JPS5932948B2 - Light receiving sensor array device - Google Patents

Light receiving sensor array device

Info

Publication number
JPS5932948B2
JPS5932948B2 JP54056889A JP5688979A JPS5932948B2 JP S5932948 B2 JPS5932948 B2 JP S5932948B2 JP 54056889 A JP54056889 A JP 54056889A JP 5688979 A JP5688979 A JP 5688979A JP S5932948 B2 JPS5932948 B2 JP S5932948B2
Authority
JP
Japan
Prior art keywords
layer
light
receiving sensor
sensor array
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54056889A
Other languages
Japanese (ja)
Other versions
JPS55149576A (en
Inventor
宜彦 水島
秋津 武田
秀朗 伊藤
一三 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54056889A priority Critical patent/JPS5932948B2/en
Publication of JPS55149576A publication Critical patent/JPS55149576A/en
Publication of JPS5932948B2 publication Critical patent/JPS5932948B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Description

【発明の詳細な説明】 本発明は受光センサアレイ装置に関するもので、特にフ
ァクシミリなどの光電変換装置に適用するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light receiving sensor array device, and is particularly applicable to a photoelectric conversion device such as a facsimile.

従来ファクシミリ用センサには、シリコン集積回路上に
原図を光学的手段によつて縮少投影するものが用いられ
ていたが、光学系などを必要とするために装置の小型化
が不可能であつた。
Conventional facsimile sensors have used optical means to reduce and project the original image onto a silicon integrated circuit, but this requires an optical system, making it impossible to miniaturize the device. Ta.

この欠点を除去するために、多結晶もしくは無定形材料
の整流性逆バイアス状態を利用するものなどが提案され
たが、多結晶のものは感度などで不充分であり、無定形
のものは60〜70℃程度で結晶化による特性変化を生
ずるなどの欠点を有していた。一方、従来のセレン光電
池などは、単一セルとしては良好な光起電力などを有し
ていたが、本発明の目的とするような用途に対しては根
本的な欠点を有していた。第1図に示すように鉄または
アルミニウムなどの基板1とセレン層を密着させるため
、10〜数10ミクロンの凹凸を有するサンドブラスト
、またはホーミングなどの粗面化が行なわれていた。
In order to eliminate this drawback, methods have been proposed that utilize the rectifying reverse bias state of polycrystalline or amorphous materials, but polycrystalline materials are insufficient in terms of sensitivity, and amorphous materials have a It had drawbacks such as changes in properties due to crystallization at temperatures of about 70°C. On the other hand, although conventional selenium photovoltaic cells have good photovoltaic power as a single cell, they have fundamental drawbacks for the purpose of the present invention. As shown in FIG. 1, in order to bring the selenium layer into close contact with a substrate 1 made of iron or aluminum, surface roughening such as sandblasting or homing, which has irregularities of 10 to several tens of microns, has been carried out.

またその基板上のセレン層2は50〜60ミクロンの厚
さがあつた。この上にカドミウムを主とする透明電極3
を形成した。このため本発明の目的とする用途から要求
されるような微細な加工もしくは構造をとることは不可
能であり、1mmφ提度の大きさがその限度であつた。
また平滑面を有するガラスなどの基板にはセレン層が剥
離し、従つて安定に付着形成せしめることができなかつ
た。本発明にかかる欠点を除去した受光センサアレイ装
置を提供するものである。以下本発明の受光センサアレ
イ装置を第2図によつて説明する。
Also, the selenium layer 2 on the substrate had a thickness of 50 to 60 microns. On top of this, a transparent electrode 3 mainly made of cadmium
was formed. For this reason, it is impossible to achieve the fine processing or structure required for the intended use of the present invention, and the size of the material is limited to a diameter of 1 mm.
Further, the selenium layer peels off from a substrate such as glass having a smooth surface, and therefore it is not possible to form a stable adhesion thereon. It is an object of the present invention to provide a light receiving sensor array device that eliminates the drawbacks of the present invention. The light receiving sensor array device of the present invention will be explained below with reference to FIG.

酸化錫または酸化インジウムなどの透明電極5が所望の
パターンで複数に分割されて被着せしめられているガラ
ス基板4において、所望の透明電極5上に複数個に分割
されたセレン化カドミウム層6を0.01〜2ミクロン
形成する。
In a glass substrate 4 on which a transparent electrode 5 made of tin oxide or indium oxide is divided into a plurality of parts in a desired pattern and deposited thereon, a cadmium selenide layer 6 divided into a plurality of parts is formed on the desired transparent electrode 5. Form 0.01-2 microns.

形成する方法は真空蒸着法、その他特に限定するもので
はな〜・。またセレン化カドミウム層6を形成してから
、必要に応じて熱処理を施こしたり、また光導電性を向
上させるために活性化処理などを行なつても良い。セレ
ン化カドミウム層の厚さが0.01ミクロンより薄い場
合には、いろゆる島状構造となつたり、またピンホール
を生じやすく均一性が悪くなる。特に活性化のための熱
処理を行なう場合には、セレン化カドミウム層の結晶成
長などの関係から膜厚は厚い方が好ましい。しかし必要
以上に厚い場合には、いたずらにセンサの内部抵抗の増
大をもたらすのみであるため、実用上2ミクロン程度を
限度とするものである。ついで同様にしてセレン層7を
0.01〜4ミクロン形成する。この場合基板温度が低
い時はセレン層は非結晶に近く、温度が高い場合は結晶
となるが、いずれの場合もセレン化カドミウム6とセレ
ン7とのヘテロ結合の特性を整えるために180℃以上
、セレンの融点以下の温度において10分乃至2時間程
度の熱処理を行なう。この場合ガラスなどの基板ある“
いは透明電極層の上に直接に形成された結晶セレン層は
、周知のように殆んど剥離してしまう。僅かにテルルな
どを介在せしめた場合に結晶セレン層を付着せしめるこ
とができるが、この場合は透明基板側からの光入力は殆
んどできなくなる。かくの如くして透明基板に先にセレ
ン化カドミウム層を設け、その上にセレン層を設けるこ
とによつて熱処理後の結晶セレン層の剥離を完全に防止
することができるようになつた。セレン層の厚さが0、
01ミクロンより薄い場合には、セレン化カドミウムの
場合と同様に均一性が悪くなる。また膜厚が10数ミク
ロン以上、極度に厚くなる場合には、いかにガラスなど
の平滑面をもつ基板の上にセレン化カドミウムを介在せ
しめても部分的に亀裂または剥離を生じやすくなり、セ
レン層の形成を不安定にする。安定に剥離を確実に防止
したセレン層を得るためには、セレン層は5ミクロン以
下にとどめるのが好ましい。センサの特性からもセレン
の膜厚に比例して抵抗を増加させるのみであるため必要
以上に厚くすることは好ましくない。しかし下記の結晶
化にともなう空隙の発生は、ある程度厚い方が少なくす
ることができる。以上の点を考慮してセレン層の厚さは
実用上0.01ミクロン〜4μが最適範囲とされる。ま
たセレン化カドミウム層とセレン層の厚さの合計も5ミ
クロン以下におさえるのが好ましい。しかしこのままセ
レン層7が露呈した状態のまま前記熱処理を行なつた場
合には、セレン層の結晶化による収縮などによつて結晶
セレン層に空隙を生ずるのである。
The forming method may be a vacuum evaporation method, but is not particularly limited. Further, after forming the cadmium selenide layer 6, heat treatment may be performed as necessary, or activation treatment may be performed to improve photoconductivity. If the thickness of the cadmium selenide layer is less than 0.01 micron, it may form various island-like structures, and pinholes may easily occur, resulting in poor uniformity. Particularly when performing heat treatment for activation, it is preferable for the film to be thicker in view of crystal growth of the cadmium selenide layer. However, if it is thicker than necessary, it will only unnecessarily increase the internal resistance of the sensor, so the practical limit is about 2 microns. Then, a selenium layer 7 of 0.01 to 4 microns is formed in the same manner. In this case, when the substrate temperature is low, the selenium layer is close to amorphous, and when the temperature is high, it becomes crystalline, but in both cases, the temperature is higher than 180°C in order to adjust the characteristics of the heterobond between cadmium selenide 6 and selenium 7. , heat treatment is performed for about 10 minutes to 2 hours at a temperature below the melting point of selenium. In this case, there is a substrate such as glass.
Or, as is well known, most of the crystalline selenium layer formed directly on the transparent electrode layer peels off. A crystalline selenium layer can be attached if a small amount of tellurium or the like is present, but in this case almost no light can be input from the transparent substrate side. In this manner, by first providing a cadmium selenide layer on a transparent substrate and then providing a selenium layer thereon, it has become possible to completely prevent the crystalline selenium layer from peeling off after heat treatment. The thickness of the selenium layer is 0,
If the thickness is less than 0.01 micron, the uniformity will be poor as in the case of cadmium selenide. Furthermore, if the film is extremely thick (10-odd microns or more), no matter how much cadmium selenide is interposed on a substrate with a smooth surface such as glass, cracks or peeling may occur locally, and the selenium layer destabilizes the formation of In order to obtain a selenium layer that stably prevents peeling, it is preferable that the selenium layer has a thickness of 5 microns or less. Considering the characteristics of the sensor, it is not preferable to make the selenium film thicker than necessary because the resistance only increases in proportion to the thickness of the selenium film. However, the generation of voids due to crystallization described below can be reduced by increasing the thickness to a certain extent. Considering the above points, the optimum thickness of the selenium layer is set to be 0.01 micron to 4 micron in practical terms. It is also preferable that the total thickness of the cadmium selenide layer and the selenium layer is kept to 5 microns or less. However, if the heat treatment is performed while the selenium layer 7 is exposed, voids will be formed in the crystalline selenium layer due to shrinkage due to crystallization of the selenium layer.

これはこの結晶セレン層の上に形成する電極8と下の電
極5もしくはセレン化カドミウム層6との短絡を発生さ
せ、またセンサーの微小部分の光特性に著しいムラを生
ずるなど重大な欠陥を生ずる。本発明においては、かか
る欠陥を除去するためにセレン層7を形成した後、熱処
理を施こすことなく直ちにテルル、金などセレンと抵抗
性接触をなす電極8を形成し、しかる後に180℃以上
セレンの融点以下の温度にて熱処理を行なつた。
This causes a short circuit between the electrode 8 formed on the crystalline selenium layer and the lower electrode 5 or the cadmium selenide layer 6, and also causes serious defects such as significant unevenness in the optical characteristics of the minute parts of the sensor. . In the present invention, after forming the selenium layer 7 to remove such defects, an electrode 8 such as tellurium or gold that makes resistive contact with the selenium is immediately formed without heat treatment, and then the selenium layer 7 is formed at 180° C. or higher. The heat treatment was carried out at a temperature below the melting point of.

この場合は空隙を生じることなく均一な結晶セレン層を
得ることができる。なおこの場合のセレン層とは、セレ
ンを主成分としているものであつて、通常のセレン整流
器などでセレンに添加するタリウム、ハロゲンその他の
添加物を加えることは全くさしつかえない。第3図に示
すように、このようにしてつくられた基板上に複数個配
列されたセンサアレイ11は外部アドレスを含む走査回
路12に接続される。
In this case, a uniform crystalline selenium layer can be obtained without creating voids. The selenium layer in this case is mainly composed of selenium, and there is no problem in adding thallium, halogen, or other additives to selenium in a normal selenium rectifier. As shown in FIG. 3, a plurality of sensor arrays 11 arranged on the substrate thus manufactured are connected to a scanning circuit 12 including an external address.

走査回路12において、シフトレジスタ13によつて、
パルス発生回路14から送られるパルスを順次シフトさ
せ、スイツチ素子15のゲートに順次導通信号を与える
。16は前記受光センサアレイの電極層間を等価的に示
したダイオードで、アノードが前記スイツチ素子15を
介して信号処理回路17に接触されており、カソード側
は接地させている。
In the scanning circuit 12, by the shift register 13,
The pulses sent from the pulse generating circuit 14 are sequentially shifted, and conductive signals are sequentially applied to the gates of the switch elements 15. A diode 16 is equivalently shown between the electrode layers of the light receiving sensor array, and its anode is in contact with the signal processing circuit 17 via the switch element 15, and its cathode is grounded.

18は前記受光センサアレイの電極層間およびその近傍
にある静電容量を等価的に示したコンデンサで、ダイオ
ード16に並列に接続されており、スイツチ素子15を
オフ状態として受光センサに光を照射した時、主として
センサのセレン化カドミウム層とセレン層との間に形成
された整流性接触には、照射光量に応じた起電力が誘起
され、それによつて光の照射された近傍の前記コンデン
サ18に電荷が充電される。
18 is a capacitor equivalently representing the capacitance between the electrode layers of the light receiving sensor array and in the vicinity thereof, and is connected in parallel to the diode 16, and when the switch element 15 is turned off, light is irradiated to the light receiving sensor. At this time, an electromotive force corresponding to the amount of irradiated light is induced in the rectifying contact formed mainly between the cadmium selenide layer and the selenium layer of the sensor, which causes the capacitor 18 in the vicinity of the irradiated light to Electric charge is charged.

光の照射に少なくとも若干遅れて走査回路12の外部ア
ドレスの指定によつて、スイツチ素子15のゲートにシ
フトレジスタ13からオン信号を印加すれば、スイツチ
素子15を介して、信号処理回路17へ前記コンデンサ
18の充電電荷の放電にともなう時系列パルス信号が送
出される。信号処理回路17においては時系列パルス信
号を適宜処理すればよい。また光照射に応じた起電圧を
直接電圧信号として取り出してもよい。さらに本発明の
受光センサアレイはセンサ面積、静電容量等を加減する
ことによつて光感度、飽和露光量などを調整することが
出来る。
If an ON signal is applied from the shift register 13 to the gate of the switch element 15 by specifying an external address of the scanning circuit 12 with at least a slight delay after the light irradiation, the above-mentioned signal is sent to the signal processing circuit 17 via the switch element 15. A time-series pulse signal is sent out as the charge in the capacitor 18 is discharged. The signal processing circuit 17 may process the time-series pulse signal as appropriate. Alternatively, the electromotive force in response to light irradiation may be directly extracted as a voltage signal. Further, in the light-receiving sensor array of the present invention, photosensitivity, saturation exposure amount, etc. can be adjusted by adjusting sensor area, capacitance, etc.

また適当な静電容量を付加しておくことも有効である。
前記説明は1次元配置の受光センサアレイについて行な
つたが、2次元配置としても同様の作用をなすことは明
らかである。本発明による受光センサアレイは基板上に
配置された透明電極上にセレン化カドミウム層を設けて
からセレン層を形成することによつて整流性接合を形成
すると同時に結晶セレン層の剥離を完全に防止すること
が出来た。
It is also effective to add an appropriate capacitance.
Although the above description has been made with respect to a one-dimensional arrangement of light receiving sensor arrays, it is clear that the same effect can be achieved even with a two-dimensional arrangement. The photodetector array according to the present invention forms a rectifying junction by providing a cadmium selenide layer on a transparent electrode placed on a substrate and then forming a selenium layer, thereby completely preventing separation of the crystalline selenium layer. I was able to do it.

またセレン層の上にテルルなどセレンと抵抗性接触をな
す電極を形成してから熱処理を行なうことにより結晶セ
レン層を均一に形成せしめることができた。また撮像方
式において各センサには直接、外部から電圧を印加しな
いので外部回路の構成が簡単になり、同時に暗電流を除
去し、光信号入射時とのSM比を極めて大きくとること
ができる。また製造のバラツキに起因するもれ電流も除
去できるなどの利点がある本発明の特長は以上のような
大面積の受光センサアレイ装置を容易に作り得ることで
あり、さらにセレン層の剥離およびその結晶化にともな
う空隙の発生を防止しうること、およびそれによつて光
照射時におけるすぐれた光特性を簡易かつ有効利用しう
ることである。
Furthermore, by forming an electrode such as tellurium or the like that makes resistive contact with selenium on the selenium layer and then performing heat treatment, it was possible to uniformly form a crystalline selenium layer. Further, in the imaging method, since voltage is not directly applied to each sensor from the outside, the configuration of the external circuit is simplified, and at the same time, dark current can be removed, and the SM ratio when an optical signal is incident can be extremely large. In addition, the present invention has the advantage of being able to eliminate leakage current caused by manufacturing variations.The feature of the present invention is that it is possible to easily produce a large-area light receiving sensor array device as described above, and furthermore, it is possible to easily produce a large-area light-receiving sensor array device as described above. It is possible to prevent the generation of voids due to crystallization, and thereby it is possible to easily and effectively utilize the excellent optical properties during light irradiation.

これによつて大面積受光センサアレイの製造を容易にし
、装置としては読出し時の雑音が少く、安定性、SN比
及び感度のよい装置をうることができる。
This facilitates the manufacture of a large-area light-receiving sensor array, and provides a device with less noise during readout and with good stability, signal-to-noise ratio, and sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のセレン光電池の断面図、第2図は本発明
の受光センサアレイの内の単位センサの断面図、第3図
は受光センサの動作を説明する回路図である。 4・・・・・・ガラス基板、5・・・・・・透明電極、
6・・・・・・セレン化カドミウム層、7・・・・・・
セレン層、8・・・・・・電極、11・・・・・・セン
サアレイ、12・・・・・・走査回路、13・・・・・
・シフトレジスタ、14・・・・・・パルス発生回路、
15・・・・・・スイツチ素子、16・・・・・・ダイ
オート―17・・・・・・信号処理回路、18・・・・
・・コンデンサ。
FIG. 1 is a cross-sectional view of a conventional selenium photovoltaic cell, FIG. 2 is a cross-sectional view of a unit sensor in the light-receiving sensor array of the present invention, and FIG. 3 is a circuit diagram illustrating the operation of the light-receiving sensor. 4...Glass substrate, 5...Transparent electrode,
6...Cadmium selenide layer, 7...
Selenium layer, 8...electrode, 11...sensor array, 12...scanning circuit, 13...
・Shift register, 14...Pulse generation circuit,
15...Switch element, 16...Die-auto-17...Signal processing circuit, 18...
...Capacitor.

Claims (1)

【特許請求の範囲】 1 基板上に配置した少なくとも一方側が透明電極層で
ある電極層間において、前記電極層上にセレン化カドミ
ウム層を設け、ついでセレン化カドミウム層と整流性接
触をなす結晶セレン層を設けた受光センサを複数個配列
し、前記受光センサの電極層間に実質的に電圧を印加し
ない状態で光照射を行なうことによつて起電力を発生せ
しめ、前記受光センサを走査パルスによつて開閉される
スイッチ素子により順次放電し、放電にともなつて前記
受光センサの電極層間に生じる放電電流を時系列パルス
信号として取出してなることを特徴とする受光センサア
レイ装置。 2 上記受光センサアレイにおいてセレン化カドミウム
層が0.01μ〜2μ、セレン層が0.01μ〜4μで
あることを特徴とする特許請求の範囲第1項記載の受光
センサアレイ装置。
[Scope of Claims] 1. A cadmium selenide layer is provided on the electrode layer between electrode layers disposed on a substrate and at least one side thereof is a transparent electrode layer, and then a crystalline selenium layer is provided in rectifying contact with the cadmium selenide layer. A plurality of light-receiving sensors are arranged, and an electromotive force is generated by irradiating light with substantially no voltage applied between the electrode layers of the light-receiving sensors. 1. A light-receiving sensor array device characterized by sequentially discharging by switching elements that are opened and closed, and extracting a discharge current generated between electrode layers of the light-receiving sensor as a time-series pulse signal as the discharge occurs. 2. The light receiving sensor array device according to claim 1, wherein in the light receiving sensor array, the cadmium selenide layer has a thickness of 0.01 μm to 2 μm, and the selenium layer has a thickness of 0.01 μm to 4 μm.
JP54056889A 1979-05-11 1979-05-11 Light receiving sensor array device Expired JPS5932948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54056889A JPS5932948B2 (en) 1979-05-11 1979-05-11 Light receiving sensor array device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54056889A JPS5932948B2 (en) 1979-05-11 1979-05-11 Light receiving sensor array device

Publications (2)

Publication Number Publication Date
JPS55149576A JPS55149576A (en) 1980-11-20
JPS5932948B2 true JPS5932948B2 (en) 1984-08-11

Family

ID=13039990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54056889A Expired JPS5932948B2 (en) 1979-05-11 1979-05-11 Light receiving sensor array device

Country Status (1)

Country Link
JP (1) JPS5932948B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115259A (en) * 1983-11-26 1985-06-21 Nippon Telegr & Teleph Corp <Ntt> Photoelectric conversion device and manufacture thereof
DE10245078B4 (en) 2002-09-27 2005-08-11 Aloys Wobben Wind turbine
JP6362257B2 (en) * 2013-06-13 2018-07-25 日本放送協会 PHOTOELECTRIC CONVERSION ELEMENT, METHOD FOR PRODUCING PHOTOELECTRIC CONVERSION ELEMENT, LAMINATED SOLID IMAGE PICKUP ELEMENT, AND SOLAR CELL
JP6570173B2 (en) * 2015-07-01 2019-09-04 日本放送協会 Photoelectric conversion element, method for manufacturing photoelectric conversion element, solid-state imaging element
JP6575997B2 (en) * 2015-07-30 2019-09-18 日本放送協会 Photoelectric conversion element, method for manufacturing photoelectric conversion element, solid-state imaging element

Also Published As

Publication number Publication date
JPS55149576A (en) 1980-11-20

Similar Documents

Publication Publication Date Title
US5273910A (en) Method of making a solid state electromagnetic radiation detector
US5235195A (en) Solid state electromagnetic radiation detector with planarization layer
US5930591A (en) High resolution, low voltage flat-panel radiation imaging sensors
US4862237A (en) Solid state image sensor
CA1168739A (en) Method of manufacturing photosensors
EP0977275B1 (en) Infrared/visible multispectral radiation detector
US4271420A (en) Solid-state image pickup device
JP2001515274A (en) Multi color sensor
Hamano et al. An amorphous Si high speed linear image sensor
US4341954A (en) Photo-electric converting apparatus
JPS5932948B2 (en) Light receiving sensor array device
Torquemada et al. Polycrystalline PbSe xy addressed uncooled FPAs
JPH0221664B2 (en)
Mulato et al. Two-color amorphous silicon image sensor
Tsukada et al. New solid-state image pickup devices using photosensitive chalcogenide glass film
JPS5879756A (en) Amorphous si image sensor
JPH08250694A (en) Solid-state image sensor and manufacture thereof
EP0257747A3 (en) Photoelectric array for scanning large-area non-planar image-bearing surfaces
JPS5846066B2 (en) Photoelectric conversion device
JPH0316833B2 (en)
JPS6333353B2 (en)
FR2523371A1 (en) Simplified cell for video retina - using photoconducting element in hydrogenated amorphous silicon carbide
JPS586164A (en) Solid-state image pickup device
JPS6322469B2 (en)
JPH0563171A (en) Manufacture of optoelectric transducer