JPS5935485A - Inactivation of pinhole in component layer of solar cell and the like - Google Patents

Inactivation of pinhole in component layer of solar cell and the like

Info

Publication number
JPS5935485A
JPS5935485A JP57145987A JP14598782A JPS5935485A JP S5935485 A JPS5935485 A JP S5935485A JP 57145987 A JP57145987 A JP 57145987A JP 14598782 A JP14598782 A JP 14598782A JP S5935485 A JPS5935485 A JP S5935485A
Authority
JP
Japan
Prior art keywords
pinhole
film
resist
photoresist
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57145987A
Other languages
Japanese (ja)
Other versions
JPS6240871B2 (en
Inventor
Akizou Iida
飯田 昭参
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57145987A priority Critical patent/JPS5935485A/en
Publication of JPS5935485A publication Critical patent/JPS5935485A/en
Publication of JPS6240871B2 publication Critical patent/JPS6240871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To remove the short-circuit effect of the pinhole through the pinhole thereof, and to contrive to enhance the function of the device and to enhance manufacturing yield by a method wherein the pinhole of a semiconductor layer, etc., is filled up utilizing exposure of a resist and hardening technique thereof. CONSTITUTION:A mesa film or a thin metal film 2 is deposited on a glass substrate 1. Then the semiconductor layer 3 is formed on the film 2. The photo resist 5 is applied on the semiconductor layer 3 having the pinhole 4, and the resist 5 is filled up in the pinhole 4. Then exposure is applied in the direction shown with the arrow marks through the film 2. After exposure is completed, when development, rinse and baking of the photo resist are performed, the resist 5 is filled up in the pinhole 4, and at the same time, the resist 5 is left on the upper part of the pinhole part 4, and are hardened. Then a conductive film 6 is formed on the layer 3 and the resist 5. Accordingly, the short-circuit effect through the pinhole is removed.

Description

【発明の詳細な説明】 本発明は、太陽電池等の構成層のピンホールを不活性化
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for inactivating pinholes in constituent layers of solar cells and the like.

一般に、太@電池、コンデンサ%等の製シニ於て、前者
は半導体を、後者は誘電体を電極で挾んだサンドインチ
構造となっている。この場合、半導体や誘電体等の層に
ピンホールが存在するとピンホールを通して短絡が起る
ので、これらのデバイスや部品は働らかない、半導体膜
や誘電体膜にはピンホールの発生が容易に起るので、こ
のピンホールを介しての電圧の短絡効果によるデバイス
の機能低下は大きな問題である。
Generally, when manufacturing thick batteries, capacitors, etc., the former has a semiconductor and the latter has a sandwich structure in which a dielectric is sandwiched between electrodes. In this case, if a pinhole exists in a semiconductor or dielectric layer, a short circuit will occur through the pinhole, so these devices or parts will not work, and pinholes can easily occur in the semiconductor or dielectric film. Therefore, the deterioration of device functionality due to the voltage shorting effect through this pinhole is a major problem.

従来、ピンホールによる短絡効果の除去には、太陽電池
に於ては半導体膜を厚く成膜することにより、またコン
デンサに於ては電極に高圧を印加することによりピンホ
ール部分の電極を溶かして飛ばしてしまう方法等が行な
なわれていた。
Conventionally, the short circuit effect caused by pinholes has been removed by forming a thick semiconductor film in solar cells, or by melting the electrodes in the pinhole area by applying high voltage to the electrodes in capacitors. Methods were used to make it fly away.

しかし、半導体を不必要に厚く成膜することは材料と製
作時間の無駄であり金属箔を用いたコンデンサに於ての
高電圧印加によるピンホール効果の除去は半導体膜には
熱破壊を起す危険性がある等の問題点があった。
However, forming an unnecessarily thick semiconductor film is a waste of materials and manufacturing time, and removing the pinhole effect by applying high voltage to a capacitor using metal foil may cause thermal damage to the semiconductor film. There were problems such as gender.

本発明は、上述の問題点を解決するために、フォトレジ
ストが電気的絶縁物であることを利用する、即ち、フォ
トリングラフィの技術を積極的に採用することにより、
ピンホールをフォトレジストで充填し、ピンホールでの
短絡効果を除去することによりデバイス及び部品の性能
と製造歩留りを向上させる方法を提供する目的でなされ
たものである。以下、本発明の実施例を太陽電池の製作
にとり図に基づき説明する。
In order to solve the above-mentioned problems, the present invention takes advantage of the fact that photoresist is an electrical insulator, that is, actively employs photolithography technology.
The objective is to provide a method for filling pinholes with photoresist to improve device and component performance and manufacturing yields by eliminating pinhole shorting effects. EMBODIMENT OF THE INVENTION Hereinafter, embodiments of the present invention will be explained based on the drawings for manufacturing a solar cell.

第1図は太陽電池の構成層のピンホールを不;毒性化す
る方法の工程を説明するための図であ”本・ 第1図(a)に示すように、ガラス基板l上にネサ膜あ
るいは薄い金属膜2を堆積する。ネサ膜2は光透過性を
有し、かつ、導電性を有するIn5Os 、Snow等
を用いる。また、金属膜2は金α→、銀(Ag) 、ア
ルミニウム(Al )等を用いるが光に対して、半透明
にするために膜厚を/θOA程度に薄く形成する。ざら
にネサ膜あるいは金属膜2の上に半導体8を形成する。
Figure 1 is a diagram for explaining the process of making pinholes in the constituent layers of a solar cell non-toxic. Alternatively, a thin metal film 2 is deposited.The NESA film 2 is made of optically transparent and conductive material such as In5Os or Snow.The metal film 2 is made of gold α→, silver (Ag), aluminum ( Al) or the like is used, but the film thickness is formed to be as thin as /θOA in order to make it translucent to light.The semiconductor 8 is roughly formed on the NESA film or the metal film 2.

第1図0はこの半導体層8中のビンホー)N/4の状M
fj−示す。
FIG. 10 shows the shape of Binho)N/4 in this semiconductor layer 8
fj-show.

次いでピンホール4がある半導体層8の上に! フォトレジスト5を塗布すると共にピンホール4内にフ
ォトレジストが充填された状態が第1図中)に示されて
いる。ネサ膜または薄い金属膜2を通して図示矢印方向
に露光を与える。N光い部分のレジストは除去されて第
1図(C)の状1岨。
Next, on the semiconductor layer 8 where the pinhole 4 is located! A state in which the photoresist 5 is applied and the pinhole 4 is filled with the photoresist is shown in FIG. Exposure is applied through the Nesa film or thin metal film 2 in the direction of the arrow shown. The resist in the N-light part is removed to form the shape shown in FIG. 1(C).

となる。即ち、第1図(C)のフォトレジスト5b!f
f1F1ピンホール部分4にフォトレジスト5が充填1
1゛iれると同時に、尚かつ、ピンホール4上部にフォ
トレジストが残り、かつ、これらは硬 する。他の部分
のフォトレジストは除去されて半導体層8の表面が露出
している状態を示している。半導体層8及びフォトレジ
スト5の上に導電性(金属膜)膜6を形成すると第1図
Cd)に示す状態、となり、次いで、予めネサ膜あるい
は金属膜2・、に設けたリード電極7とオーム性電極6
上にリード電極8を設けることにより第1図(りの太陽
電池が構成される。ガラス基板lの太陽光を当てる側の
表面上に反射防止膜(図示せず)を被膜して太陽電池は
完成する。
becomes. That is, the photoresist 5b of FIG. 1(C)! f
f1F1 Pinhole portion 4 is filled with photoresist 5 1
At the same time as the photoresist is removed, the photoresist remains above the pinhole 4 and hardens. The photoresist in other portions is removed to expose the surface of the semiconductor layer 8. When a conductive (metallic) film 6 is formed on the semiconductor layer 8 and the photoresist 5, the state shown in FIG. Ohmic electrode 6
By providing a lead electrode 8 on the top, the solar cell shown in FIG. Complete.

なお、本実施例に用いるフォトレジストはn型のレジス
ト、即ち、光が照射されると重合する型のものである。
Note that the photoresist used in this example is an n-type resist, that is, a type that polymerizes when irradiated with light.

第1図の太陽電池に於て、2のネサ膜が、例えばn型半
導体IngOsの場合、半導体層8はP型でネサ膜2の
方の禁制帯幅は半導体層3の禁制帯幅より大きく取る様
にすると高効率の窓効果を利用したヘテロ接合太陽電池
が得られる。
In the solar cell shown in FIG. 1, if the NESA film 2 is, for example, an n-type semiconductor IngOs, the semiconductor layer 8 is of P type, and the forbidden band width of the NESA film 2 is larger than that of the semiconductor layer 3. If this is done, a highly efficient heterojunction solar cell utilizing the window effect can be obtained.

極めて薄い金属−膜2、例えば金(Au)  膜の場合
には、半導体層8はn型またはP型何れを用いてもよく
、゛この様にするとショットキーバリヤ太陽電池が得ら
れる・フォトレジストを塗布した半導体膜等の反対側即
ち図中1,2等が光に対して不透明な基板の場合は光の
代りにX線の照射露光牽行う。
In the case of an extremely thin metal film 2, for example a gold (Au) film, the semiconductor layer 8 may be of either n-type or p-type; thus, a Schottky barrier solar cell is obtained. If the opposite side of the semiconductor film coated with the substrate, ie, the substrate 1 and 2 in the figure, is opaque to light, X-ray irradiation is performed instead of light.

なお、コンデンサの誘電体におけるピンホールに対して
も太陽電池の構成層の場合と同様の方法が成立するのは
もちろんである。
It goes without saying that the same method as in the case of the constituent layers of a solar cell can also be applied to pinholes in the dielectric of a capacitor.

以上詳細に説明したように、本発明は太陽電池等の構成
層の半導体層等のピンホールを7オトレジスト謔光及び
その硬化技術を用いて充填りの向上を図ったものである
As described above in detail, the present invention aims to improve the filling of pinholes in a semiconductor layer, etc., which is a constituent layer of a solar cell, etc., by using 7-photoresist photoresist and its curing technology.

【図面の簡単な説明】[Brief explanation of the drawing]

ル存在する状態を示す図、第1図(b)は半導体層8中
及び焼成が終了した状態の図、第1図(d)は半導体及
びピンホールに充填したフォトレジスト上に導電性膜を
形成した図、第1図(g)はネサ膜又は薄い金属膜とオ
ーム性電極膜に夫々リード電極を付けて太@電池を完成
した図である。 図中、1はガラス基板、2はネサ膜または薄い金属膜、
8は半導体、4はピンホール、5はフォトレジスト、6
はオーム性電極膜、7及び8はリード電極である。 (d) ↑争↑今↑↑↑
FIG. 1(b) is a diagram showing the inside of the semiconductor layer 8 and the state after firing, and FIG. 1(d) is a diagram showing a state in which a conductive film is present in the semiconductor layer 8 and the photoresist filled in the pinhole. The formed diagram, FIG. 1(g), is a diagram of a completed thick@ battery by attaching lead electrodes to the Nesa film or thin metal film and the ohmic electrode film, respectively. In the figure, 1 is a glass substrate, 2 is a Nesa film or a thin metal film,
8 is a semiconductor, 4 is a pinhole, 5 is a photoresist, 6
is an ohmic electrode film, and 7 and 8 are lead electrodes. (d) ↑Conflict↑Now↑↑↑

Claims (1)

【特許請求の範囲】[Claims] ピンホールを有する半導体膜等の上に7オトレジストを
塗布し、該フォトレジストを前記ピンホールに充填せし
めると共に、前記フォトレジストで前記半導体膜を蔽う
工程と、前記フォトレジストを塗布した半導体膜等の反
対側から≠あるいはX糊を照射し、前記ピンホールに充
゛填せしめたフォトレジストに露光し現像、リンス、焼
成を行う工程によって、前記ピンホールを硬化したフォ
トレジストで塞ぐことを特徴とする太陽電池等の構成層
のピンホール不活性化方法。
a step of applying a photoresist on a semiconductor film etc. having a pinhole, filling the pinhole with the photoresist, and covering the semiconductor film with the photoresist; The pinhole is closed with a hardened photoresist by irradiating ≠ or X glue from the opposite side, exposing the photoresist filled in the pinhole, developing, rinsing, and baking. A method for inactivating pinholes in constituent layers of solar cells, etc.
JP57145987A 1982-08-23 1982-08-23 Inactivation of pinhole in component layer of solar cell and the like Granted JPS5935485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145987A JPS5935485A (en) 1982-08-23 1982-08-23 Inactivation of pinhole in component layer of solar cell and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145987A JPS5935485A (en) 1982-08-23 1982-08-23 Inactivation of pinhole in component layer of solar cell and the like

Publications (2)

Publication Number Publication Date
JPS5935485A true JPS5935485A (en) 1984-02-27
JPS6240871B2 JPS6240871B2 (en) 1987-08-31

Family

ID=15397560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145987A Granted JPS5935485A (en) 1982-08-23 1982-08-23 Inactivation of pinhole in component layer of solar cell and the like

Country Status (1)

Country Link
JP (1) JPS5935485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236936A2 (en) * 1986-03-11 1987-09-16 Siemens Aktiengesellschaft Method for avoiding short-circuits during the production of electrical components, particularly for amorphous silicon solar cells
EP0603260A4 (en) * 1991-09-13 1994-07-27 United Solar Systems Corp Photovoltaic device including shunt preventing layer and method for the deposition thereof.

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319579A (en) * 1988-06-20 1989-12-25 Shin Etsu Chem Co Ltd Production of cover layer film
JPH0379477U (en) * 1989-12-01 1991-08-13

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236936A2 (en) * 1986-03-11 1987-09-16 Siemens Aktiengesellschaft Method for avoiding short-circuits during the production of electrical components, particularly for amorphous silicon solar cells
EP0236936A3 (en) * 1986-03-11 1989-03-29 Siemens Aktiengesellschaft Method for avoiding short-circuits during the production of electrical components, particularly for amorphous silicon solar cells
EP0603260A4 (en) * 1991-09-13 1994-07-27 United Solar Systems Corp Photovoltaic device including shunt preventing layer and method for the deposition thereof.

Also Published As

Publication number Publication date
JPS6240871B2 (en) 1987-08-31

Similar Documents

Publication Publication Date Title
CN100502057C (en) Photovoltaic cell, photovoltaic cell module, method of fabricating photovoltaic cell and method of repairing photovoltaic cell
US3949463A (en) Method of applying an anti-reflective coating to a solar cell
JPH0472392B2 (en)
FR2521351A1 (en) IMPROVED SOLAR CELL AND METHOD FOR MAKING SAME
US4774193A (en) Method for avoiding shorts in the manufacture of layered electrical components
US3764325A (en) Method for making electrical monograin layer
JPS5935485A (en) Inactivation of pinhole in component layer of solar cell and the like
JPS5935489A (en) Manufacture of photo semiconductor device
JP4832764B2 (en) Semiconductor device and manufacturing method thereof
JPS5996778A (en) Manufacture of photoelectric conversion device
EP0060487A1 (en) Plugged pinhole thin film and method of making same
US5084399A (en) Semi conductor device and process for fabrication of same
JPS62152174A (en) Manufacture of thin-film transistor
JPS5877263A (en) Photoelectromotive force element
JPS6269566A (en) Manufacture of photoelectric conversion device
JP2798772B2 (en) Method for manufacturing photovoltaic device
JPS6258685A (en) Manufacture of amorphous semiconductor solar cell
JP3573869B2 (en) Method for manufacturing photovoltaic device
JPH0582816A (en) Photovoltaic device and its manufacture
JPS6254478A (en) Optoelectric transducer
JPH0745848A (en) Photovoltaic device and manufacture thereof
JP2975749B2 (en) Method for manufacturing photovoltaic device
JPS5996783A (en) Photoelectric conversion device
JPS6269565A (en) Photoelectric conversion device
JPS62230049A (en) Formation of photoelectric conversion device