JPS5936971A - Buried gate formation of semiconductor device - Google Patents

Buried gate formation of semiconductor device

Info

Publication number
JPS5936971A
JPS5936971A JP14695782A JP14695782A JPS5936971A JP S5936971 A JPS5936971 A JP S5936971A JP 14695782 A JP14695782 A JP 14695782A JP 14695782 A JP14695782 A JP 14695782A JP S5936971 A JPS5936971 A JP S5936971A
Authority
JP
Japan
Prior art keywords
gate
epitaxial growth
concentration
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14695782A
Other languages
Japanese (ja)
Inventor
Kimihiro Muraoka
公裕 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denki Seizo KK, Toyo Electric Manufacturing Ltd filed Critical Toyo Denki Seizo KK
Priority to JP14695782A priority Critical patent/JPS5936971A/en
Priority to US06/511,193 priority patent/US4528745A/en
Priority to DE8383304079T priority patent/DE3381267D1/en
Priority to EP83304079A priority patent/EP0099270B1/en
Publication of JPS5936971A publication Critical patent/JPS5936971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66416Static induction transistors [SIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent the closure of channels by enhancing the concentration at the center of the gate by a method wherein heat treatment is performed after epitaxial growth. CONSTITUTION:Cut grooves 6 are formed by utilizing an oxide film 2 on an N type substrate. Next, the grooves 6 are filled by doping boron by epitaxial growing method. Then, a P type diffused layer 7 is formed by heat treatment at a temperature higher than that at the time of epitaxial growth. The epitaxially grown layer Z' is removed. An N type Si single crystal 5'' is formed. The concentration of the gate which performs burial and the gate which contacts a layer of reverse conductivity type is reduced by epitaxial growth and heat treatment which follows it, thus enhancing the concentration at the center of the gate; therefore leakage current becomes small.

Description

【発明の詳細な説明】 本発明は靜11[樽形テイリスタやゲートターンオアサ
イリスタ等の半導体装置、特に埋込みゲートを有する顧
込みゲート方式半導体装置の埋込みゲート形成法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a buried gate in a semiconductor device such as a barrel-shaped thyristor or a gate turn-or-thyristor, and in particular, a buried gate type semiconductor device having a buried gate.

埋込みゲート方・大半導体装置においては、埋込みゲー
トを介して電気信号の伝播が行われるためにゲートの抵
抗値が小さい根早いスイッチング速度を得られることが
公知であり、いかにしてゲートの抵抗値を小さくするか
が重要な課題となっている。そして、埋込みゲート方式
半導体装置における埋込みゲートの形成法とし、 1)  拡散法でゲートを形成したのちこの面に対して
エピタキシャル成長を施し埋込みゲートを形成する。
Buried gate method: It is well known that in large semiconductor devices, electric signals are propagated through the buried gate, so a fast switching speed with a small gate resistance can be obtained. An important issue is how to reduce this. The method for forming a buried gate in a buried gate type semiconductor device is as follows: 1) After forming a gate by a diffusion method, epitaxial growth is performed on this surface to form a buried gate.

(2)  シリコン基板(以下単に基板という)表向に
凹状の切込み溝を設け、この切込み溝内をエピタキシャ
ル成長で埋めてゲートを形成する。その後ゲート面上憂
こエピタキシャル成長を施して埋込みゲートを形成する
(2) A concave cut groove is provided on the surface of a silicon substrate (hereinafter simply referred to as a substrate), and the inside of the cut groove is filled with epitaxial growth to form a gate. After that, epitaxial growth is performed on the gate surface to form a buried gate.

の2つの方法が主流である。The following two methods are mainstream.

第1図は拡散法を用いて狸込みゲートを形成する概念を
示す半導体装置の縦方向断面説明図であり、ここで具体
的な説明の便宜上基板はN形、ゲートはP形の態様とす
る。すなわち、第1図(a)においてlは基板、2は酸
化膜、3は酸化膜2に選択的に開かれた窓であり、第1
図(b)にて4は窓3よりP形不純物を拡散して形成せ
しめられたゲートである。また第1図(C)にてゲート
4が形成されたのちにへ?化膜2を除去した状態が示さ
れる。さらに第1図(d)はゲート4を形成した面にエ
ピタキシャル成長法によりn形シリコン単結晶層5を形
成した状噛を示している。ここに、C川ま電流の通路と
なるチャンネル領域である。
FIG. 1 is a longitudinal cross-sectional view of a semiconductor device showing the concept of forming a raccoon gate using a diffusion method. Here, for convenience of concrete explanation, the substrate is assumed to be N-type and the gate is assumed to be P-type. . That is, in FIG. 1(a), l is a substrate, 2 is an oxide film, 3 is a window selectively opened in the oxide film 2, and the first
In FIG. 3B, 4 is a gate formed by diffusing P-type impurities through the window 3. Also, after the gate 4 is formed in FIG. 1(C)? A state in which the chemical film 2 has been removed is shown. Further, FIG. 1(d) shows a structure in which an n-type silicon single crystal layer 5 is formed by epitaxial growth on the surface on which the gate 4 is formed. This is the channel region where the C river current passes.

かようにして、ゲート4を拡散法で形成する際にゲート
抵抗を小さくするためには必然的にゲート拡散時P形不
純物の表面製置を昼める必要が生じる。しかしながらこ
のことはっぎのような弊害をもたらすものになってしま
う。例えば、Pゲートの拡散不純物原子としては酸化膜
に対してマスク効果がありかつ萬い表面濃度が得られる
ことからS(ロンが広く用いられるところであるが、P
形不純物のボロンを41181 Ifで拡散したゲート
拡散面へ不純物濃度が1014〜10101j(ato
/cc)オーダーと低いル形シリコン単結晶層をエピタ
キシャル成長させるに、その成長時に狭いゲート間隔で
設計される隣合ったPゲート同志が短絡する現象、いわ
ゆるエピタキシャル成長時のオートドープ現象を発生し
てチャンネル領域の閉鎖を引起こすことになる。かくの
如く、拡散法でゲートを形成する場合ゲート抵抗を犠牲
にしてもチャンネル閉鎖を防止する必要が生じ、このこ
とは埋込みゲートを有する半導体装置の製作にあって好
ましい姿とは百い難いものとなっていた。
In order to reduce the gate resistance when forming the gate 4 by the diffusion method as described above, it is inevitably necessary to avoid forming P-type impurities on the surface during gate diffusion. However, this results in a number of negative effects. For example, S (Ron) is widely used as a diffusion impurity atom for the P gate because it has a masking effect on the oxide film and can obtain a high surface concentration.
The impurity concentration is 1014 to 10101j (ato
/cc) When epitaxially growing a low-order L-shaped silicon single crystal layer, a phenomenon in which adjacent P gates designed with a narrow gate interval are shorted together during growth, the so-called autodoping phenomenon during epitaxial growth, occurs, resulting in channel failure. This will cause the area to close. As described above, when forming a gate using the diffusion method, it is necessary to prevent channel closure even at the expense of gate resistance, which is hardly a desirable situation when manufacturing a semiconductor device with a buried gate. It became.

第2図はg1図と同様な態様でエピタキシャル成長法に
よるゲート形成を示すもので、6は切込みNb zはエ
ピタキシャル成長層である。すなわち、8g2図(a)
1こおいて1′は基板、2′は酸化膜であり切込み溝6
は基板1′に切込まれた1行であってこれは酸化膜2′
を利用して湿式または乾式のエツチングをh&すことに
より拌易に形成可能である。また第2図(b)は、第2
図(a)に示される酸化膜2′を除去したのちに切込み
溝6を有する面に対してP形のエピタキシャル成長を施
すことによってゲート4′を形成し、さらlこはP形エ
ピタキシャル成長層Zを形成させた状態を示している。
FIG. 2 shows gate formation by epitaxial growth in the same manner as in FIG. That is, 8g2 diagram (a)
1, 1' is the substrate, 2' is the oxide film, and the cut groove 6
is a row cut into the substrate 1', which is the oxide film 2'
It can be easily formed by performing wet or dry etching using . In addition, Fig. 2(b) shows the second
After removing the oxide film 2' shown in Figure (a), a P-type epitaxial growth layer is formed on the surface having the groove 6 to form a gate 4'. It shows the formed state.

またP形エピタキシャル成長層Z面をミラー研磨するこ
とにより第2図fc)の如く示されるものとなる。その
後ゲート4′を形成した面にn形シリコン単結晶層5′
を成長させることによって埋込みゲートが完成されて第
2図fd)のように示される。
Further, by mirror polishing the Z plane of the P-type epitaxial growth layer, it becomes as shown in FIG. 2 fc). After that, an n-type silicon single crystal layer 5' is formed on the surface where the gate 4' is formed.
The buried gate is completed by growing the wafer as shown in FIG.

かくの如きエピタキシャル成長法による場合、ゲート4
′内の不純物&!kll)kの分布は一様なためゲート
抵抗を小さくすることができる。例えば、このゲート4
′の不純物濃度と第1図により形成したゲート4の表面
不純物m1度が同じであると仮定するならば、ゲート抵
抗は拡散法に比較してエピタキシャル法が(115)〜
(l/lo) 8度に小さくなる。
When using such an epitaxial growth method, the gate 4
Impurities in &! Since the distribution of kll)k is uniform, the gate resistance can be reduced. For example, this gate 4
Assuming that the impurity concentration of ' and the surface impurity m1 degrees of the gate 4 formed according to FIG. 1 are the same, the gate resistance is (115) to
(l/lo) decreases to 8 degrees.

この理由は拡散法では不純物濃度分布が表面から底部へ
指故函数的に減少されるものとなるIこある。
The reason for this is that in the diffusion method, the impurity concentration distribution decreases in a direct function from the surface to the bottom.

したがって、ゲート抵抗を小さくする観点からみればエ
ピタキシャル法による形成法は有利である。
Therefore, from the viewpoint of reducing gate resistance, the epitaxial formation method is advantageous.

しかるに、エピタキシャル成長法によるものは、例示の
如く切込まれた部分にエピタキシャル成長を施すため、
基板とゲート界面の結晶性が良好でないためにゲート接
合のリーク電流の増大をきたすなど逆方向特性が悪く、
他方、エピタキシャル成長層を一様な濃度で高めるもの
とすれば埋込みエピタキシャル成長にチャンネルの閉鎖
をまねく等の欠点を有する。それゆえ商業的規模で生産
する上では満足できる方法とは言えなかった。
However, in the epitaxial growth method, epitaxial growth is performed on the cut portion as shown in the example, so
Due to poor crystallinity between the substrate and the gate interface, reverse characteristics are poor, such as increased leakage current at the gate junction.
On the other hand, if the epitaxial growth layer is made to have a uniform concentration, it has drawbacks such as channel closure during buried epitaxial growth. Therefore, it could not be said to be a satisfactory method for production on a commercial scale.

本発明は上述したような問題点を解消するためなされた
もので、エピタキシャル成長法およびその熱処理を用い
て特にエピタキシャル成長法を巧み、に効用せしめた新
規なゲート形成法を提供せんとするものである。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a new gate forming method that makes the epitaxial growth method particularly effective by using the epitaxial growth method and its heat treatment.

第3図は本発明による一例の概念を示すもので、図中第
1図および第2図と同符号のものは同じ構成部分もしく
は同じ機能を有する部分を示す。ここ遥こ、第3図は本
発明の基本技術思想の理解を容易にするため1前述の第
1図およびMz図に類して表し、さらには以下具体的な
数値を用いて詳細説明することにする。
FIG. 3 shows the concept of an example according to the present invention, and in the figure, the same reference numerals as in FIGS. 1 and 2 indicate the same components or parts having the same function. To facilitate understanding of the basic technical idea of the present invention, Figure 3 will be expressed in a manner similar to Figure 1 and the Mz diagram described above, and will be explained in detail below using specific numerical values. Make it.

すなわち、第3図(a) I (b)は比抵抗100(
Ωart)。
That is, Fig. 3 (a) I (b) has a specific resistance of 100 (
Ωart).

厚ミ250(μmrL)のN形の基板1 、1’、厚み
2(μm)を有する酸化膜2.2′、酸化膜2 (C選
択的Jこ開けられた幅20(μm)を有する窓3、窓3
を利用して深さ15(μフル)の切り込み溝6を形成し
たものを示している。ここで、かような切込みI#6は
第2図説明の如く容易に形成できる。jJ3図(C)は
切込み溝6をモノシランによるエピタキシャル成長法で
I)形不純物のボロ/をドープしてl050″Cの温度
で成長させて埋めた状態を示している。したがってエピ
タキシャル成長のvA敵化膜2“面上にもP形エピタキ
シャル成長層2′が成長する。ここに、4″はゲートで
ある。しかしながら、かように切込み溝6をP形エピタ
キシャル成長層2′で埋めた状態のみでは基板1“とエ
ピタキシャル層との界面における結晶性が悪いため、接
合のリーク′vt流が増大する原因となる。これを改善
せしめるべく、さらにエピタキシャル成長1時の温度1
050 ’0よりも備かに崎箭高い温度で熱処理を施す
主要な過程が設けられる。そして、SA3図(C)に示
す如き形成菌にかくの如き熱処理を施すことによってP
形エピタキシャル層を不純物源として基板内に浅い拡散
が一様に行われるものとすることができる。つまり、第
3図(d)に示すようlこ、第3図(C)のものに対し
て1100’0のmriで3時間の熱処理を行うことに
より、約3〜5(μm)のP膨拡散層7が形成し得る。
An N-type substrate 1, 1' with a thickness of 250 (μm), an oxide film 2.2' with a thickness of 2 (μm), and an oxide film 2 (C selectively opened window with a width of 20 (μm)) 3. Window 3
The cut groove 6 having a depth of 15 (μ full) is formed using the following method. Here, such a cut I#6 can be easily formed as explained in FIG. Fig. JJ3 (C) shows the state in which the cut groove 6 is filled by epitaxial growth using monosilane, doped with I) type impurity boro/, grown at a temperature of 1050''C.Therefore, the vA enemy film of epitaxial growth is A P-type epitaxial growth layer 2' is also grown on the 2'' plane. Here, 4" is the gate. However, if the cut groove 6 is filled with the P-type epitaxial growth layer 2' alone, the crystallinity at the interface between the substrate 1" and the epitaxial layer is poor, resulting in junction leakage. 'vt flow increases. In order to improve this, the temperature during epitaxial growth 1
A main step is provided in which the heat treatment is performed at a temperature higher than 0.050'. Then, by applying heat treatment to the forming bacteria as shown in Figure SA3 (C), P.
The epitaxial layer can be used as an impurity source to uniformly shallowly diffuse into the substrate. In other words, as shown in FIG. 3(d), by heat-treating the material in FIG. 3(C) for 3 hours at an MRI of 1100'0, a P expansion of about 3 to 5 (μm) is obtained. A diffusion layer 7 may be formed.

かくの如く、熱処理を施すことは、P形エピタキシャル
層と基板とが接したPN結合が結晶のよい基板側へ(3
〜5)(μm)移動する結果を生み接合特性の改善が行
われるものとなり、しかもPN結合の特性改善のみなら
ず後述する如く埋込みゲート形成時lこチャンネルの閉
塞を防止する上で大きな役割を演じるものとなる。そし
てかかる熱処理を施すことは本発明の主眼の1つである
As described above, performing heat treatment causes the PN bond where the P-type epitaxial layer and the substrate are in contact to move toward the substrate side with good crystallization (3
~5) (μm), which results in an improvement in the junction characteristics.Moreover, as will be described later, it plays a major role in preventing blockage of this channel when forming a buried gate. It becomes something to act out. And performing such heat treatment is one of the main objectives of the present invention.

また、第3図(d)に示すように形成後酸化膜2//’
とP形エピタキシャル成長層2′をミラー研磨で除去し
て第3図(e)の如き形状に仕上げることができ、その
のちこの研磨面にゲートを埋込むため濃度10”−10
”(atoms/cc)を有するn形シリコy 単結晶
層5″が15〜20(μWL)の厚みに形成されて第3
図(f)のものとすることができる。
In addition, as shown in FIG. 3(d), the oxide film 2//'
The P-type epitaxial growth layer 2' can be removed by mirror polishing to form a shape as shown in FIG.
An n-type silico single crystal layer 5'' having a thickness of 15 to 20 (μWL) is formed to a thickness of 15 to 20 (μWL).
It can be as shown in Figure (f).

かくの如く8g3図に示すものは、特に第3図(C)に
示されるように基板l“は切込み溝6が設けられた凹状
面内側にP形のエピタキシャル層で埋めるようIこした
ものであって、その2段階のP形不純物譲度に差をもた
せて続いて熱処理を廁される大きな特長を有する。すな
わち、これを具体的にさらに記述するならば、凹状底部
よりモノシランにボロンをドープしてボロン濃度が(I
XIOI9)(atoms/cc)オーダーのP形エピ
タキシャル成長層を1050’Oの温度で10(μWL
)成長させ、さらに連続してこの上にボロン義度が(I
XIOll) (atoms/cc)オーダーのP形エ
ピタキシャル成長層を5〜7(μm)成長させる。した
がって、尿さ15(μ7FL)に凹状に切込まれた切込
み#46部分が埋まることになる。
As shown in Fig. 8g3, the substrate l'' is cut so that the inner side of the concave surface in which the cut groove 6 is provided is filled with a P-type epitaxial layer, as shown in Fig. 3(C). It has the great feature that the two stages are made to have different degrees of P-type impurity yield and are then subjected to heat treatment.In other words, to describe this more specifically, monosilane is doped with boron from the concave bottom. Then the boron concentration is (I
XIOI9) (atoms/cc) order P-type epitaxial growth layer is grown at a temperature of 1050'
), and then continuously grow boron on top of this (I
A P-type epitaxial growth layer of (atoms/cc) order is grown to a thickness of 5 to 7 (μm). Therefore, the concave cut #46 portion made in the urine plate 15 (μ7FL) is buried.

その後、P形エピタキシャル成長温度より僅か1ζ高い
1100°0の温度で3時間の熱処理を施すことにより
、PN接合を基板側へ約3〜5(μ桐移動させられたP
膨拡散層7を形成し得るものである。これらの関係をさ
らにまた第4図〜第6図を参照して説明する。
Thereafter, heat treatment is performed for 3 hours at a temperature of 1100°0, which is only 1ζ higher than the P-type epitaxial growth temperature, to transfer the PN junction to the substrate side by approximately 3 to 5 μm.
The expansion diffusion layer 7 can be formed therein. These relationships will be further explained with reference to FIGS. 4 to 6.

ここに、第4図は第3図(c)に示される(X−X)の
縦方向相離における不純物の分布を表わすものであり、
第5図はゲートが埋込まれる前のゲート表面から厚み方
向深さすなわち第3図(c)に示す(x’ −x’ )
の縦方向における不純物濃度の分布を表すものであり、
第6図は第3図(elこ示す07−X“)のゲート領域
の表面濃度分布を表わすものであり。
Here, FIG. 4 represents the distribution of impurities in the vertical phase separation of (X-X) shown in FIG. 3(c),
Figure 5 shows the depth in the thickness direction from the gate surface before the gate is embedded, that is, the depth shown in Figure 3(c) (x' - x')
It represents the distribution of impurity concentration in the vertical direction of
FIG. 6 shows the surface concentration distribution of the gate region of FIG. 3 (el 07-X").

これら第4図〜第6図の縦軸を!り目盛で示している。The vertical axis of these figures 4 to 6! It is shown on a scale.

かかる第4図、第5図および第6図においては、まず第
4図においてゲート4“領域の縦方向濃度分布にてその
底部は(IXIOIす(atoms/cc)オーダーと
なり、その上面側が(IXIOIQ(atoms/cc
)オーダとなるH 、 Lの2段階で形成されるものと
なることが示される。つぎに%第5図は第4図に形成さ
れたものに熱処理が加えられて変化した濃度分布が示さ
れる。すなわち、前述の2段階の突変分布を有するP形
エピタキシャル成長層部分はその上面側が表面濃度が(
lXl0”)(atom@/cc)オーダーを有するP
J−、このP層より内側が(lX101す(atoms
/cc)オーダーを有するP 層かりなり、これに接し
てゲート領域形成後の熱処理によりP++層を拡散源と
して拡散形成されたP層の拡散層が連なる如く形成され
る。したがって、Pゲート部分においてはその上部より
り、HおよびMすなわら低映度域、高濃度域および中濃
度域を構成する分布を有することが示されるものとなる
。かようにPゲートの表面露出部の濃度が低くその内部
側に高い濃度をもたせた3つの濃度分布を有するものと
することができる。
4, 5, and 6, first of all, in the vertical concentration distribution of the gate 4'' region in FIG. (atoms/cc
) order is shown to be formed in two steps, H and L. Next, % FIG. 5 shows the concentration distribution changed by applying heat treatment to the one formed in FIG. 4. That is, in the P-type epitaxial growth layer portion having the above-mentioned two-stage distribution, the surface concentration on the upper surface side is (
P with order lXl0”)(atom@/cc)
J-, the inside of this P layer is (lX101(atoms
/cc) order, and in contact with this, a series of diffusion layers of the P layer are formed by heat treatment after forming the gate region, using the P++ layer as a diffusion source. Therefore, it can be seen that the P gate portion has a distribution in which H and M constitute a low image intensity area, a high density area, and a medium density area from the top. In this way, the P gate can have three concentration distributions in which the concentration is low in the surface exposed portion and the concentration is high inside.

つぎにまた、第6図においては、エピタキシャル法で形
成したPゲートの高一度(lxlolす(a tons
/cc)と低濃度ill、 (lXl0”)(、ato
ms/cc)を有する部分にて、その高濃度域の濃度が
(5XlG”)(atomt/cc)オーダーに低下さ
れてなるものが示される。これは、M3図(c)に示す
如く形成してさらに熱処理が施されることにより、凹状
の内側へのP形エピタキシャル成長工程においては、最
初に成長する高一度域が拡散源となって基板l“へ拡散
するために濃度低下を生じるものとなるからである。そ
して、エピタキシャル成長より(IXIO”)(ato
ms/cc)の製置を有していたものを、前述した如き
熱処理したのちには前記の値に減少されたものとなるこ
とが実験によっても得ることができた。かように特に表
面痰度の高いP+十層の表面露出部の濃度を低く抑える
ように工夫したことは本ゲート形成法にあっても注目す
べき点である。
Next, in FIG. 6, the height of the P gate formed by the epitaxial method (lxlol(a tons)
/cc) and low concentration ill, (lXl0”)(,ato
ms/cc), the concentration in the high concentration region is reduced to the order of (5 In the P-type epitaxial growth process on the inside of the concave shape, the high-temperature region that grows first becomes a diffusion source and diffuses into the substrate l'', resulting in a decrease in concentration. It is from. Then, from epitaxial growth (IXIO”) (ato
ms/cc), it was found through experiments that the value was reduced to the above-mentioned value after the heat treatment as described above. It is noteworthy that this gate formation method was designed to keep the concentration low in the surface exposed part of the P+ layer, which has a particularly high surface phlegm content.

さらに、前記第5図および第6図に示す如き機能より、
堀込みゲートを有する半導体装置の製造上および特性上
つぎに列挙するような大きなメリットをもたらすものと
なる。
Furthermore, from the functions shown in FIGS. 5 and 6,
This brings about the following great advantages in manufacturing and characteristics of a semiconductor device having a trenched gate.

(1)  製造面より (1−1)  表面に露出したPゲートの濃度が101
′(atoms/cc)オーダーと低いのでゲート埋込
みのために引続いて行われるゲートと反対の導電形を有
して濃度カミ0” 〜10”(atoms/cc)を有
する3形エピタキシャル層の成長時にオートドープ現象
が発生し離<、チャンネルの閉鎖を確実に防止でき歩留
りを大巾に高めることが可能になる。
(1) From the manufacturing aspect (1-1) The concentration of the P gate exposed on the surface is 101
Growth of a 3-type epitaxial layer having a conductivity type opposite to that of the gate and having a concentration of 0" to 10" (atoms/cc) is subsequently performed for gate embedding. When an autodoping phenomenon occurs, channel closure can be reliably prevented and yields can be greatly increased.

(l−2)  Pゲートの中心部カミQl” (ato
ms/cc)オーダーと尚濃度エピタキシャル成長層で
形成されるため、ゲート抵抗が小さくゲート取出し電極
間距離を大巾にのばすことが可能になって、取出し電極
数を低減できさらには作業工程の簡素化をもたらす。
(l-2) Center part of P gate Ql” (ato
ms/cc) order and is formed using a high-concentration epitaxially grown layer, the gate resistance is small, and the distance between the gate lead-out electrodes can be widened, reducing the number of lead-out electrodes and simplifying the work process. bring about.

(2)特性面より (2−1)  ゲート接合は拡散法で形成されるために
逆方向特注に浸れリーク電流が小さい。
(2) From the characteristics aspect (2-1) Since the gate junction is formed by a diffusion method, leakage current is small because it can be custom-made in the reverse direction.

(2−z )  ゲート抵抗値が小さいので早いスイッ
チング特性が得られる。
(2-z) Since the gate resistance value is small, fast switching characteristics can be obtained.

(2−3)  前記取出し電極数を大巾に低減可能なた
め、例えばこの面積増加分だり素子の熱抵抗を減少でき
る。
(2-3) Since the number of lead-out electrodes can be greatly reduced, for example, the increased area and the thermal resistance of the element can be reduced.

以上説明した如く本発明によれば、2段階の濃↓ 度分布をもたらす如を件エピタキシャル成長とこれに続
く熱処理を巧みに用い、埋込みを行うゲートと反対の導
電形層に接するゲートの一度を低くしゲート中心部の一
度を高くすることにより、檀々の利点を有して効用し得
る産業的価値の篩い埋込みゲートの形成法を提供できる
As explained above, according to the present invention, by skillfully using epitaxial growth and subsequent heat treatment to produce a two-step concentration distribution, the thickness of the gate in contact with the conductivity type layer opposite to that of the gate to be buried is lowered. By increasing the height of the central part of the gate, it is possible to provide a method of forming a buried gate with a number of advantages and useful industrial value.

なお本説明はN形の基板のPゲート構造のものによった
が、P形を用いた基板のn形グート構造のものであって
も本発明が同一に適用できることは勿論である。
Although this explanation has been based on a P-gate structure with an N-type substrate, it goes without saying that the present invention is equally applicable to a P-gate structure with a P-type substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来方式の拡散法、エピタキシャル成
長法を用いて埋込みゲートを形成する概念を示す半導体
装置の縦方向断面説明図、第3図は第1図および第2図
に類して表した本発明による一例の概念を示す縦方向断
面説明図である。第4図、第5図および第6図はM3図
の説明のため表した減産分布を示す図である。 ltl’el“・・・・・シリコン基I!<基[)、2
,2’。 i・・・・・・酸化種、4.4’、4“・・・・・・グ
ー)、5.5’。 5“・・・・・・n形シリコン単結晶層、6・・・・・
・切込み溝、7・・・・・・P形拡散發。 M 、!’f出#峨人 東洋環イ、貞ユ諸、;’1 ij:式会社代表者  土
  井   、ヅ 葡11叉       躬2図 (C)(り 第 J 図 [
1 and 2 are longitudinal cross-sectional explanatory diagrams of a semiconductor device showing the concept of forming a buried gate using the conventional diffusion method and epitaxial growth method, and FIG. 3 is similar to FIGS. 1 and 2. FIG. 2 is an explanatory longitudinal cross-sectional view showing an example of the concept according to the present invention. FIG. 4, FIG. 5, and FIG. 6 are diagrams showing the production reduction distribution shown for explanation of the M3 diagram. ltl'el"...Silicon group I! < group [), 2
,2'. i...Oxidized species, 4.4', 4"...Goo), 5.5'. 5"...N-type silicon single crystal layer, 6...・・・
- Cut groove, 7...P-type diffusion. M,! 'F appearance #Ajin Toyokan I, Teiyu, ;'1 ij: Shiki company representative Doi, Tsuguo 11, 萬 2 (C) (ri Figure J [

Claims (1)

【特許請求の範囲】 (11m込みゲート方式半導体装置を生成する方法にお
いて、埋込みゲートを形成するに際してシリコン基板に
凹状の切込み溝を設け、この凹状の切込みTjijをエ
ピタキシャル成長法を用いることにより凹状−」込み溝
の縦方向断面が2つの濃度分布を有する如く前記シリコ
ン基板と反対の導電形をもつシリコン単結晶で満たして
ゲートを形成せしめるとともに、続いてエピタキシャル
成長温度よりも僅かに高い温度の熱処理を施したのちこ
の上にシリコン基板と同じ導電形のシリコン結晶を積む
ようにしたことを特徴とする半導体装置の埋込みゲート
形成法。 (2) 前記凹状切込み溝の縦方向断面の底部を、エピ
タキシャル成長法で形成される高濃度層を熱地Jにによ
り中濃度の拡散層+形成し、この拡散層の上にエピタキ
シャル成焼法による高濃度層を設けるとともに、凹状切
込み溝の縦方向断面の上層部をエピタキシャル成長法で
低111If層を設けるようにした特許請求の範囲第(
1)項記載の半導体装置の塊込みゲート形成法。
[Claims] (In a method for producing an 11m deep gate type semiconductor device, a concave cut groove is provided in a silicon substrate when forming a buried gate, and this concave cut Tjij is formed into a concave shape by using an epitaxial growth method.) The vertical cross section of the groove is filled with a silicon single crystal having a conductivity type opposite to that of the silicon substrate so as to have two concentration distributions to form a gate, and then heat treatment is performed at a temperature slightly higher than the epitaxial growth temperature. A buried gate forming method for a semiconductor device characterized in that a silicon crystal having the same conductivity type as the silicon substrate is then stacked thereon. (2) The bottom of the vertical cross section of the recessed groove is formed by an epitaxial growth method. A medium-concentration diffusion layer + is formed using a hot ground J, and a high concentration layer is formed on this diffusion layer by epitaxial sintering, and the upper layer of the vertical cross section of the concave groove is formed by epitaxial growth. Claim No.
1) A lump gate formation method for a semiconductor device as described in section 1).
JP14695782A 1982-07-13 1982-08-26 Buried gate formation of semiconductor device Pending JPS5936971A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14695782A JPS5936971A (en) 1982-08-26 1982-08-26 Buried gate formation of semiconductor device
US06/511,193 US4528745A (en) 1982-07-13 1983-07-06 Method for the formation of buried gates of a semiconductor device utilizing etch and refill techniques
DE8383304079T DE3381267D1 (en) 1982-07-13 1983-07-13 METHOD FOR PRODUCING BURNED GATES FOR A SEMICONDUCTOR ARRANGEMENT.
EP83304079A EP0099270B1 (en) 1982-07-13 1983-07-13 Method for the formation of buried gates of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14695782A JPS5936971A (en) 1982-08-26 1982-08-26 Buried gate formation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5936971A true JPS5936971A (en) 1984-02-29

Family

ID=15419400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14695782A Pending JPS5936971A (en) 1982-07-13 1982-08-26 Buried gate formation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5936971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253279A (en) * 1984-05-29 1985-12-13 Toyota Central Res & Dev Lab Inc Measuring instrument for strain in semiconductor
JPS61130769A (en) * 1984-11-30 1986-06-18 株式会社日立製作所 Chilliness generating method utilizing cryogenic waste gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130185A (en) * 1973-04-12 1974-12-13
JPS50117373A (en) * 1974-02-28 1975-09-13
JPS5269585A (en) * 1975-12-09 1977-06-09 Nippon Gakki Seizo Kk Semiconductor device
JPS56157058A (en) * 1980-04-14 1981-12-04 Thomson Csf Semiconductor device and method of manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130185A (en) * 1973-04-12 1974-12-13
JPS50117373A (en) * 1974-02-28 1975-09-13
JPS5269585A (en) * 1975-12-09 1977-06-09 Nippon Gakki Seizo Kk Semiconductor device
JPS56157058A (en) * 1980-04-14 1981-12-04 Thomson Csf Semiconductor device and method of manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253279A (en) * 1984-05-29 1985-12-13 Toyota Central Res & Dev Lab Inc Measuring instrument for strain in semiconductor
JPH0337750B2 (en) * 1984-05-29 1991-06-06 Toyoda Chuo Kenkyusho Kk
JPS61130769A (en) * 1984-11-30 1986-06-18 株式会社日立製作所 Chilliness generating method utilizing cryogenic waste gas
JPH0449029B2 (en) * 1984-11-30 1992-08-10 Hitachi Ltd

Similar Documents

Publication Publication Date Title
US4476622A (en) Recessed gate static induction transistor fabrication
JPS61292934A (en) Manufacture of semiconductor element
US3951702A (en) Method of manufacturing a junction field effect transistor
US4528745A (en) Method for the formation of buried gates of a semiconductor device utilizing etch and refill techniques
US4185291A (en) Junction-type field effect transistor and method of making the same
US3703420A (en) Lateral transistor structure and process for forming the same
CN111162009A (en) Manufacturing method of low-on-resistance low-voltage separation gate MOS device
JPS5936971A (en) Buried gate formation of semiconductor device
CN107393955B (en) High-efficiency high-reliability silicon carbide MOS tube and manufacturing method thereof
US3573113A (en) Method of preparing a p-n junction
JPS59215774A (en) Semiconductor device
JPS60261171A (en) Mos transistor
KR960015929B1 (en) Method for manufacturing bipolar transistor
JPS6157714B2 (en)
WO2024109118A1 (en) Self-aligned trench power device having controllable channel length, and manufacturing method therefor
JPS6156461A (en) Misfet on insulation layer and manufacture thereof
JPH04294585A (en) Manufacture of vertical type mos semiconductor device
CN115440822A (en) Silicon carbide power metal oxide semiconductor field effect transistor and preparation method thereof
JPS6238869B2 (en)
JPS5534488A (en) Semiconductor device and its manufacturing method
JPS61136267A (en) Bipolar semiconductor device
JPS5911684A (en) Forming method for buried gate of semiconductor device
JPS59200464A (en) Manufacture of bipolar semiconductor device
JPS6351677A (en) Semiconductor device provided with junction-type effect transistor
JPH03201485A (en) Manufacture of vertical type double diffusion mos transistor