JPS6156461A - Misfet on insulation layer and manufacture thereof - Google Patents

Misfet on insulation layer and manufacture thereof

Info

Publication number
JPS6156461A
JPS6156461A JP17872984A JP17872984A JPS6156461A JP S6156461 A JPS6156461 A JP S6156461A JP 17872984 A JP17872984 A JP 17872984A JP 17872984 A JP17872984 A JP 17872984A JP S6156461 A JPS6156461 A JP S6156461A
Authority
JP
Japan
Prior art keywords
thin film
forming
crystal silicon
single crystal
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17872984A
Other languages
Japanese (ja)
Inventor
Eiji Nagasawa
長澤 英二
Mitsutaka Morimoto
光孝 森本
Hisashi Mizumura
水村 壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17872984A priority Critical patent/JPS6156461A/en
Publication of JPS6156461A publication Critical patent/JPS6156461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce the overlap capacitance and remove the short channel effect by a method wherein a metal silicide is formed at part or over the whole of source-drain regions, and the metal silicide is made to reach the interface between the silicon layer and the base insulation substrate. CONSTITUTION:The metal silicides 205 are formed at part or over the whole of the source-drain regions of the MISFET made Si formed on the insulation layer 201, and the metal silicides 205 are made to reach the interface between the Si layers 203 and the insulation layer 201. For example, the sour;ce and drain regions 204 in contact with the gate region 202 consist of an impurity- doped layer. The source-drain regions 205 are the part therefrom the impurity- doped layer 204 is removed and formed out of metal silicide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は絶縁層上に形成したM I 8 (Metal
 −Insulater −Sem1conducto
r )  型電界効果トランジスタ(以降はMIS型F
ETと呼ぶ)に関し。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to M I 8 (Metal) formed on an insulating layer.
-Insulator -Sem1conducto
r ) type field effect transistor (hereinafter referred to as MIS type F
(referred to as ET).

特にソース及びドレインに金属シリサイドを使用して低
抵抗化を実現したMIS型電界効果トランジスタの構造
及びその製造方法に関する。
In particular, the present invention relates to the structure of a MIS field effect transistor that uses metal silicide for the source and drain to achieve low resistance, and a method for manufacturing the same.

(従来技術とその問題点) 絶縁層上の半導体を用いたMIS型FETは接合容量や
配線容置が少なく、各素子間の分離が完全であるなどの
特徴を持ち、高速・萬密度な集積回路への応用という点
から注目されている。高性能MIS壓F’ETにおいて
はゲート電極とソース・ドレイン電極が自呂整合的に形
成されているものが一般的である。この様な自己整合型
MI8iFETにおいて、いわゆる短チヤネル効果を低
減させるためには、ソース及びドレイン電極を構成する
不純物ドープ層のゲート2極下への横方内拡がりを最小
限にとどめる必要があるので、ソース及びドレイン電極
を構成する不純物ドープ層の深さを浅くすることが有効
である。しかし、不純物ドープ層の深さが浅くなるに従
い、ソース・ドレインのシート抵抗が上昇し、深さ0.
3μmでは、その値はn型で300/口、9塁では10
0Ω/口 にもなる、この大きなシート抵抗lこ起因し
て寄生抵抗が生じ、絶縁層上に形成したことによる高性
能化の特徴を発揮させ得ない。
(Prior art and its problems) MIS-type FETs using semiconductors on insulating layers have characteristics such as small junction capacitance, small wiring space, and complete isolation between each element, and are suitable for high-speed and high-density integration. It is attracting attention from the point of view of its application to circuits. In high-performance MIS F'ET, gate electrodes and source/drain electrodes are generally formed in self-alignment. In such a self-aligned MI8iFET, in order to reduce the so-called short channel effect, it is necessary to minimize the lateral inward spread of the impurity-doped layer constituting the source and drain electrodes below the gate 2 pole. It is effective to reduce the depth of the impurity-doped layers constituting the source and drain electrodes. However, as the depth of the impurity-doped layer becomes shallower, the sheet resistance of the source/drain increases.
At 3 μm, the value is 300/mouth for n-type and 10 for 9th base.
This large sheet resistance, which is as high as 0 Ω/hole, causes parasitic resistance, which prevents the high performance characteristics achieved by forming it on an insulating layer.

近年、かかる問題を解決する方法として、ソー    
 jス・ドレイン電極となるべきシリコン表面に高融点
金属シリサイドを形成することにより、上記のシート抵
抗上昇の問題を解決する方法が提案されている。
In recent years, as a way to solve this problem,
A method has been proposed to solve the above-mentioned problem of increased sheet resistance by forming a high-melting point metal silicide on the silicon surface that is to become the JS/drain electrode.

第1図はこの従来例を説明するためのもので、絶縁基板
101上に形成されたMI8WFETの断面図を示して
おり、ソース又はドレインの表面に高融点金属シリサイ
ド105が形成されている。
FIG. 1 is for explaining this conventional example, and shows a cross-sectional view of an MI8WFET formed on an insulating substrate 101, in which a refractory metal silicide 105 is formed on the surface of the source or drain.

しかし、第1図に示した構造では、以下に記す問題点が
生じる。ゲート長が1μm程度以下の微細な寸法を持つ
MIa型FETにおいては、短チヤネル効果の発生を抑
制するためには、ソース・ドレインを形成する不純物ド
ープ層のゲート電極下への横方内拡がりを極力小さく抑
える必要があるが、現状では0.4μm程度の横方内拡
がりがあり、短チヤネル効果の発生が防止できない点で
ある。別の問題点は、ソース・ドレインのシート抵抗は
十分小さくなく、ソース・ドレインの延長を配線として
用いることができない点である。第1図において使用さ
れている高融点金属シリサイドの厚みはQ、l l1m
 −Q、2μm程度であり、W、Ta。
However, the structure shown in FIG. 1 has the following problems. In MIa-type FETs with minute gate lengths of about 1 μm or less, in order to suppress the short channel effect, it is necessary to prevent the impurity-doped layers that form the source and drain from expanding laterally below the gate electrode. Although it is necessary to keep it as small as possible, at present there is a lateral inward spread of about 0.4 μm, and the short channel effect cannot be prevented from occurring. Another problem is that the sheet resistance of the source/drain is not small enough, and the extension of the source/drain cannot be used as wiring. The thickness of the high melting point metal silicide used in Figure 1 is Q, l l1m
-Q, about 2 μm; W, Ta.

Mo、Ti等のシリサイドの中で最も低い固有抵抗率を
持つTiシリサイドを用いた場合にもシート抵抗値は1
Ω/口であり、ソース又はドレインの延長を配線層とし
て用いることが出来ない。
Even when using Ti silicide, which has the lowest specific resistivity among silicides such as Mo and Ti, the sheet resistance value is 1.
Ω/gate, and the extension of the source or drain cannot be used as a wiring layer.

(発明の構成) 本発明の目的は上記問題点を解決した絶縁層上のMIS
型PETの新、規な構造及びその製造方法を提供するこ
とにある。
(Structure of the Invention) The object of the present invention is to provide an MIS on an insulating layer that solves the above problems.
The object of the present invention is to provide a new and novel structure of type PET and a manufacturing method thereof.

(発明の構成) 本発明によれば、絶縁層上に形成したシリコンMIS型
電界効果トランジスタにおいてソース・ドレイン領域の
一部又は全領域に金属シリサイドが形成され、かつ該金
属シリサイドがシリコン層と下地絶縁基板との界面に進
達していることを特徴とするMIS型電界効果トランジ
スタが得られる。
(Structure of the Invention) According to the present invention, in a silicon MIS field effect transistor formed on an insulating layer, metal silicide is formed in part or all of the source/drain region, and the metal silicide is formed between the silicon layer and the base layer. A MIS type field effect transistor is obtained, which is characterized in that it reaches the interface with the insulating substrate.

更に、本発明によれば、絶縁層上にMIS型電界効果ト
ランジスタを形成すべき単結晶シリコン領域を形成した
後、その表面にゲート絶縁膜を形成し、その後、ゲート
電極用薄膜を形成する工程と、該ゲート電極用薄膜をパ
ターニングした後当該ゲート電゛極薄膜下以外の前記ゲ
ート絶縁膜を工ツチングし単結晶シリコン表面を露出さ
せる工程と、高融点金属薄膜を形成した後、非ドーパン
トイオンを注入して当該高融点金属薄膜と前記露出単結
晶シリコン表面との界面を混合させ1次いでアニールを
行うことにより、前記露出単結晶シリコン表面下のすべ
てのシリコンを金属シリサイドに変換させる工程と、未
反応で残存する高融点金属をエツチングした後1層間絶
縁膜を形成し1次いで、前記金属シリサイド上に設けた
当該層間絶縁膜の開口より不純物を拡散する工程とを含
むことを特徴とする絶縁層上のMIS凰―界効釆トラン
ジスタの製造方法が得られる。
Furthermore, according to the present invention, after forming a single crystal silicon region in which a MIS field effect transistor is to be formed on an insulating layer, forming a gate insulating film on the surface thereof, and then forming a thin film for a gate electrode. After patterning the gate electrode thin film, the gate insulating film except under the gate electrode thin film is patterned to expose the single crystal silicon surface, and after forming the high melting point metal thin film, non-dopant ions are patterned. A step of converting all the silicon under the exposed single crystal silicon surface into metal silicide by implanting and mixing the interface between the high melting point metal thin film and the exposed single crystal silicon surface and then performing annealing; An insulation characterized by comprising the steps of etching the unreacted and remaining high melting point metal, forming an interlayer insulating film, and then diffusing impurities through an opening in the interlayer insulating film provided on the metal silicide. A method for manufacturing a layered MIS film-effect transistor is obtained.

更に本発明lこよれば%絶縁層上lこMId型電界効果
トランジスタを形成すべき単結晶シリコン領域を形成し
た後、その表面にゲート絶縁膜を形成し、その後、ゲー
ト電極用薄膜を形成する工程と。
Further, according to the present invention, after forming a single crystal silicon region on which an MId type field effect transistor is to be formed on the insulating layer, a gate insulating film is formed on the surface thereof, and then a thin film for a gate electrode is formed. With the process.

該ゲート電極用薄膜をパターニングした後当該ゲート域
極薄膜下以外の前記ゲート絶縁膜をエツチングし、単結
晶シリコン表面を露出させる工程と。
After patterning the gate electrode thin film, etching the gate insulating film except under the extremely thin film in the gate area to expose the single crystal silicon surface.

高融点金属薄膜を形成した後、非ドーパントイオンと■
族又は■族のドーパントイオンとを注入することにより
当該高融点金属薄膜と前記単結晶シリコン表面との界面
を混合させ、かつ高融点金属薄膜中及び当該界面混合層
及び当該混合層下の単結晶シリコン中へ不純物をドープ
する工程と1次いてアニールを行うことにより、前記露
出単結晶シリコン表面下のすべてのシリコンを金属シリ
サイドに変換させた後、未反応で残存する高融点金属を
エツチングする工程とを含むことを特徴とする絶縁層上
のMIS型電界効果トランジスタの製造方法が得られる
After forming a high melting point metal thin film, non-dopant ions and ■
The interface between the refractory metal thin film and the single-crystal silicon surface is mixed by implanting dopant ions of the group or II group, and the interfacial mixed layer and the single crystal under the mixed layer are mixed in the refractory metal thin film, the interfacial mixed layer, and the single crystal under the mixed layer. A step of doping impurities into silicon and then annealing to convert all the silicon under the exposed single crystal silicon surface into metal silicide, and then etching the remaining unreacted high melting point metal. A method for manufacturing a MIS field effect transistor on an insulating layer is obtained, the method comprising:

C実施例1) 本発明のMISFETの一実施例の構造を第2図に示す
、同図において、204はゲート領域202に接したソ
ース及びドレイン領域であり、不純物ドープ層からなる
。205はソース・ドレイン領域で前記不純物ドープ層
204を除いた部分であり、。、、、ケイ1、。わ、い
6.4よ7.よ、   量ソース及びドレイン不純物ド
ープ層のゲート電極下の横方内拡がりを低減できる利点
がある。第1図に示した従来例では、ソース・ドレイン
を形成する不純物ドープ層を絶縁基板まで到達させる必
要があり、絶縁基板上の半導体薄膜の厚みと同種一度(
〜0.4μfrL)のゲート電極下への横方内拡りが避
けられないが、本発明では、不純物ドープ層204は金
属シリサイド205を被う様に厚み0.1μm程度に形
成されており、横方内拡がりを0.1μm程度におさえ
ることができた1才た、本発明の構造では、金属シリサ
イドが絶縁基板まで達して形成されており、従来のソー
ス・ドレイン表面のみに金属シリサイドを形成したもの
に比して、約4分の1の低いシート抵抗が実現された。
C Embodiment 1) The structure of an embodiment of the MISFET of the present invention is shown in FIG. 2. In the figure, 204 is a source and drain region in contact with the gate region 202, and is made of an impurity-doped layer. 205 is a source/drain region excluding the impurity doped layer 204; ,,,K1,. Wow 6.4 7. This has the advantage that the lateral inward spread of the source and drain impurity doped layers under the gate electrode can be reduced. In the conventional example shown in Figure 1, the impurity-doped layer forming the source and drain must reach the insulating substrate, and the thickness is the same as the thickness of the semiconductor thin film on the insulating substrate.
Although horizontal inward expansion under the gate electrode of ~0.4 μfrL) is unavoidable, in the present invention, the impurity doped layer 204 is formed to a thickness of about 0.1 μm so as to cover the metal silicide 205. In the structure of the present invention, which was able to suppress the lateral inward expansion to about 0.1 μm, the metal silicide is formed reaching the insulating substrate, compared to the conventional structure in which metal silicide is formed only on the source and drain surfaces. A sheet resistance that is approximately one-fourth lower than that of the previous one was achieved.

さらに1本発明の構造では、ゲート領域に接する部分の
ソース・ドレイン領域204がほぼ平面である′、一方
従来のイオン注入法などによるものは曲面であり1面積
は本発明の構造の方が小さい。
Furthermore, in the structure of the present invention, the portion of the source/drain region 204 in contact with the gate region is almost flat, whereas that formed by conventional ion implantation is a curved surface, and the structure of the present invention has a smaller surface area. .

したがって、接合を通してのリーク電流を低減すること
ができた。以下、本発明の実施例を図を用いて説明する
Therefore, leakage current through the junction could be reduced. Embodiments of the present invention will be described below with reference to the drawings.

発明の詳細な説明するための主要工程における概略断面
図を示したものである。
1 is a schematic sectional view showing main steps for explaining the invention in detail.

厚さ3100^ゐ単結晶8ijl[パターン302が形
成されたサファイア基板301上にCVD法により同じ
厚さの8i0.膜を形成し、第3図(a)の構造を得た
。さらにネガ形レジストを塗布し、うら面より露光して
フィールド領域上のレジストのみ残し。
Thickness 3100^2 single crystal 8ijl [8ijl of the same thickness was deposited on the sapphire substrate 301 on which the pattern 302 was formed by CVD method. A film was formed to obtain the structure shown in FIG. 3(a). Next, apply a negative resist and expose it from the back side, leaving only the resist on the field area.

8i膜上の8 i 0.膜を除去して表面を平坦にする
8i 0. on 8i film. Remove the film and flatten the surface.

次に、第3図(bJに示す如く、ゲート絶縁[304を
熱酸化法により厚さ300^形成した後、多結晶シリコ
ン膜を4000人形成し、次いで1通常のドライエツチ
ング法により多結晶シリコンのパターニングを行った後
、当該多結晶Si 305をマスクにして、ゲート絶縁
膜をエツチングして、ソース及びドレインが形成される
べき単結晶シリコン表面306を露出させ、その後、膜
厚1600^のTi膜307をスパッタリング法により
形成した6次いで8iイオンを加速電圧160 KeV
で5XIO1scl!L−2イオン注入して、Ti膜と
単結晶シリコンとの界面を混合させた後、550℃で2
0分間のアニールを行い、Ti膜と接した単結晶シリコ
ン及び多結晶シリコン領域で金属シリサイド反応を起こ
させた。
Next, as shown in Figure 3 (bJ), after forming a gate insulator [304] to a thickness of 300^ by thermal oxidation, a polycrystalline silicon film was formed by 4000 layers, and then a polycrystalline silicon film was formed by a normal dry etching method. After patterning, the gate insulating film is etched using the polycrystalline Si 305 as a mask to expose the single crystal silicon surface 306 on which the source and drain are to be formed. The film 307 was formed by sputtering, and the 6 and 8i ions were accelerated at a voltage of 160 KeV.
So 5XIO1scl! After implanting L-2 ions and mixing the interface between the Ti film and single crystal silicon,
Annealing was performed for 0 minutes to cause a metal silicide reaction in the single crystal silicon and polycrystal silicon regions in contact with the Ti film.

次に、Hlo、系エツチング液によりフィールド絶縁膜
上の未反応Ti膜をエツチングすることにより、ソース
・ドレイン領域及びゲート領域に金属シリサイドを選択
的に形成し、第3図(C)の構造を得た。
Next, by etching the unreacted Ti film on the field insulating film with a Hlo-based etching solution, metal silicide is selectively formed in the source/drain region and gate region, resulting in the structure shown in FIG. 3(C). Obtained.

次に、気相成長法により約500OAのシリコン酸化膜
309を形成した後、通常のフォトエツチング法lこよ
りコンタクトホール310を形成し、その後、850℃
20分間の燐拡散を行って、燐を金属シリサイド308
を通して、該金属シリサイドに接するシリコン領域へ拡
散せしめて不純物ドープ層311を形成し、第3図(d
jが得られた1本実施例では、ソース・ドレイン電極を
形成するTiシリサイドのシート抵抗は0.250/口
であり、従来の焉にという低抵抗化が達成された。
Next, after forming a silicon oxide film 309 of about 500 OA by vapor phase growth, a contact hole 310 is formed by a normal photoetching method, and then the silicon oxide film 309 is heated to 850°C.
Perform phosphorus diffusion for 20 minutes to transfer phosphorus to metal silicide 308.
An impurity doped layer 311 is formed by diffusing the impurity into the silicon region in contact with the metal silicide through the metal silicide.
In this example, the sheet resistance of the Ti silicide forming the source/drain electrodes was 0.250/mouth, and the lowest resistance was achieved compared to the conventional one.

通常のMIS型FITの製造手順では、ソース・ドレイ
ン形成のための不純物拡散を行った後層間絶縁膜が形成
される。しかし、この手順では層間絶縁膜・の緻密化や
平坦化のための1000℃近くの高温アニール時に不純
物が再分布し、ソース・ドレインの接合深さが増大した
り、ゲート電極下へのソース・ドレインの横方向拡がり
が増大する欠点がある0本発明では、ソース・ドレイン
形成のための不純物ドーピングは、金属シリサイド中の
不純物の拡散がシリコン中の拡散より極めて太きい性質
を利用して、眉間膜を形成した後開口310よりドーピ
ングを行っており、眉間膜の緻密化及び平坦化のための
高温アニールを十分行った後にも、横方向拡がりを十分
小さく0.1μm程度に抑えることができた。
In a normal MIS type FIT manufacturing procedure, an interlayer insulating film is formed after impurity diffusion for forming sources and drains. However, in this procedure, impurities are redistributed during high-temperature annealing at nearly 1000°C to densify and planarize the interlayer insulating film, increasing the source/drain junction depth and causing the source/drain under the gate electrode to redistribute. In the present invention, the impurity doping for forming the source and drain takes advantage of the property that the diffusion of impurities in metal silicide is much thicker than that in silicon. After the film was formed, doping was performed through the opening 310, and even after sufficient high-temperature annealing for densification and flattening of the glabellar film, the lateral spread was sufficiently small and could be suppressed to about 0.1 μm. .

(実施例3) 第4図は、特許請求範囲の第3項に記載した本発明の製
造方法の実施例を説明するための主要工      で
程における概略断面図を示したものである。
(Example 3) FIG. 4 shows a schematic cross-sectional view of the main steps for explaining an example of the manufacturing method of the present invention as set forth in claim 3.

前記実施例と同様に第4図(al 、 (blに示す即
く絶縁基板401上に形成した膜厚3100 A の島
状単結晶シリコン402に多結晶シリコンゲート405
を形成した後、全百に160OAのTi膜をスバ、タリ
ングによって形成した。
Similarly to the embodiment described above, a polycrystalline silicon gate 405 is formed on an island-shaped single crystal silicon 402 having a film thickness of 3100 A formed on an insulating substrate 401 as shown in FIGS.
After that, a Ti film of 160 OA was formed on the entire surface by sputtering and taring.

次に、Siイオンを加速電圧160 KeVテ5 XI
O”CIIL−2注入した後1人Sイオンを加速電圧3
00 KeVで5 X IQ”cIIL−”注入して、
界面混合層408及び人Sドープ層409を形成し、第
4図(e)を得た。 As  ドープ層409のゲート
電極下への横方向拡がりを最小に抑えるために、Asイ
オンの注入ピークを第4図(bJのTiと単結晶シリコ
ンとの界面406よりTi  側に設定した。
Next, Si ions were accelerated at a voltage of 160 KeV.
After implanting O”CIIL-2, one S ion was accelerated at a voltage of 3
5×IQ”cIIL−” implanted at 00 KeV,
An interfacial mixed layer 408 and an S-doped layer 409 were formed to obtain FIG. 4(e). In order to minimize the lateral spread of the As doped layer 409 below the gate electrode, the peak of As ion implantation was set on the Ti side from the interface 406 between Ti and single crystal silicon in FIG. 4 (bJ).

次に、550℃、 20分間のアニールを行い、 Ti
膜と接した単−晶シリコン及び多結晶シリコン領域で金
属シリサイド反応を起こさせた。
Next, annealing was performed at 550°C for 20 minutes, and the Ti
A metal silicide reaction was caused in the monocrystalline silicon and polycrystalline silicon regions in contact with the film.

次に、H,O,系エツチング液にてフィールド絶縁膜上
の未反応Ti膜をエツチングすることによりソース・ド
レイン領域及びゲート領域にTiシリサイド410を選
択的に形成し、更に、900℃で20分間のアニールを
行って、  Asをソース及びドレイン領域のTiシリ
サイドを被う様に拡散させ、A3  ドープ層411を
形成することにより第4図(djを得た0本実施例にお
いても、前実施例と同様に。
Next, Ti silicide 410 is selectively formed in the source/drain region and gate region by etching the unreacted Ti film on the field insulating film with an H, O, based etching solution. By performing annealing for 1 minute, As is diffused to cover the Ti silicide in the source and drain regions, and an A3 doped layer 411 is formed. Similar to the example.

ソース・ドレインのシート抵抗の低減が達成され。Achieved reduction in source/drain sheet resistance.

ソース・ドレインの延長を配線として用いることが可能
となった。更に、ソース・ドレイン領域のゲート電極下
への横方向拡がりは0.1μfrL程度に十分小さくで
き、ゲート長1μm以下の短チャネルMIS型FlfT
を再現性よく形成する事が可能となった。
It is now possible to use the source/drain extensions as wiring. Furthermore, the lateral expansion of the source/drain region below the gate electrode can be made sufficiently small to about 0.1 μfrL, allowing short channel MIS type FlfT with a gate length of 1 μm or less.
It became possible to form with good reproducibility.

以上の実施例2,3では金属シリサイドとしてTi シ
リサイドを用いた場合を示したが、 Ta、W。
In Examples 2 and 3 above, Ti silicide was used as the metal silicide, but Ta, W.

Moのシリサイド又はこれらの金属シリサイドの複合層
においても同様な卓効が得られた。また、ソース・ドレ
インを形成する不純物としてはn型のP e As の
場合について示したが、ホウ素等のp型不純物の場合に
も同様な効果が得られた。更に、金属とシリコンとの界
面を混合するためのイオン注入種としてはシリコンを用
いた場合を示したが、アルゴン等の非ドーパントイオン
を用いた場合にも同様な卓効があった。更に1Ml5型
FETのゲート電極として多結晶シリコンを用いた場合
について記述したが、金属シリサイド・ゲート、又は金
属ゲートの場合にも本発明は適用できた。
Similar excellent effects were obtained with Mo silicide or a composite layer of these metal silicides. Further, although the case where n-type P e As was used as the impurity forming the source/drain was shown, similar effects were obtained when using p-type impurities such as boron. Further, although silicon was used as the ion implantation species for mixing the metal-silicon interface, similar effects were obtained when non-dopant ions such as argon were used. Furthermore, although the case where polycrystalline silicon is used as the gate electrode of a 1Ml5 type FET has been described, the present invention can also be applied to the case of a metal silicide gate or a metal gate.

゛また本発明は絶縁膜上に8i単結晶膜を形成するいわ
ゆるSOI構造のトランジスタについても当然適用でき
る。
Furthermore, the present invention can naturally be applied to a so-called SOI structure transistor in which an 8i single crystal film is formed on an insulating film.

(発明の効果) 本発明の構造のMISFETでは、ソース・ドレインと
ゲートとの重なりを十分小さくできるため、オーバーラ
ツプ容量を低減でき、かつ好ましくない短チヤネル効果
を除去できる。また、ソース・ドレイン層の低抵抗化を
実現できるため、ソース・ドレインノーの延長をそのま
ま配線として使うことができる。
(Effects of the Invention) In the MISFET having the structure of the present invention, since the overlap between the source/drain and the gate can be made sufficiently small, the overlap capacitance can be reduced and undesirable short channel effects can be eliminated. Furthermore, since the resistance of the source/drain layer can be reduced, the extension of the source/drain layer can be used as a wiring.

本発明の方法によれば、ゲート領域に接する部、   
  分のソース・ドレインの形状を従来のような曲面で
はなく、平面にでき、しかもゲート領域に接する部分の
ソース・ドレイン不純物層の拡散距離を制御性よく、シ
かも小さくできる。
According to the method of the present invention, the portion in contact with the gate region,
The shape of the source/drain can be made into a flat shape instead of a conventional curved surface, and the diffusion distance of the source/drain impurity layer in the portion in contact with the gate region can be controlled easily and the diffusion distance can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図中の番号はそれぞれ以下のものを示す。 101.201,301,401・・・絶縁基板、10
2,202,312゜412・・・ゲート電極下の単結
晶シリコン、302,402・・・単結晶シリコン、 
 104,204,311,411・・・不純物ドープ
層、105,205,308,410・・・Tiシリサ
イド。 107.207・・・ゲート電極、  106,206
,304,404・・・ゲート絶縁膜、305,405
・・・多結晶シリコン、306 、406・・・Tiと
単結晶シリコンとの界面、  307,407・・・T
1膜、408・・・界面混合層、309・・・層間絶縁
膜、310・・−コンタクトホール、313・・・Ti
  シリサイドと絶縁基板との界面、409・・・不純
物ドープ層。 −番 第1図 +07 オ 2 図 第3図 第4図
The numbers in the figure indicate the following. 101.201,301,401...Insulating substrate, 10
2,202,312°412...Single crystal silicon under the gate electrode, 302,402...Single crystal silicon,
104, 204, 311, 411... impurity doped layer, 105, 205, 308, 410... Ti silicide. 107.207...Gate electrode, 106,206
, 304, 404... gate insulating film, 305, 405
... Polycrystalline silicon, 306, 406... Interface between Ti and single crystal silicon, 307,407...T
1 film, 408...interface mixed layer, 309...interlayer insulating film, 310...-contact hole, 313...Ti
Interface between silicide and insulating substrate, 409... impurity doped layer. Figure 1 +07 O 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、絶縁層上に形成したシリコンMIS型電界効果トラ
ンジスタにおいてソース・ドレイン領域の一部又は全領
域に金属シリサイドが形成され、かつ該金属シリサイド
がシリコン層と前記絶縁層との界面に迄達していること
を特徴とする絶縁層上のMIS型電界効果トランジスタ
。 2、絶縁層上にMIS型電界効果トランジスタを形成す
べき単結晶シリコン領域を形成した後、その表面にゲー
ト絶縁膜を形成し、その後ゲート電極用薄膜を形成する
工程と、該ゲート電極用薄膜をパターニングした後当該
ゲート電極薄膜下以外の前記ゲート絶縁膜をエッチング
し、単結晶シリコン表面を露出させる工程と、高融点金
属薄膜を形成した後、非ドーパントイオンを注入して当
該高融点金属薄膜と前記露出単結晶シリコン表面との界
面を混合させ、次いでアニールを行うことにより、前記
露出単結晶シリコン表面下のすべてのシリコンを金属シ
リサイドに変換させる工程と、未反応で残存する高融点
金属をエッチングした後、層間絶縁膜を形成し、次いで
、前記金属シリサイド上に設けた当該層間絶縁膜の開口
より不純物を拡散する工程とを含むことを特徴とする絶
縁層上のMIS型電界効果トランジスタの製造方法。 3、絶縁層上にMIS型電界効果トランジスタを形成す
べき単結晶シリコン領域を形成した後、その表面にゲー
ト絶縁膜を形成し、その後、ゲート電極用薄膜を形成す
る工程と、該ゲート電極用薄膜をパターニングした後当
該ゲート電極薄膜下以外の前記ゲート絶縁膜をエッチン
グし単結晶シリコン表面を露出させる工程と、高融点金
属薄膜を形成した後、非ドーパントイオンとIII族又は
IV族のドーパントイオンとを注入することにより当該高
融点金属薄膜と前記単結晶シリコン表面との界面を混合
させ、かつ高融点金属薄膜中及び当該界面混合層及び当
該混合層下の単結晶シリコン中へ不純物をドープする工
程と、次いでアニールを行うことにより、前記露出単結
晶シリコン表面下のすべてのシリコンを金属シリサイド
に変換させた後、未反応で残存する高融点金属をエッチ
ングする工程とを含むことを特徴とする絶縁層上のMI
S型電界効果トランジスタの製造方法。
[Claims] 1. In a silicon MIS field effect transistor formed on an insulating layer, metal silicide is formed in part or all of the source/drain region, and the metal silicide is connected to the silicon layer and the insulating layer. An MIS type field effect transistor on an insulating layer, characterized in that the MIS type field effect transistor reaches the interface of the insulating layer. 2. After forming a single crystal silicon region in which a MIS type field effect transistor is to be formed on the insulating layer, forming a gate insulating film on the surface thereof, and then forming a thin film for a gate electrode, and the thin film for the gate electrode. After patterning, the gate insulating film except under the gate electrode thin film is etched to expose the single crystal silicon surface, and after forming a high melting point metal thin film, non-dopant ions are implanted to remove the high melting point metal thin film. and the exposed single-crystal silicon surface, and then annealing to convert all the silicon under the exposed single-crystal silicon surface into metal silicide; After etching, forming an interlayer insulating film, and then diffusing impurities through an opening in the interlayer insulating film provided on the metal silicide. Production method. 3. After forming a single crystal silicon region in which an MIS field effect transistor is to be formed on the insulating layer, forming a gate insulating film on the surface thereof, and then forming a thin film for the gate electrode; After patterning the thin film, etching the gate insulating film except under the gate electrode thin film to expose the single crystal silicon surface, and after forming the high melting point metal thin film, non-dopant ions and group III or
By implanting group IV dopant ions, the interface between the high melting point metal thin film and the single crystal silicon surface is mixed, and the high melting point metal thin film, the interfacial mixed layer, and the single crystal silicon below the mixed layer are mixed. doping with impurities, and then converting all the silicon under the exposed single crystal silicon surface into metal silicide by annealing, and then etching the remaining unreacted high melting point metal. MI on an insulating layer characterized by
A method for manufacturing an S-type field effect transistor.
JP17872984A 1984-08-28 1984-08-28 Misfet on insulation layer and manufacture thereof Pending JPS6156461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17872984A JPS6156461A (en) 1984-08-28 1984-08-28 Misfet on insulation layer and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17872984A JPS6156461A (en) 1984-08-28 1984-08-28 Misfet on insulation layer and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6156461A true JPS6156461A (en) 1986-03-22

Family

ID=16053552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17872984A Pending JPS6156461A (en) 1984-08-28 1984-08-28 Misfet on insulation layer and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6156461A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226957A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Semiconductor device
JPS61182340U (en) * 1985-05-07 1986-11-13
JPS6279617A (en) * 1985-10-03 1987-04-13 Hitachi Ltd Semiconductor device and manufacture thereof
JPS62131573A (en) * 1985-12-04 1987-06-13 Hitachi Ltd Semiconductor device
US5587597A (en) * 1989-07-13 1996-12-24 The United States Of America As Represented By The Secretary Of The Navy Semiconductor-on-insulator device interconnects

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023586A (en) * 1973-06-30 1975-03-13
JPS588962B2 (en) * 1979-10-31 1983-02-18 大建工業株式会社 Method for manufacturing decorative board with dowel-like pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023586A (en) * 1973-06-30 1975-03-13
JPS588962B2 (en) * 1979-10-31 1983-02-18 大建工業株式会社 Method for manufacturing decorative board with dowel-like pattern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226957A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Semiconductor device
JPS61182340U (en) * 1985-05-07 1986-11-13
JPH0637006Y2 (en) * 1985-05-07 1994-09-28 東急車輛製造株式会社 Vehicle loading lamp
JPS6279617A (en) * 1985-10-03 1987-04-13 Hitachi Ltd Semiconductor device and manufacture thereof
JPS62131573A (en) * 1985-12-04 1987-06-13 Hitachi Ltd Semiconductor device
US5587597A (en) * 1989-07-13 1996-12-24 The United States Of America As Represented By The Secretary Of The Navy Semiconductor-on-insulator device interconnects

Similar Documents

Publication Publication Date Title
JP2978736B2 (en) Method for manufacturing semiconductor device
JPH0523055B2 (en)
JPS62155552A (en) Simultaneous manufacture of bipolar transistor and cmos transistor
JP4065580B2 (en) Silicon-on-insulator base for transistor manufacture and method for manufacturing the base
JPH0669431A (en) Method for manufacture of bipolar transistor and cmos transistor on soi substrate and these transistors
JPH0824144B2 (en) Method for manufacturing semiconductor device
JPH04305978A (en) Mos semiconductor device for electric power and manufacture thereof
JPH0193159A (en) Manufacture of bicmos element
JPS6156461A (en) Misfet on insulation layer and manufacture thereof
JPH10209453A (en) Semiconductor device and its manufacture
JP3165715B2 (en) Method for manufacturing semiconductor device
JPH0350771A (en) Semiconductor device
JPS5837990B2 (en) Manufacturing method of semiconductor device
JP3261697B2 (en) Method for manufacturing semiconductor device
JPH03200319A (en) Formation of poly-crystalline silicon
JPH04322432A (en) Semiconductor device and manufacture thereof
JPS63313818A (en) Manufacture of semiconductor device
JPS61248476A (en) Manufacture of semiconductor device
JPH11186546A (en) Semiconductor device and manufacture thereof
JPS63117459A (en) Manufacture of insulated gate field effect transistor
JP2892436B2 (en) Method for manufacturing semiconductor device
JPS6376470A (en) Manufacture of semiconductor device
JPH01112770A (en) Manufacture of semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH022170A (en) Manufacture of insulated gate type field effect transistor