JP2553330B2 - Functional deposition film forming apparatus by plasma CVD - Google Patents

Functional deposition film forming apparatus by plasma CVD

Info

Publication number
JP2553330B2
JP2553330B2 JP61142713A JP14271386A JP2553330B2 JP 2553330 B2 JP2553330 B2 JP 2553330B2 JP 61142713 A JP61142713 A JP 61142713A JP 14271386 A JP14271386 A JP 14271386A JP 2553330 B2 JP2553330 B2 JP 2553330B2
Authority
JP
Japan
Prior art keywords
gas
deposited film
film
cylindrical substrate
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61142713A
Other languages
Japanese (ja)
Other versions
JPS63479A (en
Inventor
孝至 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61142713A priority Critical patent/JP2553330B2/en
Publication of JPS63479A publication Critical patent/JPS63479A/en
Application granted granted Critical
Publication of JP2553330B2 publication Critical patent/JP2553330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、基体上に堆積膜、とりわけ機能性膜、殊に
半導体デイバイス、電子写真用の感光デイバイス、画像
入力用のラインセンサー、撮像のデイバイス、光起電力
素子などに用いられるアモルフアス状あるいは多結晶状
等の非単結晶状の機能性堆積膜を形成するのに至適なプ
ラズマCVD法による装置に関する。
Description: TECHNICAL FIELD The present invention relates to a deposited film on a substrate, especially a functional film, particularly a semiconductor device, a photosensitive device for electrophotography, a line sensor for image input, and an imaging device. The present invention relates to an apparatus suitable for forming a non-single crystalline functional deposited film such as amorphous or polycrystalline used in devices, photovoltaic devices, etc. by a plasma CVD method.

〔従来技術の説明〕[Description of Prior Art]

従来、半導体デイバイス、電子写真用感光デイバイ
ス、画像入力用ライセンサー、撮像デイバイス、光起電
力素子等に使用する素子部材として、例えば、シリコン
を含有する非晶質(以後単に「a−Si」と表記する。)
膜あるいは水素化シリコンを含有する非晶質(以後単に
「a−SiH」と表記する。)膜等が提案され、その中の
いくつかは実用に付されている。そして、そうしたa−
Si膜やa−SiH膜とともにそれ等a−Si膜やa−SiH膜等
の形成法およびそれを実施する装置についてもいくつか
提案されていて、真空蒸着法、イオンプレーテイング
法、いわゆる熱CVD法、プラズマCVD法、光CVD法等があ
り、中でもプラズマCVD法は至適なものとして実用に付
され、一般に広く用いられている。
Conventionally, as an element member used for a semiconductor device, a photosensitive device for electrophotography, a licensor for image input, an imaging device, a photovoltaic device, etc., for example, an amorphous material containing silicon (hereinafter simply referred to as “a-Si”). write.)
A film or an amorphous (hereinafter simply referred to as "a-SiH") film containing silicon hydride has been proposed, and some of them have been put to practical use. And such a-
Several proposals have been made for a method for forming an a-Si film, an a-SiH film and the like as well as a Si film and an a-SiH film, and an apparatus for performing the same. A vacuum vapor deposition method, an ion plating method, so-called thermal CVD Method, plasma CVD method, optical CVD method, etc. Among them, the plasma CVD method is put to practical use as an optimum method and is generally widely used.

ところで、前記プラズマCVD法は、直流、高周波また
はマイクロ波エネルギーを利用して堆積膜形成用ガスを
基体表面の近傍で励起種化(ラジカル化)して化学的相
互作用を生起させ、該基体表面に膜堆積せしめるという
ものであり、そのための装置も各種提案されている。
By the way, in the plasma CVD method, the deposited film forming gas is excited and seeded (radicalized) in the vicinity of the substrate surface by utilizing direct current, high frequency or microwave energy to cause a chemical interaction, and the substrate surface The method is to deposit a film on the substrate, and various devices have been proposed for that purpose.

第2図は、従来のプラズマCVD法による堆積膜形成装
置の典型的一例を模式的に示す断面略図であつて、図
中、1は円筒状反応容器全体を示し、2は反応容器の側
壁を兼ねたカソード電極であり、3は反応容器の上壁、
4は反応容器の底壁である。前記カソード電極2と、上
壁3及び底壁4とは、夫々、碍子5で絶縁されている。
FIG. 2 is a schematic cross-sectional view schematically showing a typical example of a conventional deposited film forming apparatus by the plasma CVD method, in which 1 is the whole cylindrical reaction vessel and 2 is the side wall of the reaction vessel. It also serves as a cathode electrode, 3 is the upper wall of the reaction vessel,
4 is a bottom wall of the reaction vessel. The cathode electrode 2, the upper wall 3 and the bottom wall 4 are insulated by an insulator 5, respectively.

6は反応容器内に設置された円筒状基体であり、該円
筒状基体6は接地されてアノード電極となるものであ
る。円筒状基体6の中には、基体加熱用ヒーター7が設
置されており、成膜前に基体を設定温度に加熱したり、
成膜中に基体を設定温度に維持したり、あるいは成膜後
基体をアニール処理したりするのに用いる。
Reference numeral 6 denotes a cylindrical substrate provided in the reaction vessel, and the cylindrical substrate 6 is grounded to serve as an anode electrode. A heater 7 for heating the substrate is provided in the cylindrical substrate 6 to heat the substrate to a set temperature before film formation,
It is used to maintain the substrate at a set temperature during film formation, or to perform an annealing process on the substrate after film formation.

8は堆積膜形成用原料ガス導入管であつて、反応空間
内に該原料ガスを放出するためのガス放出孔9が多数設
けられており、該原料ガス導入管8の他端は、バルブ10
を介して堆積膜形成原料ガス供給系20に連通している。
Reference numeral 8 denotes a deposited film forming raw material gas introduction pipe, which is provided with a large number of gas release holes 9 for releasing the raw material gas in the reaction space, and the other end of the raw material gas introduction pipe 8 is provided with a valve 10
It communicates with the deposited film forming raw material gas supply system 20 via.

堆積膜形成用原料ガス供給系20は、ガスボンベ201〜2
05、ガスボンベに設けられたバルブ211〜215、マスフロ
コントローラ221〜225、マスフロコントローラへの流入
バルブ231〜235及びマスフロコントローラからの流出バ
ルブ241〜245、及び圧力調整器251〜255からなつてい
る。
The source gas supply system 20 for forming a deposited film includes gas cylinders 201 to 2.
05, valves 211 to 215 provided on the gas cylinder, mass flow controllers 221-225, inflow valves 231-235 to the mass flow controller, outflow valves 241-245 from the mass flow controller, and pressure regulators 251-255. ing.

11は、反内容器内を真空排気するための排気管であ
り、排気バルブ12を介して真空排気装置(図示せず)に
連通している。
Reference numeral 11 denotes an exhaust pipe for evacuating the inside of the inner container, which communicates with a vacuum exhaust device (not shown) via an exhaust valve 12.

13はカソード電極2への電圧印加手段である。 Reference numeral 13 denotes a means for applying a voltage to the cathode electrode 2.

こうした従来のプラズマCVD法による堆積膜形成装置
の操作は次のようにして行なわれる。即ち、反応容器内
のガスを、排気管11を介して真空排気すると共に、加熱
用ヒーター7により円筒状基体6を所定温度に加熱、保
持する。次に、原料ガス導入管8を介して、例えばa−
SiH堆積膜を形成する場合であれば、シラン等の原料ガ
スを反応容器内に導入し、該原料ガスは、ガス導入管の
ガス放出孔9から基体表面に向けて放出される。これと
同時併行的に、電圧印加手段13から、例えば高周波をカ
ソード電極2と基体(アソード電極)6間に印加しプラ
ズマ放電を発生せしめる。かくして、反応容器内の原料
ガスは励起され励起種化し、Si、SiH等(*は励起
状態を表わす。)のラジカル粒子、電子、イオン粒子等
が生成され、これらの粒子間または、これらの粒子と基
体表面との化学的相互作用により、基体表面上に堆積膜
を形成する。
The operation of such a conventional deposited film forming apparatus by the plasma CVD method is performed as follows. That is, the gas in the reaction container is evacuated through the exhaust pipe 11, and the heating heater 7 heats and holds the cylindrical substrate 6 at a predetermined temperature. Next, for example, a-
In the case of forming a SiH deposited film, a raw material gas such as silane is introduced into the reaction vessel, and the raw material gas is discharged from the gas discharge hole 9 of the gas introduction pipe toward the surface of the substrate. Simultaneously with this, a high frequency, for example, is applied between the cathode electrode 2 and the base (assword electrode) 6 from the voltage applying means 13 to generate a plasma discharge. Thus, the raw material gas in the reaction vessel is excited to generate excited species, and radical particles such as Si * , SiH *, etc. (* represents an excited state), electrons, ion particles, etc. are generated, and these particles or between these particles are used. A deposited film is formed on the surface of the substrate by the chemical interaction between the particles of the above and the surface of the substrate.

ところで、こうした堆積膜の形成において、反応空間
に導入する原料ガスのガス圧、ガス流量、放電電力等が
形成される膜の膜質や膜厚に影響することが知られてお
り、膜厚および膜質が均一な堆積膜を形成するには、円
筒状基体を回転させることが提案されている。
By the way, in forming such a deposited film, it is known that the gas pressure of the source gas introduced into the reaction space, the gas flow rate, the discharge power, etc. affect the film quality and film thickness of the formed film. It has been proposed to rotate a cylindrical substrate to form a uniform deposited film.

しかし、円筒状基体を回転させて堆積膜を形成する場
合、次のような問題が存在する。
However, when the cylindrical substrate is rotated to form the deposited film, there are the following problems.

即ち、回転軸の偏心等により形成される堆積膜の膜厚
や特性が不均一となり易い、円筒状基体と回転軸とを回
転させるため両者の電気的導通がとりにくい、円筒状基
体を回転させるための回転機構を設ける必要があるため
装置自体がコスト高になるのに加えて回転軸とモーター
の接続部でのリーク防止が困難である、基体が回転して
いるため基体自体に温度センサーを取り付けることが困
難でありしたがつて基体の温度管理が不正確になり易い
等。
That is, the thickness and characteristics of the deposited film formed by the eccentricity of the rotating shaft are likely to be non-uniform, it is difficult to electrically connect the cylindrical base and the rotating shaft, and the cylindrical base is rotated. Since it is necessary to provide a rotating mechanism for this, the cost of the device itself is high, and it is difficult to prevent leakage at the connection between the rotating shaft and the motor.Because the base is rotating, a temperature sensor is installed on the base itself. It was difficult to attach, but the temperature control of the substrate is likely to be inaccurate.

更に、均一な堆積膜を形成するには、ガス導入管8の
原料ガス放出孔9から反応空間内に噴出される原料ガス
及び形成されるプラズマ放電の反応空間内における分布
が重要な因子となるが、第2図のごとき従来装置におい
ては、原料ガス導入管8の一端より原料ガスを導入する
ため、反応空間の上部と下部とではガスの流速が異な
り、排気側である下部においてはガスの流速が速くな
る。そのために下部に近づくほど、プラズマ放電により
形成したラジカルが系外ににげやすくなり、プラズマ放
電の効率が低下する。また、堆積膜形成用原料ガスは、
放電エネルギーにより励起種化し、化学的相互作用によ
り所望の堆積膜を形成しうるガス(以下、「堆積性ガ
ス」と称す。)、例えば、a−SiH膜を形成する場合で
あれば、SiH4、Si2H6等のシランガスが用いられるが、
これらの堆積膜形成用原料ガスは、H2、He、Ar等の希釈
用ガスにより希釈して用いられるところ、その場合、第
2図に示す従来装置においては、反応空間の上部と下部
では、プラズマ放電の強度分布が不均一になつてしまう
ことの他、堆積性ガスと希釈用ガスの混合比率に変動が
生じ、特に排気側である下部においては、希釈用ガスの
割合が異常に高くなつてしまうという問題がある。そし
てこの問題は、希釈用ガスとしてH2ガスを用いた場合、
特に顕著である。
Further, in order to form a uniform deposited film, the source gas ejected from the source gas discharge hole 9 of the gas introduction pipe 8 into the reaction space and the distribution of the plasma discharge formed in the reaction space are important factors. However, in the conventional apparatus as shown in FIG. 2, since the raw material gas is introduced from one end of the raw material gas introduction pipe 8, the gas flow velocity is different between the upper part and the lower part of the reaction space, and the gas flow rate is different in the lower part on the exhaust side. The flow velocity becomes faster. Therefore, the radicals formed by the plasma discharge are more likely to escape to the outside of the system as the position approaches the lower part, and the efficiency of the plasma discharge is reduced. Further, the source gas for forming the deposited film is
A gas (hereinafter referred to as “deposition gas”) capable of forming a desired deposited film by chemical interaction with excited species by discharge energy, for example, SiH 4 in the case of forming an a-SiH film. , Silane gas such as Si 2 H 6 is used,
These deposited film forming raw material gases are used after being diluted with a diluting gas such as H 2 , He or Ar. In that case, in the conventional apparatus shown in FIG. In addition to the non-uniform intensity distribution of the plasma discharge, the mixing ratio of the deposition gas and the diluting gas also fluctuates, and especially in the lower part on the exhaust side, the diluting gas ratio becomes abnormally high. There is a problem that it will end up. And this problem when using H 2 gas as a diluent gas,
This is particularly noticeable.

以上のごとく、従来装置においては、反応空間内のプ
ラズマ強度分布が不均一になつてしまうこと、そして堆
積膜形成用原料ガスな系内分布が不均一になつてしまう
ことが原因で、形成される堆積膜の膜厚及び膜質を不均
一なものにしてしまうという問題があり、こうした問題
は円筒状基体が長くなる程顕著となる。
As described above, in the conventional apparatus, the plasma intensity distribution in the reaction space becomes non-uniform, and the formation of the deposited gas forming raw material gas becomes non-uniform in the system. There is a problem that the film thickness and film quality of the deposited film becomes uneven, and such a problem becomes more remarkable as the cylindrical substrate becomes longer.

こうしたことから、プラズマCVD法は至適な方法とさ
れてはいるものの、円筒状基体の上部及び下部において
も均一な膜厚及び膜質を有する堆積膜を形成しようとす
る場合には、前記各種成膜条件がおのずと制限されてし
まうこととなり、その結果、幅広い特性を有する各種堆
積膜を同一装置内で連続して形成したり、同一基体上に
特性の異なる複数の堆積膜を有する多層構成の堆積膜を
同一装置内で連続して形成することは、非常に困難であ
る。
For these reasons, although the plasma CVD method is considered to be the most suitable method, when forming a deposited film having a uniform film thickness and quality even on the upper and lower portions of the cylindrical substrate, the above-mentioned various methods are used. As a result, the film conditions are naturally limited, and as a result, various deposited films having a wide range of characteristics can be continuously formed in the same apparatus, or a multilayer structure having a plurality of deposited films having different characteristics on the same substrate can be deposited. It is very difficult to form films continuously in the same apparatus.

他方、前述の各種デイバイスが多様化してきており、
そのための素子部材として、各種幅広い特性を有する堆
積膜を形成するとともに、場合によつては大面積化され
た堆積層を形成することが社会的要求としてあり、こう
した要求を満たす堆積膜を、定常的に量産化しうる装置
の開発が切望されている。
On the other hand, the above-mentioned various devices are diversifying,
As a device element for this purpose, it is a social requirement to form a deposited film having a wide variety of characteristics and, in some cases, to form a deposited layer having a large area. There is a strong demand for the development of devices that can be mass-produced.

〔発明の目的〕[Object of the Invention]

本発明は、光起電力素子、半導体デイバイス、画像入
力用ラインセンサー、撮像デイバイス、電子写真用感光
デイバイス等に使用する堆積膜を形成する従来装置につ
いて、上述の諸問題を解決し、上述の要求を満たすよう
にすることを目的とするものである。
The present invention solves the above-mentioned problems and solves the above-mentioned problems in a conventional device for forming a deposited film used in a photovoltaic device, a semiconductor device, an image input line sensor, an imaging device, an electrophotographic photosensitive device, and the like. The purpose is to satisfy.

すなわち本発明の主たる目的は、円筒状基体を回転さ
せることなく、反応空間内における堆積膜形成用ガスの
分布およびその希釈率を均一に保つことにより、膜厚お
よび膜質が均一な堆積膜を定常的に形成しうるプラズマ
CVD法による堆積膜形成装置を提供することにある。
That is, the main object of the present invention is to maintain a uniform deposition film with uniform film thickness and quality by keeping the distribution of the deposition film forming gas and its dilution ratio in the reaction space uniform without rotating the cylindrical substrate. Plasma that can be formed
It is to provide a deposited film forming apparatus by the CVD method.

本発明の他の目的は、形成される膜の諸特性、成膜速
度、再現性の向上及び膜品質の均一化、均質化をはかり
ながら、膜の生産性向上と共に、特に量産化を可能に
し、同時に膜の大面積化を可能にするプラズマCVD法に
よる堆積膜量産装置を提供することにある。
Another object of the present invention is to improve various properties of a formed film, film forming speed, reproducibility, and uniformize and homogenize film quality, and at the same time, to improve productivity of the film and particularly mass production. At the same time, it is to provide a mass-produced apparatus for deposited films by the plasma CVD method, which makes it possible to increase the film area.

〔発明の構成〕[Structure of Invention]

本発明者らは、従来のプラズマCVD法による堆積膜形
成装置についての前述の諸問題を克服して、上述の目的
を達成すべく鋭意研究を重ねた結果、円筒状基体を回転
させない場合においても、ガス導入管8のガス放出孔9
の角度、ガス導入管8の形状因子(例えば、ガス導入管
8の管内径、ガス放出孔9の内径、ガス放出孔の間隔
等)およびガス放出孔9から放出されるガスの流速等に
よつて、得られる堆積膜の膜厚および膜質の均一性が変
化するという知見を得た。即ち、ガス導入管の内径及び
ガス放出孔から放出されるガスの流速を一定とした場
合、ガス放出孔の内径、ガス放出孔の間隔及びガス放出
孔の角度によつては、形成される堆積膜の膜厚及び膜質
が円筒状基体の母線方向及び周方向において不均一とな
り、こうした円筒状基体上に形成された堆積膜を電子写
真用感光体として用いた場合には、得られた画像は、全
体的あるいは部分的な画像欠陥の多いものとなつてしま
うことが判明した。
The inventors of the present invention have made extensive studies to overcome the above-mentioned problems of the conventional deposited film forming apparatus by the plasma CVD method and achieve the above-mentioned object, and as a result, even when the cylindrical substrate is not rotated. , Gas release hole 9 of gas introduction pipe 8
Angle, the shape factor of the gas introduction pipe 8 (for example, the inner diameter of the gas introduction pipe 8, the inner diameter of the gas release holes 9, the distance between the gas release holes, etc.) and the flow velocity of the gas released from the gas release holes 9. Then, it was found that the film thickness and the film quality uniformity of the obtained deposited film changed. That is, when the inner diameter of the gas introduction pipe and the flow velocity of the gas released from the gas release hole are constant, the deposition formed depends on the inner diameter of the gas release hole, the distance between the gas release holes, and the angle of the gas release hole. The film thickness and film quality become nonuniform in the generatrix direction and the circumferential direction of the cylindrical substrate, and when the deposited film formed on such a cylindrical substrate is used as an electrophotographic photoreceptor, the obtained image is However, it was found that there were many image defects in whole or in part.

そこで、本発明者らは、該知見に基づいて更に研究を
重ねたところ、ガス導入管のガス放出孔を円筒状基体表
面に対して特定の角度〔θ〕を有するように対向配置す
るとともに、該ガス放出孔の内径〔d1〕とガス放出孔の
間隔〔d2〕を特定の値に設定することにより、円筒状基
体を回転せしめることなく、さらに、ガスの導入を一方
向から行なう場合であつても、形成される堆積膜の膜厚
及び膜質の均一性が保障されることが判明した。
Therefore, the present inventors have conducted further research based on this finding, and as a result, while arranging the gas discharge holes of the gas introduction pipe so as to have a specific angle [θ] with respect to the surface of the cylindrical substrate, When the inner diameter [d 1 ] of the gas release hole and the interval [d 2 ] between the gas release holes are set to specific values, and the introduction of gas is performed from one direction without rotating the cylindrical substrate. Even in that case, it was found that the uniformity of the film thickness and film quality of the deposited film formed is guaranteed.

本発明は該知見に基づき完成せしめたものであり、本
発明のプラズマCVD法による堆積膜形成装置は、つぎの
構成内容のものである。即ち、堆積膜が形成される固定
的に配置される円筒状支持体を一方の電極とし、該電極
に対向して設けられる他方の電極を有し、該電極間で放
電によってプラズマが生成される反応空間を内部に有す
る反応容器、該反応容器内に堆積膜を形成するために使
用されるガスを導入するため側壁に多数のガス放出口を
有するガス導入管、該反応空間内を下部から排気する手
段とを有するプラズマCVD法による機能性堆積膜形成装
置において、前記ガス放出孔の円筒状基体表面との角度
をθ〔rad〕、ガスガス放出孔の内径をd1〔mm〕、ガス
放出孔の間隔をd2〔mm〕、円筒状基体の外径をR1〔m
m〕、ガス導入管の中心と円筒状基体の中心との距離をR
2〔mm〕とする時、下記の式I乃至IIIを満足することを
特徴とするプラズマCVD法による機能性堆積膜形成装置
である。
The present invention has been completed based on this finding, and the deposited film forming apparatus by the plasma CVD method of the present invention has the following constitution. That is, a fixedly arranged cylindrical support on which a deposited film is formed is used as one electrode, and the other electrode is provided so as to face the electrode, and plasma is generated by discharge between the electrodes. A reaction container having a reaction space inside, a gas introduction pipe having a large number of gas discharge ports on a side wall for introducing a gas used for forming a deposited film in the reaction container, and exhausting the reaction space from a lower part In the functional deposited film forming apparatus by the plasma CVD method having a means for performing, the angle of the gas release hole with the cylindrical substrate surface is θ [rad], the inner diameter of the gas gas release hole is d 1 [mm], the gas release hole Is 2 mm, and the outer diameter of the cylindrical substrate is R 1 [m
m], the distance between the center of the gas introduction pipe and the center of the cylindrical substrate is R
When the thickness is 2 [mm], the functional deposited film forming apparatus by the plasma CVD method is characterized by satisfying the following formulas I to III.

0.5≦d1≦1.5 ……II 10≦d2≦100 ……III 以下、図面により本発明について説明する。 0.5 ≦ d 1 ≦ 1.5 …… II 10 ≦ d 2 ≦ 100 …… III The present invention will be described below with reference to the drawings.

第1図(A)は、本発明のプラズマCVD法による堆積
膜形成装置におけるガス導入管のガス放出孔と円筒状基
体との位置関係を模式的に示す横断面図であり、第1図
(B)は、該ガス導入管の側面図である。図中、2はカ
ソード電極、6は円筒状基体、8はガス導入管、9はガ
ス放出孔を夫々示し、R1〔mm〕は、円筒状基体6の外
径、R2〔mm〕は、円筒状基体6の中心とガス導入管8の
中心との距離、θ〔rad〕は、円筒状基体表面に対する
ガス放出孔の角度、d1〔mm〕は、ガス放出孔の内径、d2
〔mm〕は、ガス放出孔の間隔をそれぞれ表わす。そし
て、R1〔mm〕、R2〔mm〕、θ〔rad〕、d1〔mm〕及びd2
〔mm〕が上記式I,II及びIIIを満足するようになつてい
る。
FIG. 1 (A) is a cross-sectional view schematically showing the positional relationship between the gas release holes of the gas introduction pipe and the cylindrical substrate in the deposited film forming apparatus by the plasma CVD method of the present invention. B) is a side view of the gas introducing pipe. In the figure, 2 is a cathode electrode, 6 is a cylindrical substrate, 8 is a gas introduction tube, and 9 is a gas discharge hole. R 1 [mm] is the outer diameter of the cylindrical substrate 6 and R 2 [mm] is , The distance between the center of the cylindrical substrate 6 and the center of the gas introduction pipe 8, θ [rad] is the angle of the gas release hole with respect to the surface of the cylindrical substrate, d 1 [mm] is the inner diameter of the gas release hole, d 2
[Mm] represents the distance between the gas discharge holes. And R 1 [mm], R 2 [mm], θ [rad], d 1 [mm] and d 2
[Mm] satisfies the above formulas I, II and III.

本発明の装置により堆積膜を形成するについて使用さ
れる原料ガスは、マイクロ波のエネルギーにより励起種
化し、化学的相互作用して基体表面上に所期の堆積膜を
形成する類のものであれば何れのものであつても採用す
ることができるが、例えばa−Si(H,X)膜を形成する
場合であれば、具体的には、ケイ素に水素、ハロゲン、
あるいは炭化水素等が結合したシラン類及びハロゲン化
シラン類等のカス状態のもの、または容易にガス化しう
るものをガス化したものを用いることができる。これら
の原料ガスは1種を使用してもよく、あるいは2種以上
を併用してもよい。また、これ等の原料ガスは、He、Ar
等の不活性ガスにより希釈して用いることもある。さら
に、a−Si膜はp型不純物元素又はn型不純物元素をド
ーピングすることが可能であり、これ等の不純物元素を
構成成分として含有する原料ガスを、単独で、あるいは
前述の原料ガスまたは/および希釈用ガスと混合して反
応空間内に導入することができる。
The source gas used for forming the deposited film by the apparatus of the present invention may be of a type that excites species by microwave energy and chemically interacts to form a desired deposited film on the substrate surface. Any of them can be adopted, but for example, when forming an a-Si (H, X) film, specifically, hydrogen, halogen,
Alternatively, it is possible to use gas-like substances such as silanes and halogenated silanes having hydrocarbons bonded thereto, or gasified substances that can be easily gasified. One of these source gases may be used, or two or more thereof may be used in combination. These source gases are He, Ar
Diluted with an inert gas such as Further, the a-Si film can be doped with a p-type impurity element or an n-type impurity element, and a source gas containing these impurity elements as a constituent component can be used alone or as the above-described source gas or / and / or And a mixture with a diluting gas and introduced into the reaction space.

なお、前記原料ガスは、それが二種またはそれ以上使
用される場合、その中の一種または場合によりそれ以上
を、事前に励起種化し、次いで反応室に導入するように
することも可能である。
When two or more source gases are used, one or more of them may be excited beforehand and then introduced into the reaction chamber. .

基体については、導電性のものであつても、半導電性
のものであつても、あるいは電気絶縁性のものであつて
もよく、具体的には、例えば金属、セラミックス、ガラ
ス等が挙げられる。そして成膜操作時の基体の温度は、
特に制限されるものではないが、30〜450℃の範囲とす
るのが一般的であり、好ましくは50〜350℃である。
The substrate may be conductive, semi-conductive, or electrically insulating, and specific examples thereof include metals, ceramics, and glass. . The temperature of the substrate during the film forming operation is
Although not particularly limited, the temperature is generally in the range of 30 to 450 ° C, preferably 50 to 350 ° C.

また、堆積膜を形成するにあたつては、原料ガスを導
入する前に反応室内の圧力を5×10-6Torr以下、好まし
くは1×10-6Torr以下とし、原料ガスを導入した時には
反応室内の圧力を1×10-2Torr台にするのが望ましい。
In addition, in forming the deposited film, the pressure in the reaction chamber is set to 5 × 10 −6 Torr or less, preferably 1 × 10 −6 Torr or less before the source gas is introduced. Preferably, the pressure in the reaction chamber is on the order of 1 × 10 -2 Torr.

〔実施例〕〔Example〕

以下、本発明の装置について、実施例及び比較例によ
り更に詳しく説明するが、本発明はこれらにより限定さ
れるものではない。
Hereinafter, the device of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1 円筒状基体として第1表に示す外径を有するAlシリン
ダー(ドラムNo.101〜108)を用意し、夫々のAlシリン
ダー上に、長波長光吸収層、電荷注入阻止層、中間層
(NO含有層:NO変化層)、光導電層および表面層からな
る光受容層を、第2図に示す装置を用いて第2表に示す
堆積膜形成条件に従つて形成した。なお、第2図に示す
装置におけるガス導入管の数を4本とし、ガス導入管の
内径、ガス導入管のガス放出孔の角度と間隔、およびガ
ス導入管の配置位置(ガス導入管の中心と円筒状基体の
中心との距離)は、ドラムNo.101〜108について夫々第
1表に示すものとした。
Example 1 An Al cylinder (drum No. 101 to 108) having an outer diameter shown in Table 1 was prepared as a cylindrical substrate, and a long wavelength light absorption layer, a charge injection blocking layer, and an intermediate layer were provided on each Al cylinder. A light receiving layer consisting of (NO-containing layer: NO change layer), photoconductive layer and surface layer was formed under the conditions for forming a deposited film shown in Table 2 by using the apparatus shown in FIG. The number of gas introduction pipes in the device shown in FIG. 2 is four, the inner diameter of the gas introduction pipe, the angle and interval of the gas release holes of the gas introduction pipe, and the arrangement position of the gas introduction pipe (center of the gas introduction pipe). And the center of the cylindrical substrate) are shown in Table 1 for drum Nos. 101 to 108, respectively.

得られた夫々の光受容部材を電子写真複写機にセツト
し、膜厚、諸特性及び形成された画像について評価をお
こなつたところ、第3表に示すごとくいずれも良好な結
果が得られた。
Each of the obtained light receiving members was set in an electrophotographic copying machine, and the film thickness, various characteristics and the formed image were evaluated. As shown in Table 3, good results were obtained. .

実施例2 円筒状基体として第4表に示す外径のAlシリンダー
(ドラムNo.201〜208)を用意し、堆積膜形成条件を第
5表に示すものとし、第2図に示す装置における4本の
ガス導入管の条件をドラムNo.201〜208につき夫々第4
表に示すものとした以外はすべて実施例1の同様にし
て、Alシリンダー(ドラムNo.201〜208)上に光受容層
を形成した。
Example 2 An Al cylinder (drum No. 201 to 208) having an outer diameter shown in Table 4 was prepared as a cylindrical substrate, and the conditions for forming a deposited film were as shown in Table 5, and in the apparatus shown in FIG. The condition of the gas introduction pipe of the book is No. 4 for each of drum Nos. 201 to 208.
A light-receiving layer was formed on an Al cylinder (drum Nos. 201 to 208) in the same manner as in Example 1 except that those shown in the table were used.

得られた夫々の光受容部材について、実施例1と同様
の評価をおこなつたところ、いずれも第6表に示すごと
き良好な結果が得られた。
When each of the obtained light-receiving members was evaluated in the same manner as in Example 1, good results as shown in Table 6 were obtained.

比較例1 円筒状基体として第7表に示す外径のAlシリンダー
(ドラムNo.301〜306)を用意し、堆積膜形成条件をド
ラムNo.301,302,304(外径R1=80〔mm〕)については第
2表に示す条件、また、ドラムNo.303,305,36(外径R1
=108〔mm〕)については第5表に示す条件とし、更
に、第2図に示す装置における4本のガス導入管の条件
をドラムNo.301〜306につき夫々第7表に示すものとし
た以外はすべて実施例1の同様にしてAlシリンダー(ド
ラムNo.301〜306)上に光受容層を形成した。
Comparative Example 1 As a cylindrical substrate, an Al cylinder (drum No. 301 to 306) having an outer diameter shown in Table 7 was prepared, and the deposition film formation conditions were drum No. 301, 302, 304 (outer diameter R 1 = 80 [mm]). Indicates the conditions shown in Table 2, and drum No. 303, 305, 36 (outer diameter R 1
= 108 [mm]), the conditions shown in Table 5 are set, and the conditions of the four gas introduction pipes in the apparatus shown in FIG. 2 are set as shown in Table 7 for each of the drum Nos. 301 to 306. A light receiving layer was formed on an Al cylinder (drum Nos. 301 to 306) in the same manner as in Example 1 except for the above.

得られた光受容部材について、実施例1と同様の評価
をおこなつたところ、いずれも第8表に示すごとき結果
を得た。
When the obtained light-receiving members were evaluated in the same manner as in Example 1, the results shown in Table 8 were obtained for all of them.

第8表の結果から、前述の式I〜IIIの条件を満たさ
ない場合には、形成された光受容層の層厚および特性
が、Alシリンダーの周方向および母線方向において不均
一となり、形成された画像は全体的および部分的に欠陥
の多いものとなることが明らかとなつた。
From the results shown in Table 8, when the conditions of the above formulas I to III are not satisfied, the layer thickness and characteristics of the formed light-receiving layer become non-uniform in the circumferential direction and the generatrix direction of the Al cylinder, and the formed layer is formed. It was found that the images were totally and partially defective.

第3図は、本発明の装置における、θ,d1,d2の範囲を
3次元的に図示するものであつて、太線部内の空間が本
発明の装置におけるθ,d1,d2の範囲を示している。(な
お、点線部(θ=π)はその部分が除かれることを表わ
している。)第3図において、○は実施例1および2を
表わして、●は比較例を表わしている。(●1)はd1=1.
6〔mm〕で、範囲外であり、●2)はd2=9〔mm〕で範囲
外であり、いずれも太線部分には含まれていない。) 〔発明の効果の概要〕 本発明の装置は、ガス導入管のガス放出孔の角度、内
径及び間隔を特定の範囲内に定めることにより、円筒状
基体を回転させずとも、円筒状基体上に形成された堆積
膜の膜厚及び膜質が、周方向においても、また、母線方
向においても均一となる。そして、円筒状基体を回転さ
せる必要がないため、リークの心配が無く、装置自体が
コスト安となる。更に、ガス放出口の内径と間隔を前記
条件内であれば種々に変更しても、得られる堆積膜の膜
厚および膜質の均一性は良好であり、画像欠陥が少な
く、量産時における歩溜りが飛躍的に向上した。
Figure 3 is the device of the present invention, theta, shall apply those illustrated d 1, the range of d 2 in three dimensions, the space in the thick line portions theta in the apparatus of the present invention, the d 1, d 2 Indicates the range. (Note that the dotted line portion (θ = π) indicates that part is removed.) In FIG. 3, ◯ indicates Examples 1 and 2, and ● indicates a comparative example. (● 1) is d 1 = 1.
6 [mm] is out of the range, and ● 2) is d 2 = 9 [mm], which is out of the range, and neither is included in the thick line portion. [Summary of Effects of the Invention] The apparatus of the present invention is arranged on the cylindrical substrate without rotating the cylindrical substrate by setting the angle, the inner diameter and the interval of the gas discharge hole of the gas introduction pipe within a specific range. The film thickness and film quality of the deposited film formed on the substrate are uniform both in the circumferential direction and in the generatrix direction. Further, since it is not necessary to rotate the cylindrical substrate, there is no fear of leakage, and the cost of the device itself is low. Further, even if the inner diameter and the interval of the gas discharge port are variously changed within the above-mentioned conditions, the obtained deposited film has good film thickness and film quality uniformity, has few image defects, and has a yield in mass production. Has improved dramatically.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)は、本発明のプラズマCVD法による堆積膜
形成装置におけるガス導入管のガス放出孔と円筒状基体
との位置関係を模式的に示す横断面図であり、第1図
(B)は、該ガス導入管の側面図である。第2図は、プ
ラズマCVD法による堆積膜形成装置の典型的一例を模式
的に示す断面略図である。第3図は、本発明の装置にお
けるガス放出孔の角度、内径及び間隔の範囲を3次元的
に示す図である。 第1,2図において、 1……反応容器、2……カソード電極を兼ねた周囲壁、
3……上壁、4……底壁、5……碍子、6……円筒状基
体、7……加熱用ヒーター、8……ガス導入管、9……
ガス放出孔、10……バルブ、11……排気管、12……排気
バルブ、13……電圧印加手段、20……ガス供給系、201
〜205……ガスボンベ、211〜215……バルブ、221〜225
……マスフロコントローラー、231〜235……流入バル
ブ、241〜245……流出バルブ、251〜255……圧力調整
器。
FIG. 1 (A) is a cross-sectional view schematically showing the positional relationship between the gas release holes of the gas introduction pipe and the cylindrical substrate in the deposited film forming apparatus by the plasma CVD method of the present invention. B) is a side view of the gas introducing pipe. FIG. 2 is a schematic cross-sectional view schematically showing a typical example of the deposited film forming apparatus by the plasma CVD method. FIG. 3 is a three-dimensional view showing the range of angles, inner diameters, and intervals of the gas discharge holes in the device of the present invention. In Figs. 1 and 2, 1 ... Reactor container, 2 ... Peripheral wall also serving as cathode electrode,
3 ... Top wall, 4 ... Bottom wall, 5 ... Insulator, 6 ... Cylindrical substrate, 7 ... Heating heater, 8 ... Gas introduction pipe, 9 ...
Gas release hole, 10 ... Valve, 11 ... Exhaust pipe, 12 ... Exhaust valve, 13 ... Voltage applying means, 20 ... Gas supply system, 201
~ 205 …… Gas cylinder, 211 ~ 215 …… Valve, 221-225
…… Mass flow controller, 231-235 …… Inflow valve, 241-245 …… Outflow valve, 251-255 …… Pressure regulator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】堆積膜が形成される固定的に配置される円
筒状支持体を一方の電極とし、該電極に対向して設けら
れる他方の電極を有し、該電極間で放電によってプラズ
マが生成される反応空間を内部に有する反応容器、該反
応容器内に堆積膜を形成するために使用されるガスを導
入するため側壁に多数のガス放出口を有するガス導入
管、該反応空間内を下部から排気する手段とを有するプ
ラズマCVD法による機能性堆積膜形成装置において、前
記ガス放出孔の円筒状基体表面との角度をθ〔rad〕、
ガスガス放出孔の内径をd1〔mm〕、ガス放出孔の間隔を
d2〔mm〕、円筒状基体の外径をR1〔mm〕、ガス導入管の
中心と円筒状基体の中心との距離をR2〔mm〕とすると
き、下記の式I乃至IIIを満足することを特徴とするプ
ラズマCVD法による機能性堆積膜形成装置。 0.5≦d1≦1.5 ……II 10≦d2≦100 ……III
1. A fixedly arranged cylindrical support on which a deposited film is formed is used as one electrode, and the other electrode is provided so as to face the electrode. Plasma is generated between the electrodes by discharge. A reaction container having a reaction space to be generated therein, a gas introduction pipe having a large number of gas discharge ports on a side wall for introducing a gas used for forming a deposited film in the reaction container, and the reaction space In the functional deposited film forming apparatus by the plasma CVD method having a means for exhausting from below, the angle of the gas release holes with respect to the cylindrical substrate surface is θ [rad],
Set the inner diameter of the gas discharge holes to d 1 [mm] and the distance between the gas discharge holes.
where d 2 [mm], the outer diameter of the cylindrical substrate is R 1 [mm], and the distance between the center of the gas introduction tube and the center of the cylindrical substrate is R 2 [mm], the following formulas I to III are given. An apparatus for forming a functional deposited film by a plasma CVD method characterized by satisfying. 0.5 ≦ d 1 ≦ 1.5 …… II 10 ≦ d 2 ≦ 100 …… III
JP61142713A 1986-06-20 1986-06-20 Functional deposition film forming apparatus by plasma CVD Expired - Lifetime JP2553330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61142713A JP2553330B2 (en) 1986-06-20 1986-06-20 Functional deposition film forming apparatus by plasma CVD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61142713A JP2553330B2 (en) 1986-06-20 1986-06-20 Functional deposition film forming apparatus by plasma CVD

Publications (2)

Publication Number Publication Date
JPS63479A JPS63479A (en) 1988-01-05
JP2553330B2 true JP2553330B2 (en) 1996-11-13

Family

ID=15321841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142713A Expired - Lifetime JP2553330B2 (en) 1986-06-20 1986-06-20 Functional deposition film forming apparatus by plasma CVD

Country Status (1)

Country Link
JP (1) JP2553330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103266307A (en) * 2013-05-22 2013-08-28 光垒光电科技(上海)有限公司 Reaction cavity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3684011B2 (en) * 1996-12-12 2005-08-17 キヤノン株式会社 Method and apparatus for forming deposited film by plasma CVD method
EP3093368B1 (en) * 2014-01-10 2021-11-10 Mitsubishi Materials Corporation Chemical vapor deposition device, and chemical vapor deposition method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832413A (en) * 1981-08-21 1983-02-25 Toshiba Corp Film forming apparatus by glow discharge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103266307A (en) * 2013-05-22 2013-08-28 光垒光电科技(上海)有限公司 Reaction cavity

Also Published As

Publication number Publication date
JPS63479A (en) 1988-01-05

Similar Documents

Publication Publication Date Title
US5443645A (en) Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
JP2582553B2 (en) Functional deposition film forming apparatus by plasma CVD
US4897284A (en) Process for forming a deposited film on each of a plurality of substrates by way of microwave plasma chemical vapor deposition method
JPH1192932A (en) Deposited film forming device and deposited film forming method
JPS6137354B2 (en)
JP3145536B2 (en) Catalytic CVD equipment
US5582648A (en) Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition
JP2553330B2 (en) Functional deposition film forming apparatus by plasma CVD
US5338580A (en) Method of preparation of functional deposited film by microwave plasma chemical vapor deposition
JP2553331B2 (en) Deposited film forming apparatus by plasma CVD method
JPS6010618A (en) Plasma cvd apparatus
US4418645A (en) Glow discharge apparatus with squirrel cage electrode
JPH10168573A (en) Method for forming deposited film by plasma cvd method and device therefor
JP2620782B2 (en) Deposition film forming apparatus by plasma CVD method
JPS62142783A (en) Deposited film forming device by plasma cvd method
JPS62235471A (en) Deposited film forming device by plasma cvd method
JP2768539B2 (en) Deposition film forming equipment
JPH0627337B2 (en) Deposited film forming apparatus by plasma CVD method
JPH0620038B2 (en) Plasma gas phase reactor
JPS62196377A (en) Device for forming deposited film by plasma chemical vapor deposition method
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP2554867B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS62294180A (en) Device for forming deposited film by plasma cvd
JP2925298B2 (en) Deposition film formation method
JPH0643632B2 (en) Deposited film forming apparatus by plasma CVD method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term