JPS6010617A - Substrate heating method in plasma cvd apparatus - Google Patents

Substrate heating method in plasma cvd apparatus

Info

Publication number
JPS6010617A
JPS6010617A JP58116841A JP11684183A JPS6010617A JP S6010617 A JPS6010617 A JP S6010617A JP 58116841 A JP58116841 A JP 58116841A JP 11684183 A JP11684183 A JP 11684183A JP S6010617 A JPS6010617 A JP S6010617A
Authority
JP
Japan
Prior art keywords
substrate
film
temperature
gas
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58116841A
Other languages
Japanese (ja)
Inventor
Yasutomo Fujiyama
藤山 靖朋
Osamu Kamiya
神谷 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58116841A priority Critical patent/JPS6010617A/en
Publication of JPS6010617A publication Critical patent/JPS6010617A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To eliminate a heating mechanism and form an a-Si film steadily by maintaining a temperature of a substrate using an energy of a plasma discharge during the formation of the a-Si film. CONSTITUTION:A cylindrical wall 1, a circular top wall 4a and a bottom wall 4b are insulated by insulators 3a, 3b and a reaction chamber wall is composed of these walls 1, 4a, 4b. A cylindrical substrate 2 is put on a rotary mechanism 9 and fixed to it. A material gas is introduced through pipes 6. A high frequency power is applied to a cathode by a high frequency source 5 to generate a plasma discharge between the electrode 1 and the substrate 2. The material gas is decomposed and an a-Si film is formed on the surface of the substrate 2.

Description

【発明の詳細な説明】 Vapor Deposition )における基体加
熱方法、特にジシラン( Si2I」−a )ガス以上
の高次シランガス全導入し、高周波電源によシプラズマ
放電を発生させ、基体上に例えばアモルファスシリコン
、窒化シリコン、炭化シリコン等を成膜するプラズマ圃
装置における基体加熱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A substrate heating method in Vapor Deposition, in particular, a high-order silane gas higher than disilane (Si2I'-a) gas is completely introduced, a Si plasma discharge is generated by a high frequency power source, and amorphous silicon, for example, is deposited on the substrate. The present invention relates to a method of heating a substrate in a plasma field apparatus for forming films of silicon nitride, silicon carbide, etc.

近年例えばアモルファスシリコン(以下a−Siという
。)の薄膜形成法として、プラズマCVD法が注目され
ている。この方法は、反応室を高真空に減圧し、ジシラ
ン( Si2f(、 )ガス等の高次シランガス等の原
料ガスを含む膜形成用のガスを反応室に供給した後、プ
ラズマ放電により原料ガスを分解し、反応室内に配置さ
れたアルミニウム等の基板上にa−Si膜を成膜するも
のである。
In recent years, plasma CVD has attracted attention as a method for forming thin films of amorphous silicon (hereinafter referred to as a-Si). In this method, the reaction chamber is depressurized to a high vacuum, and a film-forming gas containing a raw material gas such as a higher-order silane gas such as disilane (Si2f (, ) gas) is supplied to the reaction chamber, and then the raw material gas is removed by plasma discharge. It is decomposed and an a-Si film is formed on a substrate made of aluminum or the like placed in a reaction chamber.

従来この種の装置は、第1図1C示すごと(、基体回転
機構9上に載置された円筒状の基体2の内部に、基体加
熱体であるシーズヒータ8を配置し、基体2を設定の温
度に高めた後、高周波電源5に接続されたカソード電極
1(真空槽壁を兼ねている。)と、基体2(アノート電
極となる。)と間にプラズマ放電を発生せしめ、基体2
の表面にa−81層の成膜を行なっている。なお、11
は、基体2の温度モニタ用の熱電対である。この加熱は
、基体2上に安定したa−Si層を成膜するために、基
体2全高温度(例えば250℃)に維持するために必要
である。
Conventionally, this type of device has been constructed as shown in FIG. After raising the temperature to , a plasma discharge is generated between the cathode electrode 1 (which also serves as the wall of the vacuum chamber) connected to the high frequency power source 5 and the substrate 2 (which becomes the anoto electrode), and the substrate 2
An a-81 layer is formed on the surface of the substrate. In addition, 11
is a thermocouple for monitoring the temperature of the base 2. This heating is necessary to maintain the entire substrate 2 at a high temperature (for example, 250° C.) in order to form a stable a-Si layer on the substrate 2.

上記のように、従来のプラズマCVD装置においては、
シーズヒータ等の加熱体2を、基体の成膜面とは反対側
の面に接触させたり、または近傍(第1図では円筒形の
基体2の内部)に配置して基体2全体を加熱し、更にこ
の加熱された温度を維持している。
As mentioned above, in conventional plasma CVD equipment,
A heating element 2 such as a sheathed heater is brought into contact with the surface of the substrate opposite to the film-forming surface, or placed nearby (inside the cylindrical substrate 2 in FIG. 1) to heat the entire substrate 2. , further maintaining this heated temperature.

一方、a−8i成膜時において、ジンラノガス等の原料
ガス全供給する場合、気体温度はガスの分解・発火防止
等の観点から通常室温程度の低温にて反応室内に導入さ
れるのが一般的であり、このため、a−8i膜の成膜に
適した高温度に加熱・保持された基体2の表面に低温度
の原料ガスが吹き伺けられると、基体2の表面は冷却さ
れてしまい設定温度を維持できない。
On the other hand, when forming a-8i film, when all raw material gases such as Jinrano gas are supplied, the gas temperature is generally introduced into the reaction chamber at a low temperature around room temperature from the viewpoint of preventing gas decomposition and ignition. Therefore, when low temperature source gas is blown onto the surface of the substrate 2 which has been heated and held at a high temperature suitable for forming the a-8i film, the surface of the substrate 2 is cooled down. Unable to maintain set temperature.

しかるに、従来例のごとき加熱方法で、基体表面の温度
の降下をモニターするためには、基体全体が同一温度に
なるまでまたなければならず、捷た基体2の力n熱面と
成膜面が同一でないため、温度モニタ11に応答時間の
遅れが生じ、従って基体2の表面(成膜面)の温度制御
が不正確となり、成膜されるa−8i膜の電気特性の低
下をまねく欠点がある。
However, in order to monitor the drop in temperature on the surface of the substrate using the conventional heating method, it is necessary to wait until the entire substrate reaches the same temperature, and the force n of the heated surface and the film-forming surface of the broken substrate 2 must be Since these are not the same, there is a delay in the response time of the temperature monitor 11, resulting in inaccurate temperature control of the surface (film forming surface) of the substrate 2, which leads to a decrease in the electrical properties of the a-8i film being formed. There is.

本発明は、上述従来例のように加熱ヒーターによる基体
加熱に供なう装置構成上の複雑さと、温度制御の不正確
さとを除去し、aS+連続成膜装置における基体の加熱
方法を大幅に簡素化すると同時に、原料ガス供給に供な
う基体表面の温度降下に対し、その温度維持に迅速に対
応し、基体をa−81膜の成膜に適した温度に保持し、
電気特性の安定したa S+膜の形成を可能ならしめる
ことを目的とする。
The present invention eliminates the complexity of the equipment configuration and the inaccuracy of temperature control associated with heating the substrate using a heating heater as in the conventional example described above, and greatly simplifies the heating method of the substrate in the aS+ continuous film forming apparatus. At the same time, it quickly responds to the temperature drop on the surface of the substrate used for raw material gas supply and maintains the substrate at a temperature suitable for forming the A-81 film.
The purpose is to make it possible to form an aS+ film with stable electrical properties.

本発明は、」二重目的全達成するためにa−8i成膜時
に発生させるプラズマ放電のエネルギーを用いて基体全
加熱し、原料ガス導入による基体の温度を維持、又は温
度降下を防止する。
The present invention achieves the dual purpose of heating the entire substrate using plasma discharge energy generated during A-8I film formation, and maintaining the temperature of the substrate or preventing temperature drop due to the introduction of source gas.

以下図面全参照して本発明の一実施例を説明する。第2
図は、本発明に係るプラズマCVD装置穐 の側面断面図であって、第1図の装置と同一の部材には
同じ参照番号を附しである。円筒状壁1、円形の上壁4
a及び円筒状の下壁4bは、それぞれ円環状の絶縁ガイ
シ3a 、3bによシミ気的に絶縁されて結合されてお
シ、この壁1 、4 a 、 4bにより装置の反応室
壁を構成する。円筒状壁1は、高周波電力を供給するた
めの電源5に接続されてカソード電極として作用する。
An embodiment of the present invention will be described below with reference to all the drawings. Second
The figure is a side sectional view of a plasma CVD apparatus according to the present invention, in which the same members as in the apparatus of FIG. 1 are given the same reference numerals. Cylindrical wall 1, circular upper wall 4
a and the cylindrical lower wall 4b are connected to annular insulating insulators 3a and 3b, respectively, in a gaseously insulated manner, and these walls 1, 4a, and 4b constitute the reaction chamber wall of the apparatus. do. The cylindrical wall 1 is connected to a power source 5 for supplying high frequency power and acts as a cathode electrode.

下壁4bの底部中央には、アルミニウム等の円筒状の基
体2全載置、固定して回転するための回転機構9が設け
られ、この回転機構9ば、装置の作動中すなわち後述す
る原料ガスの反応中、基体2と共に回転し、基体2の表
面に形成される薄膜(a−8i膜)を均一にするための
ものである。基体2は、回転機構9を介して電気的に接
地10され、アノード電極として作用する。また反応室
壁の上壁4a及び下壁4bも同様に電気的に接地10さ
れている。6は、原料ガス(ジシランガス)を供給する
ための石英バイブであり、基体2の表面に原料ガスが均
等に供給されるように、基体2を包囲するように配置さ
れている。7ば、反応室の下壁4bの下方に配置されて
、反応室を真空に維持するための排気系である。
At the center of the bottom of the lower wall 4b, there is provided a rotation mechanism 9 on which a cylindrical base 2 made of aluminum or the like is entirely mounted, fixed and rotated. During the reaction, it rotates together with the substrate 2 to make the thin film (a-8i film) formed on the surface of the substrate 2 uniform. The base body 2 is electrically grounded 10 via a rotating mechanism 9 and acts as an anode electrode. Further, the upper wall 4a and lower wall 4b of the reaction chamber wall are similarly electrically grounded 10. Reference numeral 6 denotes a quartz vibrator for supplying raw material gas (disilane gas), and is arranged to surround the base body 2 so that the raw material gas is evenly supplied to the surface of the base body 2. 7 is an exhaust system disposed below the lower wall 4b of the reaction chamber to maintain the reaction chamber in vacuum.

上記実施例の装置の作動全説明すると、まず円筒形の基
体2は、不図示の真空槽内においてa−8i成膜に必要
な温度に加熱される。この場合の加熱手段は、シーズヒ
ータ、平板状のパネルヒータ、ハロゲンランプを用いた
赤外線ヒータ等の公知のものであってよい。上記の基体
加熱用の真空槽は、第2図の装置が配置された別の真空
槽(不図示)にゲート(不図示)を介して接している。
To explain the entire operation of the apparatus of the above embodiment, first, the cylindrical substrate 2 is heated in a vacuum chamber (not shown) to a temperature necessary for forming the a-8i film. The heating means in this case may be any known one, such as a sheathed heater, a flat panel heater, or an infrared heater using a halogen lamp. The above vacuum chamber for heating the substrate is in contact with another vacuum chamber (not shown) in which the apparatus shown in FIG. 2 is arranged via a gate (not shown).

このCVD装置用の真空槽及び装置の反応室は予め真空
状態に維持される。
The vacuum chamber for this CVD apparatus and the reaction chamber of the apparatus are maintained in a vacuum state in advance.

上記の加熱された基体2は、ゲートが開けられて加熱用
真空槽から装置用真空槽に搬入される。
The heated substrate 2 is transported from the heating vacuum chamber to the apparatus vacuum chamber with the gate opened.

次いで基体2は、装置の反応室の例えば上壁4aが開け
られ、回転機構9上に載置、固定される。
Next, for example, the upper wall 4a of the reaction chamber of the apparatus is opened, and the substrate 2 is placed and fixed on the rotation mechanism 9.

この後ゲート及び上壁4aが閉じられ、反応室は排気系
7のみにより真空状態に維持される。この後回転機構9
はその軸方向に回転され、同時に接地10され、次いで
バイブロから室温の原料ガスすなわちジシラン(Si 
2 l−l6)ガスが導入される。
Thereafter, the gate and upper wall 4a are closed, and the reaction chamber is maintained in a vacuum state only by the exhaust system 7. After this rotation mechanism 9
is rotated in its axial direction and grounded 10 at the same time, and then a raw material gas at room temperature, i.e., disilane (Si
2 l-l6) Gas is introduced.

このジシランガス導入時には、反応室に、10−2〜]
、 0” Torrの真空度に維持される。原料ガスと
しテハ、””2r16+ 5isHs + ・’$ノM
次シラ7 i スカ望丑しく、モノ7ラン(S i f
l、 )ガスは望址しくない。なぜならばモノシランガ
スは、高投入電力密度のもとでは、ガスの分解効率が低
下するため高次シラ7のように高密度のプラズマを印加
することができない。このためプラズマ放電により温度
が下がり、従って力ロ熱された基体2を冷却するからで
ある。
When introducing this disilane gas, 10-2~]
, maintained at a vacuum level of 0" Torr. The raw material gas is 2r16+5isHs+・'$ノM
Next Shira 7 i Ska Despicable, Mono 7 Run (S i f
l, ) The gas is not promising. This is because when monosilane gas is used at a high input power density, the decomposition efficiency of the gas decreases, so that high-density plasma cannot be applied as in the case of the high-order silane 7. This is because the plasma discharge lowers the temperature, thereby cooling the base 2 which has been heated up.

反応室内にジシランガスが供給されると、円筒状壁すな
わちカソード電極1に、高周波電源5によ’) 13.
56 MHzの高周波電力が印加され、反応室内特にカ
ソード電極1とアノード電極である基体2との間にプラ
ズマ放電が発生し、ジシランガスが分解し、従って基体
2の表面にa−8i膜が形成される。
When disilane gas is supplied into the reaction chamber, a high frequency power source 5 is applied to the cylindrical wall, that is, the cathode electrode 1.13.
A high frequency power of 56 MHz is applied, and a plasma discharge is generated in the reaction chamber, particularly between the cathode electrode 1 and the substrate 2, which is the anode electrode, and the disilane gas is decomposed, so that an a-8i film is formed on the surface of the substrate 2. Ru.

上記のa−8i成膜時の投入高周波電力は、基体2の表
面温度の維持に必要な値に設定してあり、本実施例にお
いて0.12 w/caから0.17 wA4の投入電
力密度で設定温度の維持が可能であった。
The input high-frequency power during the above a-8i film formation is set to a value necessary to maintain the surface temperature of the substrate 2, and in this example, the input power density is from 0.12 w/ca to 0.17 wA4. It was possible to maintain the set temperature.

この時、a−8i膜の堆積速度は投入電力に比例し、3
0λ/ secから5 OA /secの領域であった
At this time, the deposition rate of the a-8i film is proportional to the input power, and 3
The range was from 0λ/sec to 5 OA/sec.

基体がプラズマ放電によって加熱されるのは、プラズマ
中で発生した電子やマイナス・イオン、さらには高エネ
ルギーに励起された中性ラジカル粒子などが基体全衡撃
することによって、粒子が持つ運動エネルギーが基体表
面で熱エネルギーに変換されるものと考えられる。
The substrate is heated by plasma discharge because electrons and negative ions generated in the plasma, as well as neutral radical particles excited with high energy, collide with the substrate, and the kinetic energy of the particles is released. It is thought that this is converted into thermal energy on the surface of the substrate.

上記の如く、室温で導入されるジシランガスにより冷却
される基体2(予め加熱されている。)の而と、プラズ
マ放電により加熱される基体2の面とが同一であるので
、ジシランガスによる冷却の影響が無く、基体20表面
の温度を一定に維持することが可能となる。
As mentioned above, since the surface of the substrate 2 (previously heated) cooled by the disilane gas introduced at room temperature is the same as the surface of the substrate 2 heated by the plasma discharge, the effect of cooling by the disilane gas is This makes it possible to maintain the temperature of the surface of the base 20 constant.

上記実施例でに、基体を室温から成膜に必要な温度まで
加熱するために、反応室と独立した予備加熱室を設けた
が、反応室のみしか持ち得ないような・・ツチ式装置に
おいては、成膜前に室温状態 1にある基体を反応室内
に配置し、真空中の反応室にヘリウム(He )ガスや
アルゴン(Ar)ガス等の不活性ガスを導入し、高い高
周波電力を印加してプラズマ放電を起し、第2図の実施
例と同様の原理にて加熱し、所望の温度に寸で高めた後
、ジシランガスを導入し、a−8i膜を成膜することも
可能である。この場合、装置の構成は第2図の装置と同
様のものとなる。
In the above example, a preheating chamber independent of the reaction chamber was provided in order to heat the substrate from room temperature to the temperature required for film formation. Before film formation, the substrate at room temperature 1 is placed in a reaction chamber, an inert gas such as helium (He) gas or argon (Ar) gas is introduced into the reaction chamber in vacuum, and high high-frequency power is applied. It is also possible to generate a plasma discharge, heat it according to the same principle as the embodiment shown in Fig. 2, raise it to the desired temperature by a few steps, and then introduce disilane gas to form an a-8i film. be. In this case, the configuration of the device will be similar to that of the device shown in FIG.

以上説明したように、a−8i成膜中のプラズマ放電の
エネルギーを用いて基体の温度維持を行なうことによっ
て、従来例のごとき加熱機構を必要とせず、反応室の構
造を簡素化できる利点があシ、−また、加熱機構を供な
わないため、基体の搬送等の移動機構の構成形態を自由
に選択できるなどの利点がある。
As explained above, by maintaining the temperature of the substrate using the energy of plasma discharge during a-8i film formation, there is no need for a heating mechanism like in the conventional example, and there is an advantage that the structure of the reaction chamber can be simplified. Furthermore, since no heating mechanism is provided, there is an advantage that the configuration of the moving mechanism for conveying the substrate etc. can be freely selected.

さらに、プラズマにさらされる基体の表面、すなわち基
体が加熱される面と、a−8iが堆積する基体の面が同
一であることから、導入ガスによる基体温度の降下の影
響を受け離く、a−8i膜の安定成膜を達成するのに効
果がある。
Furthermore, since the surface of the substrate exposed to plasma, that is, the surface on which the substrate is heated, and the surface of the substrate on which a-8i is deposited are the same, a This is effective in achieving stable film formation of -8i film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のプラズマCVD装置の側面断面図、第
2図は、本発明に係る一実施例の側面断面図である。 1 ・円筒状壁(カソード電極) 2・・・基体(アノード電極) 6・・原料ガス供給バイブ 特許出願人 キャノン株式会社
FIG. 1 is a side sectional view of a conventional plasma CVD apparatus, and FIG. 2 is a side sectional view of one embodiment of the present invention. 1. Cylindrical wall (cathode electrode) 2. Base (anode electrode) 6. Raw material gas supply vibrator patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 少なくともジシラン(5i2H6)ガス以上の高次シラ
ンガスを含む膜形成用のガスのプラズマを形成して基体
上にアモルファスシリコン膜を形成するプラズマCVD
装置における基体加熱方法において、 前記プラズマによシ前記基体を加熱して、前記基体の温
度維持、又は温度降下防止を行なうことを特徴とするプ
ラズマCVD装置における基体加熱方法。
[Claims] Plasma CVD that forms an amorphous silicon film on a substrate by forming a plasma of a film-forming gas containing at least a higher order silane gas than disilane (5i2H6) gas.
A substrate heating method in a plasma CVD apparatus, characterized in that the substrate is heated by the plasma to maintain the temperature of the substrate or prevent a temperature drop.
JP58116841A 1983-06-30 1983-06-30 Substrate heating method in plasma cvd apparatus Pending JPS6010617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58116841A JPS6010617A (en) 1983-06-30 1983-06-30 Substrate heating method in plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58116841A JPS6010617A (en) 1983-06-30 1983-06-30 Substrate heating method in plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPS6010617A true JPS6010617A (en) 1985-01-19

Family

ID=14696946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58116841A Pending JPS6010617A (en) 1983-06-30 1983-06-30 Substrate heating method in plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS6010617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137804A (en) * 1985-12-12 1987-06-20 株式会社村田製作所 Laminated chip thermistor
JPS6385650A (en) * 1986-09-30 1988-04-16 Mita Ind Co Ltd Developing method in electrophotography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137804A (en) * 1985-12-12 1987-06-20 株式会社村田製作所 Laminated chip thermistor
JPH0554681B2 (en) * 1985-12-12 1993-08-13 Murata Manufacturing Co
JPS6385650A (en) * 1986-09-30 1988-04-16 Mita Ind Co Ltd Developing method in electrophotography

Similar Documents

Publication Publication Date Title
JPH0387372A (en) Formation of deposited film
US4452828A (en) Production of amorphous silicon film
US4633812A (en) Vacuum plasma treatment apparatus
JPH0864540A (en) Thin film forming method and device
JPH07147273A (en) Etching treatment
JPS6010617A (en) Substrate heating method in plasma cvd apparatus
JPS6147645A (en) Formation of thin film
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPS62218577A (en) Electrode for vapor phase reactor
JPH1022279A (en) Inductive coupled plasma cvd device
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPS58136763A (en) Plasma chemical vapor depositing device
JPS6115973A (en) Plasma cvd device
JPH01154515A (en) Plasma cvd system
JPS60224215A (en) Plasma vapor-phase reactor
JPS60224216A (en) Plasma vapor-phase reactor
JP3178500B2 (en) Vertical plasma processing equipment
JPS6086277A (en) Formation of deposited film by discharge
JPS62196377A (en) Device for forming deposited film by plasma chemical vapor deposition method
JPS6247485A (en) Device for forming deposited film by plasma cvd
JPH05160028A (en) Surface processor
JPS6010619A (en) Film formation by glow discharge
JPS6057613A (en) Device for plasma chemical vapor deposition
JPS6277474A (en) Cvd device