been found that a plurality of cylindrical substrates can be arranged in a vacuum container. Section 4.5
The figures show a typical example of an apparatus that enables such mass production, with FIG. 4 being a schematic perspective view and FIG. 5 being a schematic cross-sectional view.

第4.5図において、1は真空容器、2はアルミナ・セ
ラミックス又は石英等の誘電体窓、3はマイクロ波を伝
送する導波部、9はマイクロ波電源、4は該マイクロ波
電源9からのマイクロ波である。5は、一端が真空容器
1内に開口し、他端が排気バルブ10を介して排気装置
1)に連通している排気管、6はバルブ12を介して原
料ガス供給源(図示せず)に連通している原料ガス供給
管、7は同心円上に配置された円筒状基体、8は基体加
熱ヒーター、13は誘電体窓3を通過したマイクロ波に
よって真空容器内に生起したプラズマ発生領域である。
In Fig. 4.5, 1 is a vacuum container, 2 is a dielectric window made of alumina ceramics or quartz, 3 is a waveguide for transmitting microwaves, 9 is a microwave power source, and 4 is from the microwave power source 9. microwave. 5 is an exhaust pipe whose one end opens into the vacuum container 1 and the other end communicates with the exhaust device 1) via an exhaust valve 10; 6 is a source gas supply source (not shown) via a valve 12; 7 is a cylindrical substrate arranged concentrically, 8 is a substrate heating heater, and 13 is a plasma generation region generated in the vacuum vessel by microwaves passing through the dielectric window 3. be.

プラズマ領域13は、誘電体窓2および基体7.7.・
・・・・・・・・に囲まれたマイクロ波空胴共振構造と
なっており、導入されたマイクロ波のエネルギーを効率
良く吸収する。
The plasma region 13 includes the dielectric window 2 and the substrate 7.7.・
It has a microwave cavity resonant structure surrounded by... and efficiently absorbs the introduced microwave energy.

上述の装置による堆積膜の形成は、第3図に図示の装置
による場合と同様にして行われる。
Formation of a deposited film using the above-mentioned apparatus is performed in the same manner as in the case using the apparatus shown in FIG.

しかし、該装置を用いて堆積膜を形成する場合、時とし
て(イ)堆積膜の膜厚が基体間で著しい不均一を生じた
り、(ロ)堆積膜の膜質が基体間で著しい不均一を生じ
たりするという問題があった。
However, when forming a deposited film using this device, there are cases in which (a) the thickness of the deposited film is significantly non-uniform between substrates, or (b) the quality of the deposited film is significantly non-uniform between substrates. There was a problem that could occur.

特に、こうした(イ)乃至(ロ)等の問題は、電子写真
感光体ディバイスのように長大な基体上に膜厚の厚い堆
積膜を形成する場合に著しい。
In particular, these problems (a) to (b) are significant when a thick deposited film is formed on a long substrate such as an electrophotographic photoreceptor device.

更に、使用するマイクロ波の電界分布によっても差が認
められるところ、TE、モードの電気力線をもつマイク
ロ波を導入した場合にあっては、こうした問題の発生が
増長されるところとなる。また、TE、、モードの電気
力線をマイクロ波を導入した場合には、こうした問題の
発生は減少するものの、TE、、モードのものは伝送中
の損失が多く、実用に向かない。
Furthermore, differences are also recognized depending on the electric field distribution of the microwave used, and when microwaves having TE and mode electric lines of force are introduced, the occurrence of such problems is exacerbated. In addition, when microwaves are introduced into the TE mode electric lines of force, the occurrence of such problems is reduced, but the TE mode has a large loss during transmission and is not suitable for practical use.

〔発明の目的〕[Purpose of the invention]

本発明は、上述のごとき従来のMW −PCVD法によ
る堆積膜形成装置における上述の諸問題を克服して、半
導体ディバイス、電子写真用感光体ディバイス、画像入
力用ラインセンサー、逼像ディバイス、光起電力素子、
その他の各種エレクトロニクス素子、光学素子等に用い
る素子部材としての機能性堆積膜を、MW −PCVD
法により定常的に高効率で形成することを可能にする装
置を提供することを目的とするものである。
The present invention overcomes the above-mentioned problems in the conventional deposited film forming apparatus using the MW-PCVD method, and achieves the following advantages: power element,
MW-PCVD produces functional deposited films as element members used in various other electronic devices, optical devices, etc.
The object of the present invention is to provide an apparatus that enables constant and highly efficient formation by a method.

即ち、本発明の目的は、MW −PCVD法による機能
性堆積膜形成装置において、基体間および同−基体上に
形成される堆積膜の膜厚および膜質の均一化を可能にし
、良質な堆積膜を定常的に量産しろる装置を提供するこ
とにある。
That is, an object of the present invention is to make it possible to uniformize the thickness and quality of the deposited film formed between and on the substrates in a functional deposited film forming apparatus using the MW-PCVD method, and to obtain a high quality deposited film. Our goal is to provide equipment that can regularly mass-produce products.

〔発明の構成〕[Structure of the invention]

本発明は、従来のMW −PCVD法による堆積膜形成
装置における上述の諸問題を解決し、前記本発明の目的
を達成すべく本発明者が鋭意研究を続けたところ、従来
のMW −PCVD法による堆積膜形成装置における諸
問題は、装置内において基体を自転および公転させるこ
とにより解決しうる知見を得た。
The present invention solves the above-mentioned problems in deposited film forming apparatuses using the conventional MW-PCVD method, and as a result of intensive research by the present inventors to achieve the objects of the present invention, found that various problems in the deposited film forming apparatus can be solved by rotating and revolving the substrate within the apparatus.

本発明は、該知見に基づいて完成せしめたものであり、
本発明のMW −PCVD法による機能性堆積膜形成装
置は、密封された真空容器、該真空容器内に機能性堆積
膜形成用基体を保持する手段、該真空容器内に原料ガス
を供給する手段、該真空容器内を排気する手段、および
該真空容器内にマイクロ波放電プラズマを生成せしめる
手段とからなるマイクロ波プラズマCVD法による機能
性堆積膜形成装置であって、さらに前記機能性堆積膜形
成用基体を自転および公転せしめる手段を有することを
特徴とするものである。
The present invention was completed based on this knowledge,
The apparatus for forming a functional deposited film using the MW-PCVD method of the present invention includes a sealed vacuum container, a means for holding a substrate for forming a functional deposited film in the vacuum container, and a means for supplying raw material gas into the vacuum container. , a functional deposited film forming apparatus by a microwave plasma CVD method, comprising means for evacuating the inside of the vacuum container, and means for generating microwave discharge plasma in the vacuum container, further comprising a method for forming the functional deposited film. The invention is characterized by having means for causing the base body to rotate and revolve around its axis.

上述の構成の装置を用いた堆積膜の形成は、特に、マイ
クロ波電気力線分布がTE、、モードであるものを使用
する場合、著しい効果が得られる。即ち、マイクロ波を
原料ガスの励起エネルギー源として使用する場合、従来
の高周波(例えば13.56MHz)プラズマ法と異な
る点は、マイクロ波電界分布において均一な電界が得ら
れず伝播面上で不均一な電気力線分布を生じることであ
る。このことはすなわち、マイクロ波が導入された放電
空間において不均一なプラズマ分布を発生せしめ、その
結果、複数の基板上に堆積膜を形成する場合に基体間お
よび同−基体上で堆積膜の膜厚および膜質の不均一性の
問題を惹起していたものである0本発明の装置において
は、基体をプラズマ発生領域に対して自転および公転せ
しめることにより、こうした膜質および膜厚の不均一性
の問題が解消される。
Formation of a deposited film using the apparatus having the above-mentioned configuration provides a remarkable effect, particularly when using an apparatus in which the distribution of microwave electric lines of force is in the TE mode. In other words, when microwaves are used as an excitation energy source for source gas, the difference from conventional high frequency (e.g. 13.56 MHz) plasma methods is that a uniform electric field cannot be obtained in the microwave electric field distribution, and the electric field is non-uniform on the propagation surface. This results in a distribution of electric lines of force. This means that a non-uniform plasma distribution is generated in the discharge space into which microwaves are introduced, and as a result, when deposited films are formed on multiple substrates, the thickness of the deposited film is increased between and on the same substrate. In the apparatus of the present invention, such non-uniformity in film quality and film thickness can be solved by causing the substrate to rotate and revolve around the plasma generation area. The problem is resolved.

以下、本発明のMW −PCVD法による機能性堆積膜
形成装置について、図面の実施例装置を用いて説明する
が、本発明はこれにより限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus for forming a functional deposited film by the MW-PCVD method of the present invention will be described below using the apparatus of the embodiment shown in the drawings, but the present invention is not limited thereto.

第1図は、本発明のMW −PCVD法による機能性堆
積膜形成装置の典型的−例を模式的に示す横断面略図で
あり、第2図は該装置の縦断面略図である。なお、図中
、前述の第4〜6図と同一の符号を付したものは、第4
〜6図において説明したと同一のものを示している。即
ち、第1゜2図において、1は真空容器、2はアルミナ
・セラミックス又は石英等の誘電体窓、5は、一端が真
空容器1内に開口し、他端が排気バルブ10を介して排
気装置1)に連通している排気管、6はバルブ12を介
して原料ガス供給源(図示せず)に連通している原料ガ
ス供給管、7は同心円上に配置された円筒状基体、8は
基体加熱ヒーター、13は誘電体窓3を通過したマイク
ロ波によって真空容器内に生起したプラズマ発生領域で
ある。
FIG. 1 is a schematic cross-sectional view schematically showing a typical example of an apparatus for forming a functional deposited film by the MW-PCVD method of the present invention, and FIG. 2 is a schematic longitudinal cross-sectional view of the apparatus. In addition, in the figure, the same reference numerals as in the above-mentioned figures 4 to 6 refer to the figure 4.
This shows the same thing as explained in FIGS. That is, in FIGS. 1-2, 1 is a vacuum container, 2 is a dielectric window made of alumina ceramics or quartz, and 5 is a window with one end opening into the vacuum container 1 and the other end opening for exhaust through an exhaust valve 10. an exhaust pipe communicating with the apparatus 1), 6 a raw material gas supply pipe communicating with a raw material gas supply source (not shown) via a valve 12, 7 a cylindrical base body arranged concentrically, 8 1 is a substrate heating heater, and 13 is a plasma generation region generated in the vacuum container by microwaves passing through the dielectric window 3.

14は、前述したところの本発明における基体を公転さ
せる手段である公転テーブルであり、歯車15を介して
回転用モーター16に接続して回転駆動する。基板公転
用の公転テーブル14の駆動動力としては、図示したご
とき外部からの直接駆動方式のみならず、非接触駆動、
例えば磁気駆動方式であっても、充分に本発明の目的を
達成しうる。また、基板自転用の駆動系は図示していな
いが、真空容器内に内蔵されていてもよく、あるいは外
部に設けても良い。
Reference numeral 14 denotes a revolution table which is a means for revolving the base body in the present invention as described above, and is connected to a rotation motor 16 via a gear 15 and driven to rotate. The driving power of the revolution table 14 for revolutionizing the substrate is not only the direct drive method from the outside as shown in the figure, but also non-contact drive,
For example, even with a magnetic drive system, the object of the present invention can be fully achieved. Further, although a drive system for rotating the substrate is not shown, it may be built in the vacuum container or may be provided outside.

更に、図示した装置においては、基板加熱用ヒーター8
を基体内に内蔵した例を示したが、外部よりスライド接
触方式通電等により導入しても良い。
Furthermore, in the illustrated apparatus, a heater 8 for heating the substrate is provided.
Although an example has been shown in which the power supply is built into the base, it may also be introduced from the outside by a slide contact method or the like.

なお、第1,2図に図示する装置においても真空容器1
は放電トリガー等を用いることなく自動放電にて放電を
開始せしめるため、該マイクロ波電源9の発振周波数に
共振するような空胴共振器構造とされている。
In addition, in the apparatus shown in FIGS. 1 and 2, the vacuum vessel 1
has a cavity resonator structure that resonates with the oscillation frequency of the microwave power source 9 in order to automatically start discharging without using a discharge trigger or the like.

本発明の装置により堆積膜を形成するについて使用され
る原料ガスは、高周波またはマイクロ波のエネルギーに
より励起種化し、化学的相互作用して基体表面上に所期
の堆積膜を形成する類のものであれば何れのものであっ
ても採用することができるが、例えば、a −5i (
H,X)膜を形成する場合であれば、具体的には、ケイ
素二水素、ハロゲン、あるいは炭化水素等が結合したシ
ラン類及びハロゲン化シラン類等のガス状態のもの、ま
たは容易にガス化しうるちのをガス化したものを用いる
ことができる。これらの原料ガスは1種を使用してもよ
く、あるいは2種以上を併用してもよい。また、これ等
の原料ガスは、He s Ar等の不活性ガスにより希
釈して用いることもある。さらに、a −5t(H,X
’)膜はp型不純物元素又はn型不純物元素をドーピン
グすることが可能であり、これ等の不純物元素を構成成
分として含有する原料ガスを、単独で、あるいは前述の
原料ガスまたは/および稀釈用ガスと混合して反応室内
に導入することができる。
The raw material gas used to form the deposited film by the apparatus of the present invention is one that is excited and speciated by high frequency or microwave energy, and undergoes chemical interaction to form the desired deposited film on the substrate surface. For example, a −5i (
In the case of forming a film (H, Gasified Uruchino can be used. These source gases may be used alone or in combination of two or more. Further, these raw material gases may be used after being diluted with an inert gas such as He s Ar. Furthermore, a −5t(H,X
') The film can be doped with a p-type impurity element or an n-type impurity element, and the raw material gas containing these impurity elements as a constituent can be used alone or as the aforementioned raw material gas and/or diluent. It can be mixed with a gas and introduced into the reaction chamber.

また基体については、導電性のものであっても、半導電
性のものであっても、あるいは電気絶縁性のものであっ
てもよく、具体的には金属、セラミックス、ガラス等が
挙げられる。そして成膜操作時の基体温度は、特に制限
されないが、30〜450℃の範囲とするのが一般的で
あり、好ましくは50〜350℃である。
The substrate may be conductive, semiconductive, or electrically insulating, and specific examples thereof include metal, ceramics, glass, and the like. The substrate temperature during the film forming operation is not particularly limited, but is generally in the range of 30 to 450°C, preferably 50 to 350°C.

また、堆積膜を形成するにあたっては、原料ガスを導入
する前に反応室内の圧力を5X10−’T orr以下
、好ましくはI Xl0−’Torr以下とし、原料ガ
スを導入した時には反応室内の圧力をI X 104〜
I Tart s好ましくは5×10−!〜I Tor
rとするのが望ましい。
In addition, when forming a deposited film, the pressure in the reaction chamber is set to 5X10-' Torr or less, preferably I IX 104~
I Tart s preferably 5×10−! ~I Tor
It is desirable to set it to r.

なお、本発明の装置による堆積膜形成は、通常は、前述
したように原料ガスを事前処理(励起種化)することな
く反応室に導入し、そこでマイクロ波のエネルギーによ
り励起種化し、化学的相互作用を生起せしめることによ
り行われるが、二種以上の原料ガスを使用する場合、そ
の中の一種を事前に励起種化し、次いで反応室に導入す
るようにすることも可能である。
Note that in forming a deposited film using the apparatus of the present invention, the raw material gas is normally introduced into the reaction chamber without prior treatment (excitation speciation) as described above, where it is excited speciation by microwave energy and chemically generated. This is carried out by causing interaction, but when using two or more types of raw material gases, it is also possible to make one of them into an excited species in advance and then introduce it into the reaction chamber.

〔実施例〕〔Example〕

以下、第1.2図に示す本発明の装置を用いた機能性堆
積膜の形成について、実施例および比較例を用いて具体
的に説明するが、本発明はこれらによって限定されるも
のではない。
Hereinafter, the formation of a functional deposited film using the apparatus of the present invention shown in Fig. 1.2 will be specifically explained using Examples and Comparative Examples, but the present invention is not limited thereto. .

まず、真空容器1の内部を、排気管5を介して真空排気
するとともに、円筒状基体7,7゜・・・・・・・・・
に内蔵されたヒーター8により6本の円筒状基体の夫々
を所定温度に加熱保持し、該円筒状基体7,7.・・・
・・・・・・を第2表に示す条件で自転および/又は公
転させた。
First, the inside of the vacuum container 1 is evacuated via the exhaust pipe 5, and the cylindrical base 7, 7°...
Each of the six cylindrical substrates is heated and maintained at a predetermined temperature by a heater 8 built in the cylindrical substrates 7, 7. ...
... was rotated and/or revolved under the conditions shown in Table 2.

こうしたところへ、原料ガス供給管6,6゜・・・・・
・・・・を介して、シランガス(SiH4) 、水素ガ
ス(H□)、ジボランガス(Bz)Lb)等の原料ガス
を第1表に示す条件で真空容器1内に、1×lO′″!
torr以下の真空度を維持しながら放出した。次に、
周波数2.45GHzのマイクロ波を導波部3及びマイ
クロ波透過性誘電体窓2を介してプラズマ発生領域13
内に導入し、円筒状基体7.7.・・・・・・・・・上
に、電荷注入辺止層、感光層、及び表面層の夫々を続々
に形成せしめた。
To these places, raw material gas supply pipe 6,6°...
..., raw material gases such as silane gas (SiH4), hydrogen gas (H□), diborane gas (Bz)Lb), etc. are placed in the vacuum vessel 1 under the conditions shown in Table 1 at a concentration of 1×lO'''!
The gas was discharged while maintaining the degree of vacuum below torr. next,
Microwaves with a frequency of 2.45 GHz are transmitted to the plasma generation region 13 through the waveguide 3 and the microwave-transparent dielectric window 2.
into the cylindrical substrate 7.7. ......A charge injection stop layer, a photosensitive layer, and a surface layer were successively formed thereon.

こうして作成した感光ドラムを渦電流式膜厚計(Ket
t社製膜厚計)にて膜厚測定し、又、キャノン株式会社
製複写機NP −7550に設置し、表面電位(TRE
CK社表面電位計)の測定を実施したところ第2表に示
す結果となった。第2表中のA−Fの各感光ドラムは1
バッチ6本同時作成下での各々の仮称である。
The photosensitive drum thus prepared was measured using an eddy current film thickness meter (Ket).
The film thickness was measured using a film thickness meter (manufactured by T Co., Ltd.), and the surface potential (TRE
Measurement using a surface electrometer (CK Co., Ltd.) gave the results shown in Table 2. Each photosensitive drum A to F in Table 2 is 1
These are tentative names for each batch created at the same time.

第2表の結果より明らかな様に、基板(ドラム)の公転
を使用しない比較例においては膜厚、表面電位特性、感
度いずれにおいても不均一性が著しく発生しているのに
対し、本発明によるドラム公転を実施したものは、公転
スピードを問わず、膜厚表面電位、感度特性いずれにお
いても均一性に優れ本発明の基板公転を導入した場合の
均一性は驚くべき効果である事が明瞭で第1表 〔発明の効果の概略〕 本発明によればMW −PCVD法による堆積膜形成装
置において反応容器中に設置された堆積膜形成用基体を
自公転する事により、基体上に形成された堆積膜の膜厚
、膜質を大巾に安定化させる事が可能である。従ってt
産性に富んだ堆積膜形成装置を提供出来る。
As is clear from the results in Table 2, in the comparative example that does not use revolution of the substrate (drum), there is significant non-uniformity in film thickness, surface potential characteristics, and sensitivity, whereas in the present invention It is clear that the substrate revolution of the present invention has excellent uniformity in both film thickness, surface potential, and sensitivity characteristics, regardless of the revolution speed, and the uniformity when the substrate revolution of the present invention is introduced is a surprising effect. Table 1 [Summary of Effects of the Invention] According to the present invention, in a deposited film forming apparatus using the MW-PCVD method, a deposited film forming base placed in a reaction vessel is rotated around its axis, thereby forming a deposited film on the base. It is possible to greatly stabilize the thickness and quality of the deposited film. Therefore t
A deposited film forming apparatus with high productivity can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のMW −PCVD法による機能性堆
積膜形成装置の典型的−例を示す横断面略図であり、第
2図は第1図に図示する装置の縦断面略図である。第3
図は、従来のMW −PCVD法による機能性堆積膜形
成装置の断面略図であり、第4図は、量産性を可能にし
たMW −PCVD法による機能性堆積膜形成装置の透
視略図であり、第5図は第4図に図示する装置の縦断面
略図であ・ る。 図において、 1・・・・・・・・・真空容器、2・・・・・・・・・
誘電体窓、3・・・・・・・・・導波部、4・・・・・
・・・・マイクロ波、5・・・・・・・・・排気管、6
・・・・・・・・・原料ガス供給管、7・・・・・・・
・・円筒状基体、8・・・・・・・・・加熱ヒーター、
9・・・・・・・・・マイクロ波電源、10・・・・・
・・・・排気バルブ、1)・・・・・・・・・排気装置
、12・・・・・・・・・パルプ、13・・・・・・・
・・プラズマ発生領域、14・・・・・・・・・公転テ
ーブル、15・・・・・・・・・歯車、16・・・・・
・・・・回転用モーター。 第4図
FIG. 1 is a schematic cross-sectional view showing a typical example of an apparatus for forming a functional deposited film by the MW-PCVD method of the present invention, and FIG. 2 is a schematic longitudinal cross-sectional view of the apparatus shown in FIG. 1. Third
The figure is a schematic cross-sectional view of a functional deposited film forming apparatus using the conventional MW-PCVD method, and FIG. 4 is a schematic perspective view of a functional deposited film forming apparatus using the MW-PCVD method that enables mass production. FIG. 5 is a schematic longitudinal cross-sectional view of the apparatus shown in FIG. 4. In the figure: 1... Vacuum container, 2...
Dielectric window, 3... Waveguide section, 4...
...Microwave, 5...Exhaust pipe, 6
...... Raw material gas supply pipe, 7...
...Cylindrical base, 8...Heating heater,
9...Microwave power supply, 10...
...exhaust valve, 1) ...exhaust device, 12 ....... pulp, 13 ......
...Plasma generation area, 14...Revolution table, 15...Gear, 16...
...Rotation motor. Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)密封された真空容器、該真空容器内に機能性堆積
膜形成用基体を保持する手段、該真空容器内に原料ガス
を供給する手段、該真空容器内を排気する手段、および
該真空容器内にマイクロ波放電プラズマを生成せしめる
手段とからなるマイクロ波プラズマCVD法による機能
性堆積膜形成装置であって、さらに前記機能性堆積膜形
成用基体を自転および公転せしめる手段を有することを
特徴とするマイクロ波プラズマCVD法による機能性堆
積膜形成装置。
(1) A sealed vacuum container, a means for holding a substrate for forming a functional deposited film in the vacuum container, a means for supplying raw material gas into the vacuum container, a means for evacuating the inside of the vacuum container, and the vacuum A functional deposited film forming apparatus by a microwave plasma CVD method comprising means for generating microwave discharge plasma in a container, further comprising means for rotating and revolving the base for forming the functional deposited film. A functional deposited film forming apparatus using the microwave plasma CVD method.
(2)前記機能性堆積膜形成用基体が、プラズマ発生空
間を中心として同心円上に複数本配置されている特許請
求の範囲第(1)項に記載されたプラズマCVD法によ
る機能性堆積膜形成装置。
(2) Functional deposited film formation by the plasma CVD method according to claim (1), wherein a plurality of the functional deposited film forming substrates are arranged concentrically around the plasma generation space. Device.
JP20546186A 1986-09-01 1986-09-01 Device for forming functional deposited film by microwave plasma cvd Pending JPS6362880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20546186A JPS6362880A (en) 1986-09-01 1986-09-01 Device for forming functional deposited film by microwave plasma cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20546186A JPS6362880A (en) 1986-09-01 1986-09-01 Device for forming functional deposited film by microwave plasma cvd

Publications (1)

Publication Number Publication Date
JPS6362880A true JPS6362880A (en) 1988-03-19

Family

ID=16507260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20546186A Pending JPS6362880A (en) 1986-09-01 1986-09-01 Device for forming functional deposited film by microwave plasma cvd

Country Status (1)

Country Link
JP (1) JPS6362880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338580A (en) * 1988-11-15 1994-08-16 Canon Kabushiki Kaisha Method of preparation of functional deposited film by microwave plasma chemical vapor deposition
US5582648A (en) * 1988-11-15 1996-12-10 Canon Kabushiki Kaisha Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338580A (en) * 1988-11-15 1994-08-16 Canon Kabushiki Kaisha Method of preparation of functional deposited film by microwave plasma chemical vapor deposition
US5582648A (en) * 1988-11-15 1996-12-10 Canon Kabushiki Kaisha Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition

Similar Documents

Publication Publication Date Title
JPH0676664B2 (en) Apparatus for forming functional deposited film by microwave plasma CVD method
JP2994652B2 (en) Deposition film forming apparatus by microwave plasma CVD method
US4897284A (en) Process for forming a deposited film on each of a plurality of substrates by way of microwave plasma chemical vapor deposition method
US4913928A (en) Microwave plasma chemical vapor deposition apparatus with magnet on waveguide
US4834023A (en) Apparatus for forming deposited film
JPS6362880A (en) Device for forming functional deposited film by microwave plasma cvd
JPH0633246A (en) Formation of deposited film and deposited film forming device
JP2553331B2 (en) Deposited film forming apparatus by plasma CVD method
JPS6350479A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS62142783A (en) Deposited film forming device by plasma cvd method
JP2784784B2 (en) Method and apparatus for forming functional deposited film by microwave plasma CVD
JPS6244577A (en) Mass production apparatus for deposited film by plasma cvd method
JPS6357779A (en) Functional deposited film forming device by microwave plasma cvd method
JP2609866B2 (en) Microwave plasma CVD equipment
JP2554867B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JP2553337B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS6347366A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS6244578A (en) Deposited film forming device by plasma cvd method
JPS63230881A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS63230880A (en) Device for forming functional deposited film by microwave plasma cvd method
JP2925291B2 (en) Deposition film forming equipment
JPH0643632B2 (en) Deposited film forming apparatus by plasma CVD method
JPS63479A (en) Device for forming functional deposited film by plasma cvd method
JPS63235477A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS642191B2 (en)