JPS62196377A - Device for forming deposited film by plasma chemical vapor deposition method - Google Patents

Device for forming deposited film by plasma chemical vapor deposition method

Info

Publication number
JPS62196377A
JPS62196377A JP61038259A JP3825986A JPS62196377A JP S62196377 A JPS62196377 A JP S62196377A JP 61038259 A JP61038259 A JP 61038259A JP 3825986 A JP3825986 A JP 3825986A JP S62196377 A JPS62196377 A JP S62196377A
Authority
JP
Japan
Prior art keywords
film
deposited film
reaction space
base body
discharge control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61038259A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Aoike
達行 青池
Toshiyasu Shirasago
寿康 白砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61038259A priority Critical patent/JPS62196377A/en
Publication of JPS62196377A publication Critical patent/JPS62196377A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enhance the various characteristics, film forming velocity, reproducibility and productivity of a formed film and to uniformize and homogenize quality of the film by providing an electric discharge controlling means to at least either one part of an upper part or a lower part of a cylindrical base body provided in a reaction space. CONSTITUTION:A cylindrical base body 7 is provided in a reaction space which is closed and formed by a top wall 3, a surrounding wall 2 combined with a cathode and a bottom wall 4 and rotated by a rotary driving means 8. Then a gaseous raw material for forming a deposited film which is fed through a gas introducing pipe 9 is introduced into the above- mentioned reaction space via a gas discharge port 9a and exhausted through an exhaust pipe 11 and thereby the reaction space is regulated to the prescribed degree of vacuum. Voltage is impressed between the above-mentioned surrounding wall 2 and the base body 7 by a voltage impressing means 13 to cause electric discharge and the above-mentioned gaseous raw material is energized, seeded and allowed to react and the deposited film is formed on the base body 7. In the above-mentioned device, an electric discharge controlling plate 14 provided with a voltage impressing means 16 is provided to the upper part of the base body 7 so that it can be vertically transferred in the direction shown in the arrows by a vertical driving means 15. Thereby the plasma discharge space is regulated in accordance with the fluctuation of the film forming conditions and the formation of the deposited film in the plasma chemical vapor deposition method is stabilized.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、基体上に堆積膜、とりわけ機能性膜、殊に半
導体ディバイス、電子写真用の感光ディバイス、画像入
力用のラインセンサー、撮像ディバイス、光起電力素子
などに用いられるアモルファス状あるいは多結晶状等の
非単結晶状の堆積膜を形成するのに至適なプラズマCV
D装置に関する。
Detailed Description of the Invention [Technical Field to Which the Invention Pertains] The present invention relates to a film deposited on a substrate, particularly a functional film, particularly a semiconductor device, a photosensitive device for electrophotography, a line sensor for image input, and an imaging device. , plasma CV, which is optimal for forming non-monocrystalline deposited films such as amorphous or polycrystalline for use in photovoltaic devices, etc.
Regarding D device.

〔従来技術の説明〕[Description of prior art]

従来、半導体ディバイス、電子写真用感光ディバイス、
画像入力用ラインセンサー、撮像ディバイス、光起電力
素子等に使用する素子部材として、例えば、シリコンを
含有する非晶質(以後単に「a−8iJと表記する。)
膜あるいは水素化シリコンを含有する非晶質(以後単に
[a−5iHJと表記する。)膜等が提案され、その中
のいくつかは実用に付されている。そして、そうしたa
−8i膜やa−5iH膜とともにそれ等a−5i膜やa
−8iH膜等の形成法およびそれを実施する装置につい
てもいくつか提案されていて、真空蒸着法、イオンブレ
ーティング法、いわゆる熱CVD法、プラズマCVD法
、光CVD法等があり、中でもプラズマCVD法は至適
なものとして実用に付され、一般に広く用いられている
Conventionally, semiconductor devices, photosensitive devices for electrophotography,
For example, an amorphous material containing silicon (hereinafter simply referred to as "a-8iJ") can be used as an element member used for an image input line sensor, an imaging device, a photovoltaic element, etc.
Films or amorphous (hereinafter simply referred to as [a-5iHJ) films containing silicon hydride have been proposed, and some of them have been put into practical use. And such a
-8i film and a-5iH film as well as a-5i film and a
Several methods have been proposed for forming -8iH films, etc., and devices for implementing them, including vacuum evaporation, ion blating, so-called thermal CVD, plasma CVD, and photo-CVD, among which plasma CVD The method has been put into practical use as the optimal one and is widely used in general.

ところで前記プラズマCVD法は、直流、高周波または
マイクロ波エネルギーを利用して堆積膜形成用ガスを基
体表面の近傍で励起種化(ラジカル化)して化学的相互
作用を生起させ、該基体表面に膜堆積せしめるというも
のであり、そのための装置も各種提案されている。
By the way, the plasma CVD method utilizes direct current, high frequency, or microwave energy to excitedly species (radicalize) the deposited film-forming gas near the substrate surface to cause chemical interaction, thereby causing a chemical interaction to occur on the substrate surface. The method is to deposit a film, and various devices for this purpose have been proposed.

第2図は、従来のプラズマCVD法による堆積膜形成装
置の典型的−例を模式的に示す断面略図であって、図中
、1は反応容器全体を示し、2は反応容器の側壁を兼ね
たカソード電極であり、3は反応容器の上壁、4は反応
容器の底壁である。前記カソード電極2と、上壁3及び
底壁4とは、夫々、上鍔子5及び下碍子6で絶縁されて
いる。
FIG. 2 is a schematic cross-sectional view schematically showing a typical example of a deposited film forming apparatus using the conventional plasma CVD method. In the figure, 1 indicates the entire reaction vessel, and 2 also serves as the side wall of the reaction vessel. 3 is the upper wall of the reaction vessel, and 4 is the bottom wall of the reaction vessel. The cathode electrode 2, top wall 3, and bottom wall 4 are insulated by an upper flange 5 and a lower insulator 6, respectively.

7は反応容器内に設置された円筒状基体であり、該円筒
状基体7は接地されてアノード電極となるものである。
Reference numeral 7 denotes a cylindrical substrate placed within the reaction vessel, and the cylindrical substrate 7 is grounded and serves as an anode electrode.

円筒状基体7の中には、基体加熱用ヒーター(図示せず
)が設置されており、成膜前に基体を設定温度に加熱し
たり、成膜中に基体を設定温度に維持したり、あるいは
成膜後基体を7二−ル処理したりするのに用いる。また
、円筒状基体7は軸を介して回転駆動手段8に接続され
ており、成膜中、円筒状基体7を回転せしめる。
A heater (not shown) for heating the substrate is installed inside the cylindrical substrate 7, and is used to heat the substrate to a set temperature before film formation, maintain the substrate at the set temperature during film formation, Alternatively, it is used to subject the substrate to a 7-dil treatment after film formation. Further, the cylindrical substrate 7 is connected to a rotation drive means 8 via a shaft, and is rotated during film formation.

9は堆積膜形成用原料ガス導入管であって、基体表面に
向けて該原料ガスを放出するためのガス放出孔9aが多
数設けられており、該原料ガス導入管9の他端は、パル
プ10を介して堆積膜形成用原料ガス供給手段(図示せ
ず)に連通している。
Reference numeral 9 denotes a raw material gas introduction pipe for forming a deposited film, which is provided with a large number of gas release holes 9a for releasing the raw material gas toward the substrate surface.The other end of the raw material gas introduction pipe 9 is connected to a pulp It communicates with a source gas supply means (not shown) for forming a deposited film via 10.

11は、反応容器内を真空排気するための排気管であり
、排気バルブ12を介して真空排気装置(図示せず)に
連通している。
Reference numeral 11 denotes an exhaust pipe for evacuating the inside of the reaction vessel, and it communicates with an evacuation device (not shown) via an exhaust valve 12.

13はカソード電極2への電圧印加手段である。13 is a means for applying voltage to the cathode electrode 2;

こうした従来のプラズマCVD法による堆積膜形成装置
の操作は次のようにして行なわれる。
The operation of such a deposited film forming apparatus using the conventional plasma CVD method is performed as follows.

即ち、反応容器内のガスを、排気管10を介して真空排
気する共に、円筒状基体7を所定温度に加熱、保持し、
さらに回転駆動手段8により回転せしめる。次に、原料
ガス導入管9を介して、例えばa−8iH堆積膜を形成
する場合であれば、シラン等の原料ガスを反応容器内に
導入し、該原料ガスは、ガス導入管のガス放出孔9aか
ら基体表面・こ向けて放出される。これと同時併行的に
、電圧印加手段13から、例えば高周波をカソード電極
2と基体(アノード電極)7間ニ印加しプラズマ放電を
発生せしめる。かくして、反応容器内の原料ガスは励起
され励起種化し、Si“、SiH”等(中は励起状態を
表わす。)のラジカル粒子、電子、イオン粒子等が生成
され、それ等が相互反応して円筒状基体の表面にa−5
iHの堆積膜が形成される。
That is, the gas in the reaction container is evacuated through the exhaust pipe 10, and the cylindrical substrate 7 is heated and maintained at a predetermined temperature.
Further, it is rotated by the rotation drive means 8. Next, in the case of forming, for example, an a-8iH deposited film, a raw material gas such as silane is introduced into the reaction vessel via the raw material gas introduction pipe 9, and the raw material gas is released from the gas introduction pipe. It is released from the hole 9a toward the substrate surface. At the same time, a high frequency, for example, is applied between the cathode electrode 2 and the substrate (anode electrode) 7 from the voltage application means 13 to generate plasma discharge. In this way, the raw material gas in the reaction vessel is excited and becomes excited species, and radical particles such as Si", SiH" (the inside represents the excited state), electrons, ionic particles, etc. are generated, and these particles react with each other. a-5 on the surface of the cylindrical base
A deposited film of iH is formed.

上述の、従来のプラズマCVD法による堆積膜装置は、
至適なものとして一般に広く用いられているものではあ
るが、次のようないくつかの問題点がある。
The above-mentioned deposition film apparatus using the conventional plasma CVD method is
Although it is generally widely used as the optimal one, it has some problems as follows.

即ち、カソード電極と円筒状基体の間隔は多くの場合固
定されていることがら、発生せしめるプラズマの放電空
間は、成膜条件、例えば堆積膜形成用原料ガスの導入流
量、成膜空間内の圧力、放電電力、基体温度等によって
決定される。そのため、例えば多層構成の素子部材を製
造する場合のように、形成せしめる層ごとkここれ等の
各種成膜条件を変更した場合には、形成されろプラズマ
の放電空間が変化してしまい、時として、円筒状基体の
上部と下部において形成される膜の膜厚や膜質にムラが
生じることとなる。こうした膜厚や膜質のムラは、円筒
状基体表面付近において各種ラジカルの発生量の違いや
、ドーピング剤のドーピング効率の違いが生じるためと
考えられるが、円筒状基体の上部及び下部においても均
一な膜厚及び膜質を存する堆積層を形成しようとする場
合には、前記各種成膜茶汁がおのずと制限されてしまう
こととなり、その結果、幅広い特性を有する各種堆積膜
を、同一装置内で連続して形成することは非常に困難と
なってしまう。
That is, since the distance between the cathode electrode and the cylindrical substrate is often fixed, the discharge space for the generated plasma depends on the film forming conditions, such as the flow rate of the raw material gas for forming the deposited film, and the pressure in the film forming space. , discharge power, substrate temperature, etc. Therefore, when various film forming conditions are changed for each layer to be formed, such as when manufacturing an element member with a multilayer structure, the discharge space of the plasma that is formed changes, and over time. As a result, the thickness and quality of the film formed on the upper and lower parts of the cylindrical substrate become uneven. Such unevenness in film thickness and film quality is thought to be due to differences in the amount of various radicals generated near the surface of the cylindrical substrate and differences in doping efficiency of doping agents, but it is also possible that the unevenness in the upper and lower parts of the cylindrical substrate is uniform. When trying to form a deposited layer with different film thicknesses and film qualities, the various types of film formation methods mentioned above are naturally limited, and as a result, it is difficult to continuously deposit various films with a wide range of characteristics in the same equipment. It would be extremely difficult to form such a structure.

従来、こうした問題を解決する方法として、円筒状基体
の上下両端部に、ダミー用のドラムを配置せしめ、円筒
状基体表面に堆積膜を形成すると同時に、該ダミー用ド
ラム表面にも堆積膜を形成せしめるといった方法が採用
されている。しかし、該ダミー用ドラムを再使用するた
めには、ダミー用ドラムに形成された堆積膜を除去する
といった余分な作業を必要とするばかりでなく、使用す
る円筒状基体の大きさがおのずと制限されてしまう。
Conventionally, as a method to solve these problems, dummy drums are placed at both the upper and lower ends of a cylindrical substrate, and a deposited film is formed on the surface of the cylindrical substrate, and at the same time, a deposited film is also formed on the surface of the dummy drum. Methods such as forcing are used. However, in order to reuse the dummy drum, not only is extra work required such as removing the deposited film formed on the dummy drum, but the size of the cylindrical substrate to be used is naturally limited. I end up.

こうしたことから、プラズマCVD法は至適な方法とさ
れてはいるものの、所望の堆積膜を量産するとなると、
装置に多大の設備投資が必要となり、製造された製品を
かなりコスト高のものにしてしまう等の問題がある。
For these reasons, although the plasma CVD method is considered to be the optimal method, it is difficult to mass produce the desired deposited film.
There are problems such as requiring a large investment in equipment and making the manufactured product considerably expensive.

また、前述の各種ディバイスが多様化してきており、そ
のための素子部材として、各種幅広い特性を有する堆積
膜を形成するとともに、場合によっては大面積化された
堆積層を形成することが社会的要求としてあり、こうし
た要求を満たす堆積膜を、定常的に量産化しうる装置の
開発が切望されている。
In addition, as the various devices mentioned above have become more diverse, there is a social demand for forming deposited films with a wide variety of characteristics as element components, and in some cases, forming deposited layers with a large area. There is a strong desire to develop an apparatus that can regularly mass-produce deposited films that meet these requirements.

〔発明の目的〕[Purpose of the invention]

本発明は、光趨電力素子、半導体ディバイス、画像入力
用ラインセンサー、撮像ディバイス、電子写真用感光デ
ィバイス等に使用する堆積膜を形成する従来装置につい
て、上述の諸問題を解決し、上述の要求を満たすように
することを目的とするものである。
The present invention solves the above-mentioned problems and satisfies the above-mentioned requirements regarding conventional apparatuses for forming deposited films used in optical power devices, semiconductor devices, line sensors for image input, imaging devices, photosensitive devices for electrophotography, etc. The purpose is to satisfy the following.

すなわち本発明の主たる目的は、電気的、光学的、光導
電的特性が殆んどの使用環境に依存することなく実質的
に常時安定しており、優れた耐光疲労特性を仔し、繰返
し便用にあっても劣化現象を起こさず、優れた耐久性、
耐湿性を存し、残留電位の問題を生じない均一にして均
質な、改善された堆積膜を多量生産するためのプラズマ
CVD法による堆積膜量産装置を提供することにある。
That is, the main object of the present invention is to have electrical, optical, and photoconductive properties that are virtually always stable regardless of the usage environment, to have excellent light fatigue resistance, and to be suitable for repeated use. Excellent durability, with no deterioration phenomenon even under
It is an object of the present invention to provide a deposited film mass production apparatus using a plasma CVD method for mass producing a uniform, homogeneous and improved deposited film that has moisture resistance and does not cause the problem of residual potential.

本発明の他の目的は、形成される膜の緒特性、成膜速度
、再現性の向上及び膜品質の均一化、均質化をはかりな
がら、膜の生産性向上と共に、特に量産化を可能にし、
同時に膜の大面積化を可能にするプラズマCVD法によ
る堆積膜量産装置を提供することにある。
Another object of the present invention is to improve film productivity, particularly to enable mass production, while aiming to improve the properties, film formation speed, and reproducibility of the film formed, and to make the film quality uniform and homogeneous. ,
At the same time, it is an object of the present invention to provide an apparatus for mass-producing deposited films using a plasma CVD method, which makes it possible to increase the area of films.

〔発明の構成、効果〕[Structure and effect of the invention]

本発明者らは、従来のプラズマCVD法による堆積膜形
成装置につい【の前述の諸問題を克服して、上述の目的
を達成すべく鋭意研究を重ねた結果、円筒形基体(カソ
ード電極)の一端又は両端に、放電制御板を設けること
により、前述の諸問題が解決され、且つ上述の目的が達
成しうるという知見を得、本発明を完成するに至った。
The inventors of the present invention have conducted extensive research to overcome the aforementioned problems with conventional plasma CVD deposited film forming apparatuses and to achieve the above objectives. The present invention has been completed based on the knowledge that the above-mentioned problems can be solved and the above-mentioned objects can be achieved by providing a discharge control plate at one or both ends.

即ち、本発明のプラズマCVD法による堆積膜形成装置
は、上壁、周囲壁及び底壁で密封形成されてなる反応空
間と、該反応空間内に円筒状基体を設置する手段と、該
反応空間内に堆積膜形成用原料ガスを導入する手段と、
該原料ガスを励起させて励起種化するための放電工°庫
ルギー印加手段と、前記反応空間内を排気する手段とか
らなるプラズマCVD法による堆積膜形成装置であって
、前記円筒状基体の上方又は下方の少なくともいずれか
一方に放電制御手段を設けたことを特徴とし、好ましく
はさらに該放電制御手段を上下に移動させる手段及び/
又は該放電制御手段に電圧を印加する手段を設けてなる
プラズマCVD法による堆積膜形成装置に関する。
That is, the deposited film forming apparatus using the plasma CVD method of the present invention includes a reaction space formed in a sealed manner with an upper wall, a peripheral wall, and a bottom wall, means for installing a cylindrical substrate in the reaction space, and the reaction space. means for introducing a source gas for forming a deposited film into the
A deposited film forming apparatus using a plasma CVD method, comprising a discharge chamber energy applying means for exciting the raw material gas to form excited species, and a means for exhausting the inside of the reaction space, the apparatus comprising: The feature is that a discharge control means is provided at least either above or below, and preferably further includes means for moving the discharge control means up and down and/or.
Alternatively, the present invention relates to a deposited film forming apparatus using a plasma CVD method, which is provided with means for applying a voltage to the discharge control means.

前記構成の本発明のプラズマCVD法による堆積膜形成
装置は、円筒状基体の上方又は下方の少な°くともいず
れか一方に設けた放電制御手段即ち放電制御板によって
、発生するプラズマの放電空間を制御することができる
ため、円筒状基体の上部と下部において形成される堆積
膜の膜厚、膜質又は特性等のムラを防止することができ
る。
The deposited film forming apparatus using the plasma CVD method of the present invention having the above configuration controls the discharge space of the generated plasma by the discharge control means, that is, the discharge control plate provided at least on either the upper or lower side of the cylindrical substrate. Since this can be controlled, it is possible to prevent unevenness in the film thickness, film quality, or characteristics of the deposited film formed on the upper and lower parts of the cylindrical substrate.

即ち、本発明の装置を用いて堆積膜を形成する場合、所
望の膜厚、膜質及び緒特性を存する堆積膜を形成するべ
く、各種成膜条件を設定するとともに、該成膜条件下に
おいて、最も好ましいプラズマの放電空間が形成される
ように、前記放電制御板の位置を上下に移動させたり、
あるいはさらに該放電制御板に電圧を印加せしめて、形
成されるプラズマの放電空間の状態を制御することがで
きるものである。
That is, when forming a deposited film using the apparatus of the present invention, various film forming conditions are set in order to form a deposited film having desired film thickness, film quality, and properties, and under the film forming conditions, moving the position of the discharge control plate up and down so that the most preferable plasma discharge space is formed;
Alternatively, by further applying a voltage to the discharge control plate, the state of the discharge space of the formed plasma can be controlled.

そして、本発明の装置を用いて堆積膜を形成せしめる場
合、前述のごとくして円筒状基体の上部及び下部におけ
る堆積膜のムラを防止することができるため、従来のご
ときダミー用のドラムを用いたりする必要がなくなり、
大面積の円筒状基体上にも全面にわたって均一で均質な
堆積膜を形成できる。また、円筒状基体を複数個設置(
多段数す)シた際にも、上部及び下部において膜質及び
膜厚に差のない堆積膜を形成することができる。更に、
同一装置を用いて幅広い特性を有する各種の堆積膜を効
率的に量産することが可能となり、低コストの製品を提
供することが可能となる。
When forming a deposited film using the apparatus of the present invention, it is possible to prevent unevenness of the deposited film on the upper and lower parts of the cylindrical substrate as described above, so a conventional dummy drum is used. There is no need to
A uniform and homogeneous deposited film can be formed over the entire surface even on a large cylindrical substrate. In addition, multiple cylindrical substrates are installed (
Even when deposited in multiple stages, it is possible to form a deposited film with no difference in film quality and thickness between the upper and lower parts. Furthermore,
It becomes possible to efficiently mass-produce various deposited films having a wide range of characteristics using the same equipment, and it becomes possible to provide low-cost products.

本発明の装置により堆積膜を形成するについて使用され
る原料ガスは、高周波またはマイクロ波のエネルギーに
より励起種化し、化学的相互作用して基体表面上に所期
の堆積膜を形成する類のものであれば何れのものであっ
【も採用することができるが、例えばa−S i膜を形
成する場合であれば、具体的には、ケイ素に水素、ハロ
ゲン、あるいは炭化水素等が結合したシラン類及びハロ
ゲン化シラン類専のガス状態のもの、または容易にガス
化しうるものをガス化したものを用いることができる。
The raw material gas used to form the deposited film by the apparatus of the present invention is one that is excited and speciated by high frequency or microwave energy, and undergoes chemical interaction to form the desired deposited film on the substrate surface. For example, in the case of forming an a-Si film, silane in which hydrogen, halogen, or hydrocarbon, etc. are bonded to silicon may be used. It is possible to use gaseous materials exclusively for silanes and halogenated silanes, or gasified materials that can be easily gasified.

これらの原料ガスは1種を使用してもよく、あるいは2
種以上を併用してもよい。また、これ等の原料ガスは、
He、Ar等の不活比ガスにより稀釈して用いることも
ある。さらに、a−9i膜はpg不純物元素又はn型不
純物元素をドーピングすることが可能であり、これ等の
不純物元素を構成成分として含有する原料ガスを、単独
で、あるいは前述の原料ガスまたは/および稀釈用ガス
と混合して反応空間内に導入することができる。
These raw material gases may be used alone or in combination.
You may use more than one species in combination. In addition, these raw material gases are
It may be used after being diluted with an inert gas such as He or Ar. Furthermore, the a-9i film can be doped with a pg impurity element or an n-type impurity element, and a source gas containing these impurity elements as a constituent may be used alone or with the aforementioned source gas or/and It can be mixed with a diluent gas and introduced into the reaction space.

また基体については、導電性のものであっても、半導電
性のものであっても、あるいは電気絶縁性のものであっ
てもよく、具体的には金属、セラミックス、ガラス等が
挙げられる。そして成膜操作時の基体温度は、特に制限
されないが、30〜450℃の範囲とするのが一般的で
あり、好ましくは50〜350℃である。
The substrate may be conductive, semiconductive, or electrically insulating, and specific examples thereof include metal, ceramics, glass, and the like. The substrate temperature during the film forming operation is not particularly limited, but is generally in the range of 30 to 450°C, preferably 50 to 350°C.

また、堆積膜を形成するにあたっては、本発明の装置の
反応空間内を減圧条件下におくのが好ましいが、常圧条
件でも勿論よく、場合によっては加圧条件下におくこと
もできる。減圧下において堆積膜を形成する場合、原料
ガスを導入する前に反応空間内の圧力を5X10″″’
 Torr以下、好ましくはI X 10” Torr
以下とし、原料ガスを導入した時には反応空間内の圧力
を1X I F” 〜I Torr 、好ましくは5×
10″″1〜I Torrとするのが望ましい。
Further, in forming a deposited film, it is preferable to place the inside of the reaction space of the apparatus of the present invention under reduced pressure conditions, but of course it may be placed under normal pressure conditions, and depending on the case, it may also be placed under pressurized conditions. When forming a deposited film under reduced pressure, the pressure in the reaction space is reduced to 5X10'''' before introducing the raw material gas.
Torr or less, preferably I x 10” Torr
When the raw material gas is introduced, the pressure in the reaction space is 1X IF” to I Torr, preferably 5×
It is desirable to set it as 10''1 to I Torr.

〔実施例〕〔Example〕

以下、本発明の装置の実施例を図示し、それにより本発
明について詳しく説明するが、本発明は実施例により限
定されるものではない。
Hereinafter, embodiments of the apparatus of the present invention will be illustrated and the present invention will be explained in detail using the drawings, but the present invention is not limited to the embodiments.

第1図は、本発明の装置の典型的な一例を模式的に示す
断面略図である。
FIG. 1 is a schematic cross-sectional view schematically showing a typical example of the device of the present invention.

図中、前述の第2図と共通符号は、第2図におい【説明
と同一のものを示す。即ち、1は反応容器、2はカソー
ド電極、3は上壁、4は底壁、5は上碍子、6は下碍子
、7は円筒状基体、8は回転駆動手段、9はガス導入管
、9aはガス放出孔、10はパルプ、11は排気管、1
2は排気パルプ、13は電圧印加手段を夫々示している
In the figure, the same reference numerals as in the above-mentioned FIG. That is, 1 is a reaction vessel, 2 is a cathode electrode, 3 is an upper wall, 4 is a bottom wall, 5 is an upper insulator, 6 is a lower insulator, 7 is a cylindrical base, 8 is a rotational drive means, 9 is a gas introduction pipe, 9a is a gas discharge hole, 10 is pulp, 11 is an exhaust pipe, 1
Reference numeral 2 indicates an exhaust pulp, and reference numeral 13 indicates a voltage application means.

14は、円筒状基体の上方に設置された放心制御板であ
り、軸を介して、上下駆動手段15に接続されていて、
円筒状基体゛lの上端部と放電制御板14との距離が自
由に選択できるようにされている。また、16は、該放
電制御板に電圧を印加する手段である。該電圧印加手段
16と放電制御板14とはスイッチ17を介して接続さ
れており、スイッチ17の切り換えによって、放電制御
板に電圧を印加することもできるし、あるいは放電制御
板を接地することもできるようをこされている。該放電
制御板は、導電性のものであっても、または導電性材料
に絶総性材料によるコーティングを施したものであって
も、あるいはテフロン、セラミック等の絶縁性のもので
あってもよい。更にその形状は、平板であっても、ある
いは網目板であってもよい。
14 is an eccentric control plate installed above the cylindrical base, and is connected to the vertical drive means 15 via a shaft,
The distance between the upper end of the cylindrical base 1 and the discharge control plate 14 can be freely selected. Further, 16 is a means for applying a voltage to the discharge control board. The voltage applying means 16 and the discharge control board 14 are connected through a switch 17, and by switching the switch 17, a voltage can be applied to the discharge control board or the discharge control board can be grounded. They are doing everything they can. The discharge control board may be conductive, or may be made of a conductive material coated with an absolute material, or may be made of an insulating material such as Teflon or ceramic. . Further, its shape may be a flat plate or a mesh plate.

本実施例においてはAノ製の円板を用いた。18は上く
に設けた碍子である。
In this example, a disk manufactured by A was used. 18 is an insulator placed at the top.

本実施例をこおいては、円面状基本の上方に放電制御板
を設置したが、円面状基体の下方にも同様の放電制御板
を設けてもよい。
In this embodiment, a discharge control plate is provided above the circular base, but a similar discharge control plate may be provided below the circular base.

宋A且] 第1図に示した装置を用いて、以下のようにして電子写
真用光受容部材を製造した。
Song A] Using the apparatus shown in FIG. 1, an electrophotographic light-receiving member was manufactured in the following manner.

本実施例においては、円筒状のAl支持体(径80zi
a)として、上部(120℃m)中央(357m)及び
下部(123mg)の3つの部分に分けたものを用いた
In this example, a cylindrical Al support (diameter 80zi
As a), a sample was used which was divided into three parts: an upper part (120° C.m), a middle part (357 m), and a lower part (123 mg).

まず、堆積膜形成用原料ガス倶給手段(図示せず)の元
栓をすべて閉じ、バルブ10.12を開け、排気装置(
図示せず)により反応容器内を10−’ Torrまで
減圧した。それと同時に基体加熱用ヒーター(図示せず
)によす、Al支持体106を250℃まで加熱し、2
50 ’Cで一定に保った。また、回転駆動手段8を駆
動して、Al支持体を回転させた。
First, all the main valves of the raw material gas supply means (not shown) for deposited film formation are closed, valves 10 and 12 are opened, and the exhaust device (
(not shown), the pressure inside the reaction vessel was reduced to 10-' Torr. At the same time, the Al support 106 is heated to 250°C using a substrate heating heater (not shown).
The temperature was kept constant at 50'C. Further, the rotation drive means 8 was driven to rotate the Al support.

こうしたところへ、まずガス導入管9より重荷注入阻止
層形成用の原料ガスを導入し、反応容器内が0,2 T
orrとなるようにバルブ12をv4整した。反応容器
内が0.2 Torrで安定したところで、電圧印加手
段14から高周波電力(13,56MH! )  15
0 Wを印加してカソード電極2とAl支持体7の間に
グロー放電を生じさせ、a−Si:H:Bからなる電荷
注入阻止層を形成せしめた。この際、放電制御板15は
接地しておき、Al支持体の上端部との距離を60m5
とした。
First, the raw material gas for forming the heavy injection blocking layer is introduced from the gas introduction pipe 9 to these places, and the inside of the reaction vessel is set to 0.2 T.
Valve 12 was adjusted to V4 so that it was orr. When the inside of the reaction vessel stabilized at 0.2 Torr, high frequency power (13.56MH!) 15 was applied from the voltage application means 14.
A glow discharge was generated between the cathode electrode 2 and the Al support 7 by applying 0 W to form a charge injection blocking layer made of a-Si:H:B. At this time, the discharge control board 15 is grounded, and the distance from the upper end of the Al support is 60m5.
And so.

次に、原料ガスの組成を感光層形成用に変更するととも
に、印加電力をaoow、放電制御板とAl支持体の上
端部との距離を120 mとした以外は、前述と同様に
して、a−9i:Hからなる感光層を形成した。
Next, a process was carried out in the same manner as described above, except that the composition of the raw material gas was changed to one for forming the photosensitive layer, the applied power was aoow, and the distance between the discharge control plate and the upper end of the Al support was 120 m. A photosensitive layer consisting of -9i:H was formed.

最後に、原料ガスの組成を表面層形成用に変更し、印加
電力を150Wとし、放電制御板とAj支持体の上端部
との距離を150 mとした以外は、前述と同様にして
a−8i:C(H)からなる表面層を形成した。
Finally, a- 8i: A surface layer made of C(H) was formed.

各層形成用の原料ガスの流量又は流量比を下こうして各
層の形成が終了したところで、放電、基体の加熱、回転
駆動を中止し、Al支持体を放冷したところで、反応容
器からAl支持体をとり出した。
When the flow rate or flow rate ratio of the raw material gas for forming each layer is lowered, and the formation of each layer is completed, the discharge, heating of the substrate, and rotational driving are stopped, and the Al support is allowed to cool, and the Al support is removed from the reaction vessel. I took it out.

上部、中央部及び下部のAl支持体の各々を二ついて、
形成された各層のj3厚及び暗電位、1μmあたりの暗
電位の夫々を測定した。その結果を下記の表2に示す。
Two of each of the upper, middle and lower Al supports are provided,
The j3 thickness, dark potential, and dark potential per 1 μm of each layer formed were measured. The results are shown in Table 2 below.

この表から明らかなごとく、電荷注入阻止層、感光層及
び表面層の膜厚は、上部Al支持体、中央部Al支持体
及び下部Al支持体のいずれも殆んど差がなく、膜質に
ついても上下ムラは殆んどなく (1μm当りの暗電位
の差0.5 V/μm)、暗電位の上下ムラも実質上な
かった。(SV以内) なお、暗電位は、キャノン製デジタル複写機N P 9
030を用い、−次帯電のコロナ電圧+7.5kVのと
きの暗部表面電位を現1象器の位置で測定したものであ
る。
As is clear from this table, there is almost no difference in the thickness of the charge injection blocking layer, photosensitive layer, and surface layer among the upper Al support, central Al support, and lower Al support, and the film quality is also There was almost no vertical unevenness (difference in dark potential per 1 μm: 0.5 V/μm), and there was virtually no vertical unevenness in dark potential. (Within SV) The dark potential is measured using Canon's digital copier NP9.
030, the dark area surface potential was measured at the position of the imager when the corona voltage of −order charging was +7.5 kV.

比較例 第2図をこ示す装置、即ち放電制御板を設けていない従
来装置を用いた以外はすべて実施例1と同じ茶汁で、 
Al支持体上に電荷注入阻止層、感光層及び表面層を形
成した。
Comparative Example The same tea juice as in Example 1 was used except that the device shown in FIG. 2, that is, the conventional device without a discharge control board was used.
A charge injection blocking layer, a photosensitive layer and a surface layer were formed on an Al support.

得られた電子写真用光受容部材について、実施例工と同
様の評価を行なった。その結果を下記の表3に示す。
The obtained light-receiving member for electrophotography was evaluated in the same manner as in the example. The results are shown in Table 3 below.

表3から明らかなごとく、電荷注入阻止層の膜厚は均一
であったが、感光層及び表面層が、上部で厚くなった。
As is clear from Table 3, the thickness of the charge injection blocking layer was uniform, but the photosensitive layer and surface layer were thicker at the top.

また膜質については、下部の方が1μmあたりの暗電位
が高く、膜質はよいが、暗電圧の上下ムラが生じた。
Regarding the film quality, the dark potential per 1 μm was higher in the lower part, and although the film quality was good, there was vertical unevenness in dark voltage.

実施例2 放電制御板15とAI支持体の上端部との距離を120
fiに固定した以外はすべて実施例1と同様にして、電
子写真用光受容部材を形成した。
Example 2 The distance between the discharge control plate 15 and the upper end of the AI support is 120
An electrophotographic light-receiving member was formed in the same manner as in Example 1 except that fi was fixed.

各層の膜厚は下記の表4に示すとおりであった。The thickness of each layer was as shown in Table 4 below.

次に電荷注入阻止層を形成時、電圧印加手段に高周波2
0Wを印加した。この場合における電荷注入阻止層の膜
厚は、上部、中央部及び下部支持体のいずれも5μとな
っていた。
Next, when forming a charge injection blocking layer, a high frequency 2
0W was applied. The thickness of the charge injection blocking layer in this case was 5 μm in all of the upper, central and lower supports.

このことから明らかなごとく、放電制御板の上下移動を
行なわなくとも、放電制御板に高周波等を印加するだけ
で、上下の膜厚ムラを効率的に防止することができる。
As is clear from this, it is possible to effectively prevent vertical film thickness unevenness by simply applying high frequency waves or the like to the discharge control plate without moving the discharge control plate up and down.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の装置の典型的−例を模式的に示す断
面略図であり、第2図は、従来のプラズマCVO法によ
る堆積膜形成装置の典型的−例を模式的に示す断面略図
である。 第1.2図について、 1・・・反応容器、2・・・カソード電極を兼ねた周囲
壁、3・・・上壁、4・・・底壁、5・・・上鍔子、6
・・・下碍子、7・・・円筒状支持体、8・・・回転駆
動手段、9・・・ガス導入管、9a・・・ガス放出口、
10・・・バルブ、11・・・排気管、12・・・排気
バルブ、13゜16・・・4王印加手段、14・・・放
電制御板、15・・・上下駆動手段、17・・・スイッ
チ、18・・・碍子。
FIG. 1 is a schematic cross-sectional view schematically showing a typical example of the apparatus of the present invention, and FIG. 2 is a cross-sectional view schematically showing a typical example of a deposited film forming apparatus using the conventional plasma CVO method. This is a schematic diagram. Regarding Figure 1.2, 1... Reaction vessel, 2... Surrounding wall that also serves as a cathode electrode, 3... Top wall, 4... Bottom wall, 5... Upper tsuba, 6
. . . Lower insulator, 7. Cylindrical support, 8. Rotation drive means, 9. Gas introduction pipe, 9a. Gas discharge port.
DESCRIPTION OF SYMBOLS 10... Valve, 11... Exhaust pipe, 12... Exhaust valve, 13° 16... 4-way applying means, 14... Discharge control board, 15... Vertical drive means, 17...・Switch, 18...Insulator.

Claims (3)

【特許請求の範囲】[Claims] (1)上壁、周囲壁及び底壁で密封形成されてなる反応
空間と、該反応空間内に円筒状基体を設置する手段と、
該反応空間内に堆積膜形成用原料ガスを導入する手段と
、該原料ガスを励起させて励起種化するための放電エネ
ルギー印加手段と、前記反応空間内を排気する手段とか
らなるプラズマCVD法による堆積膜形成装置であって
、前記円筒状基体の上方又は下方の少なくともいずれか
一方に放電制御手段を設けたことを特徴とするプラズマ
CVD法による堆積膜形成装置。
(1) a reaction space formed in a sealed manner by a top wall, a peripheral wall, and a bottom wall, and means for installing a cylindrical substrate within the reaction space;
A plasma CVD method comprising means for introducing a source gas for forming a deposited film into the reaction space, means for applying discharge energy to excite the source gas to form excited species, and means for exhausting the inside of the reaction space. A deposited film forming apparatus using a plasma CVD method, characterized in that a discharge control means is provided above or below the cylindrical substrate.
(2)前記放電制御手段が、上下に移動する放電制御板
である、特許請求の範囲第(1)項に記載されたプラズ
マCVD法による堆積膜形成装置。
(2) A deposited film forming apparatus using a plasma CVD method according to claim (1), wherein the discharge control means is a discharge control plate that moves up and down.
(3)前記放電制御手段に電圧を印加する手段が設けら
れている特許請求の範囲第(1)項に記載されたプラズ
マCVD法による堆積膜形成装置。
(3) A deposited film forming apparatus using a plasma CVD method according to claim (1), further comprising means for applying a voltage to the discharge control means.
JP61038259A 1986-02-25 1986-02-25 Device for forming deposited film by plasma chemical vapor deposition method Pending JPS62196377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038259A JPS62196377A (en) 1986-02-25 1986-02-25 Device for forming deposited film by plasma chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038259A JPS62196377A (en) 1986-02-25 1986-02-25 Device for forming deposited film by plasma chemical vapor deposition method

Publications (1)

Publication Number Publication Date
JPS62196377A true JPS62196377A (en) 1987-08-29

Family

ID=12520317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038259A Pending JPS62196377A (en) 1986-02-25 1986-02-25 Device for forming deposited film by plasma chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPS62196377A (en)

Similar Documents

Publication Publication Date Title
US4897284A (en) Process for forming a deposited film on each of a plurality of substrates by way of microwave plasma chemical vapor deposition method
JPS6314875A (en) Functional deposited film forming device by plasma chemical vapor deposition method
JPS6137354B2 (en)
JPS6010618A (en) Plasma cvd apparatus
JPS5933251B2 (en) Plasma vapor phase processing equipment
JPS62196377A (en) Device for forming deposited film by plasma chemical vapor deposition method
JP3513206B2 (en) Method and apparatus for forming deposited film
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPS62142783A (en) Deposited film forming device by plasma cvd method
JP2553330B2 (en) Functional deposition film forming apparatus by plasma CVD
JPH01100275A (en) Functional deposit film-forming apparatus by microwave plasma cvd method
JP2620782B2 (en) Deposition film forming apparatus by plasma CVD method
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JPS637373A (en) Deposited film forming device by plasma cvd method
JPS6086277A (en) Formation of deposited film by discharge
JPS6153432B2 (en)
JPS6010617A (en) Substrate heating method in plasma cvd apparatus
JPS62224678A (en) Device for forming deposited film by plasma cvd method
JPS62151571A (en) Deposited film forming device
JPS62218573A (en) Device for forming deposited film by plasma cvd method
JPS6013074A (en) Plasma cvd device
JPS62224679A (en) Apparatus for forming deposited film by plasma cvd method
JPS62294180A (en) Device for forming deposited film by plasma cvd
JPH01156476A (en) Deposit film-forming apparatus
JPS62214182A (en) Deposited film forming device by plasma cvd method