JPS5930782B2 - Stainless steel for combustion equipment heat absorption radiator - Google Patents

Stainless steel for combustion equipment heat absorption radiator

Info

Publication number
JPS5930782B2
JPS5930782B2 JP13978079A JP13978079A JPS5930782B2 JP S5930782 B2 JPS5930782 B2 JP S5930782B2 JP 13978079 A JP13978079 A JP 13978079A JP 13978079 A JP13978079 A JP 13978079A JP S5930782 B2 JPS5930782 B2 JP S5930782B2
Authority
JP
Japan
Prior art keywords
content
less
heat
combustion
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13978079A
Other languages
Japanese (ja)
Other versions
JPS5665966A (en
Inventor
和郎 関本
進彦 末田
洸介 沢重
誠治 井原
博史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP13978079A priority Critical patent/JPS5930782B2/en
Publication of JPS5665966A publication Critical patent/JPS5665966A/en
Publication of JPS5930782B2 publication Critical patent/JPS5930782B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Description

【発明の詳細な説明】 本発明は熱吸収放射特性に優れた燃焼機器熱吸収放射体
用の、Caおよびまたは希土類金属を含むCr−Al系
ステンレス鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Cr--Al stainless steel containing Ca and/or a rare earth metal, which is used as a heat-absorbing radiator for combustion equipment and has excellent heat-absorbing and radiation properties.

石油ストーブ、ガスストーブあるいはガスレンジなどの
燃焼機器は燃料を燃焼して熱吸収放射体(以下便宜的に
加熱体と称する)に熱エネルギーを与え、その熱エネル
ギーを放射して暖房または加熱対象物の加熱を行なう機
構となっているが、その加熱体用材料には現在主として
SUS430系(18%Cr系)ステンレス鋼かあるい
はA7を2〜6%含有した12〜20%Cr系ステンレ
ス鋼(18Cr−3AA系と14Cr−5A7系に分け
られることもあるが、以下単にCr−AA系ステンレス
鋼と称す)の両フェライト系ステンレス鋼が使用されて
いる。この両フェライト系ステンレス鋼が使用されてい
るのはその経済性と耐熱性とに対する考慮からであるが
従来専ら耐熱性を重点として選ばれて来た。しかし、加
熱体としての機能を考える場合、経済的で且つ或る程度
の耐熱性を要することは論を待たないが、さらにそれよ
りも次に示す2つの性能が必須の条件となる。
Combustion appliances such as kerosene stoves, gas stoves, and gas ranges burn fuel to provide thermal energy to a heat-absorbing radiator (hereinafter referred to as a heating element for convenience), and radiate that thermal energy to heat or heat objects. Currently, the heating element is mainly made of SUS430 series (18% Cr) stainless steel or 12-20% Cr stainless steel (18% Cr) containing 2-6% A7. Both ferritic stainless steels (which are sometimes divided into -3AA series and 14Cr-5A7 series, hereinafter simply referred to as Cr-AA series stainless steels) are used. Both of these ferritic stainless steels are used because of their economical efficiency and heat resistance, and in the past they have been selected with emphasis on heat resistance. However, when considering the function as a heating body, it goes without saying that it must be economical and have a certain degree of heat resistance, but the following two performances are even more essential.

10燃焼熱の吸収および放射の能力。10 Ability to absorb and radiate combustion heat.

即ち一定の燃焼熱からどれだけ多くの熱エネルギーを吸
収し放射するかということで、それが優れている程良好
な材料といえる。28上記能力の経時的劣化の程度。
In other words, it is a matter of how much heat energy it absorbs and radiates from a certain amount of combustion heat, and the better it is, the better the material is. 28 Degree of deterioration of the above abilities over time.

即ち長期間燃焼後の上記の吸収および放射の能力の劣下
の程度で、劣下の少ない材料程、優れた材料といえる。
高温耐酸化性の優れたCに−AA系耐熱鋼は種々のもの
が知られている。
In other words, in terms of the degree of deterioration of the above-mentioned absorption and radiation ability after long-term combustion, a material with less deterioration can be said to be a superior material.
Various C-AA heat-resistant steels having excellent high-temperature oxidation resistance are known.

例えば特開昭48−89117号には、Cr■ 13〜
28% 、AA■2〜6条、C:0.005〜0003
%、Si:1条以下、Mn:1%以下、Ti: 0.0
5〜0.5%、残部Feおよび通常の不純物からなる排
気ガス系製品用のCr−A7系耐熱鋼が開示されている
。またこの種の鋼にCaおよびまたは希土類金属を加え
を思想はすでに知られている。特開昭51−14119
号にはC:0.03係以下、Si: 1.0チ以下、C
r:12〜25係,Al:2〜6係,Ti:0.1〜0
.5%、希土類元素またはアルカリ土類元素の1種また
は2種以上を0.00i〜0.1係含有する。Fe−C
r−Al系耐熱合金が開示されている。しかしながらこ
の鋼においては希土類元素またはアルカリ土類元素は専
ら、異常酸化防止のために添加されているのであって、
Ti,Siとの関連において熱吸収放射特性の改善が意
図ないし認識されているものではない。
For example, in Japanese Patent Application Laid-Open No. 48-89117, Cr■ 13~
28%, AA ■ 2-6 articles, C: 0.005-0003
%, Si: 1 thread or less, Mn: 1% or less, Ti: 0.0
A Cr-A7 heat-resistant steel for exhaust gas products is disclosed, consisting of 5% to 0.5%, the balance Fe and normal impurities. Furthermore, the idea of adding Ca and/or rare earth metals to this type of steel is already known. Japanese Patent Publication No. 51-14119
The numbers include C: 0.03 or less, Si: 1.0 or less, C
r: 12-25 sections, Al: 2-6 sections, Ti: 0.1-0
.. 5%, and 0.00i to 0.1% of one or more rare earth elements or alkaline earth elements. Fe-C
An r-Al-based heat-resistant alloy is disclosed. However, in this steel, rare earth elements or alkaline earth elements are added solely to prevent abnormal oxidation.
There is no intention or recognition of improvement in heat absorption and radiation properties in connection with Ti and Si.

本発明者等はこのような従来技術に立脚して、この種の
鋼の組成を上記の観点から再検討し、各成分の熱の吸収
および放射ならびにそれらの持久性に対する奇与を調べ
た結果、鋼の熱吸収放射能力の持久性に対してTiが有
害であるが、SiはTiの有害作用に対して拮抗作用が
あり、微量のCaおよびまたは希土類金属の存在のもと
に、Tiに見あうSiを添加することによって、既知の
Cr−A7系ステンレス鋼に許容される量に近い量のT
iを含有しても、熱吸収放射特性の劣化が起らないこと
を知見して本発明を完成した。
Based on such conventional technology, the present inventors reexamined the composition of this type of steel from the above-mentioned viewpoint, and investigated the effects of each component on heat absorption and radiation and their durability. , Ti is harmful to the sustainability of the heat absorption and radiation ability of steel, but Si has an antagonistic effect on the harmful effects of Ti, and in the presence of trace amounts of Ca and/or rare earth metals, Ti By adding a suitable amount of Si, an amount of T close to that allowed for known Cr-A7 stainless steels can be achieved.
The present invention was completed based on the finding that the heat absorption and radiation characteristics do not deteriorate even if i is contained.

本発明によれば、重量でCr二12.0〜20.0係,
A7: 2.0〜6.0係,Si:0.1〜0.90
係,Ti: 0.01〜0.45%, Caおよび希土
類金属の1種または2種以上:0.001〜0.050
係,C:0.03%以下、Mn: 0.38%以下を含
有し、残部が鉄および不可避的不純物からなり、Ti含
有量と、Si含有量との関係をTiが0.35%以下の
場合はSi含有量を上記範囲内の任意の含有量とし、T
iが0.3s%を越え0.45%以下の場合は、Si含
有量を0.50%以上0.90%以下とすることを特徴
とする熱吸収放射特性の優れた燃焼機器熱吸収放射体用
ステンレス鋼が提供される。本発明鋼の組成において、
CrとAlの含有量は既知のCr−AAステンレス鋼(
12〜20,%Cr、2〜6係Al、13Cr−3A1
系と14Cr−5A1系に分けて考えられることもある
)の考え方を踏襲したものである。本発明鋼において、
Cは鋼の耐食性、加工性および清浄度を良好にする見地
から0.03%以下と規定する。
According to the present invention, Cr212.0 to 20.0% by weight,
A7: 2.0-6.0, Si: 0.1-0.90
Ti: 0.01-0.45%, Ca and one or more rare earth metals: 0.001-0.050
Contains C: 0.03% or less, Mn: 0.38% or less, and the remainder consists of iron and unavoidable impurities, and the relationship between Ti content and Si content is 0.35% or less. In the case of , the Si content is any content within the above range, and T
When i is more than 0.3s% and less than 0.45%, the Si content is 0.50% or more and 0.90% or less.A combustion equipment with excellent heat absorption and radiation characteristics. Body stainless steel is provided. In the composition of the steel of the present invention,
The contents of Cr and Al are known in Cr-AA stainless steel (
12-20% Cr, 2-6% Al, 13Cr-3A1
(Sometimes they are considered separately into 14Cr-5A1 series and 14Cr-5A1 series). In the steel of the present invention,
C is specified to be 0.03% or less from the viewpoint of improving the corrosion resistance, workability, and cleanliness of the steel.

Cr−A# 系ステンレス鋼においてTiは合金中の炭
素を固定し、結晶粒を微細化し、靭性を増大させ、高温
における異常酸化を抑制する作用を有するが、本発明鋼
においては前述のように鋼の熱吸収放射能力の持久性に
好ましくない成分であり、可及的に少ないことが望まし
いが、後記のように、その有害性はSiと、Caおよび
希土類金属から選ばれる1種以上の金属の添加によって
救われるので、0.45%まで含有させることができる
In Cr-A# stainless steel, Ti has the effect of fixing carbon in the alloy, refining grains, increasing toughness, and suppressing abnormal oxidation at high temperatures. It is a component that is unfavorable for the sustainability of the heat absorption and radiation ability of steel, and it is desirable to reduce it as much as possible, but as described later, its toxicity is due to the presence of one or more metals selected from Si, Ca, and rare earth metals. can be contained up to 0.45%.

一方Tiは造塊時の割れの防止と、高温異常酸化防止の
ためにも必須の成分で、そのためには少くとも0.01
%は含有させねばならぬ。Siは脱酸剤として必須の成
分であり、また本発明鋼の場合Tiの拮抗成分として重
要であるが、多すざると鋼の硬度を高め加工性を害し、
靭性を低下し通常の製造工程での板の製造がきわめて困
難になる。
On the other hand, Ti is an essential component to prevent cracking during agglomeration and to prevent high-temperature abnormal oxidation.
% must be included. Si is an essential component as a deoxidizing agent, and in the case of the steel of the present invention, it is important as an antagonistic component to Ti, but if too much Si increases the hardness of the steel and impairs workability.
This reduces toughness and makes it extremely difficult to manufacture plates using normal manufacturing processes.

そのような兼ね合いから0.90%が上限と定められる
。下限を0.10%としたのは一般的な意味において耐
熱性の劣化と溶鋼の湯流れ性の低下を考慮してのことで
ある。Mnは脱酸剤として必要な成分であり、耐高温酸
化性には有害な成分であるが、この種の鋼においては、
通常1係程度まで許容されている。
Considering such a balance, 0.90% is set as the upper limit. The lower limit was set at 0.10% in consideration of deterioration of heat resistance and deterioration of flowability of molten steel in a general sense. Mn is a necessary component as a deoxidizer, and is a component harmful to high-temperature oxidation resistance, but in this type of steel,
Normally, up to 1 section is allowed.

本願発明鋼においては、Mnは耐高温酸化性向上の面か
ら可及的に低い方が好ましいが、製造性を考慮し、その
上限を0.38%とした。本発明鋼においてCaと希土
類金属はSiのTiの有害作用に対する拮抗作用を増強
するものと考えられる。
In the steel of the present invention, Mn is preferably as low as possible from the viewpoint of improving high temperature oxidation resistance, but in consideration of manufacturability, the upper limit was set to 0.38%. In the steel of the present invention, Ca and rare earth metals are thought to enhance the antagonistic effect of Si against the harmful effects of Ti.

Tiが0.35〜0.45%含まれる場合にもこの目的
を達するためには少くとも0.001%は必要である。
その効果はおよそ0.01%で飽和に達するが、効果の
確実性と経済性を考慮してその上限は0.05%と定め
た。以下本発明の各種燃焼機器加熱体としてのCr−A
l系ステンレス鋼の組成範囲を定めた実験内容について
言臓する。1.実験供試材 Cr−Al系ステンレス鋼の成分のうち、Cr,Al,
Si,Ti,Ca,希土類金属の成分を変化させた第1
表に示す成分のものを供試材とした。
Even when Ti is contained in an amount of 0.35 to 0.45%, at least 0.001% is necessary to achieve this purpose.
The effect reaches saturation at approximately 0.01%, but the upper limit was set at 0.05% in consideration of certainty of the effect and economy. Below, Cr-A as a heating element for various combustion equipment of the present invention
This article describes the content of the experiment that determined the composition range of l-series stainless steel. 1. Among the components of the experimental sample material Cr-Al stainless steel, Cr, Al,
The first product with different compositions of Si, Ti, Ca, and rare earth metals
The test materials had the components shown in the table.

この表および以下に記す第2.3,4表のすべてにおい
て△記号を付した試番のものは本発明外の鋼、即ち比較
鋼である。供試材はすべて通常のCr−AA系ステンレ
ス鋼の冷延鋼板と同じ製造工程を経た厚さ0.4朋の冷
延鋼板を使用し、表面をJISG43O5(冷間圧延ス
テンレス鋼板)7.に規定する嵐4仕上に仕上げた。2
.性能試験 試験方法 ガスストーブ、石油ストーブあるいはガスレンジなどの
燃料には灯油、都市ガスあるいは液化石油ガスなどの炭
化水素を主成分とする燃料が用いられているが、それら
が燃焼して生成する燃焼ガスの成分は、いづれの燃料も
略々同じで、N2,CO2,H2O,O?,CO,NO
,SOx,CnHmなどからなX っている。
In this table and all of Tables 2, 3, and 4 below, the sample numbers marked with a △ symbol are steels other than those of the present invention, that is, comparative steels. All test materials used were cold-rolled steel plates with a thickness of 0.4 mm that had gone through the same manufacturing process as ordinary Cr-AA stainless steel cold-rolled steel plates, and the surfaces were JIS G43O5 (cold-rolled stainless steel plates) 7. Finished with Arashi 4 finish specified by. 2
.. Performance test test method Gas stoves, kerosene stoves, and gas ranges use fuels whose main components are hydrocarbons such as kerosene, city gas, or liquefied petroleum gas. The gas components are almost the same for both fuels: N2, CO2, H2O, O? ,CO,NO
, SOx, CnHm, etc.

したがって本発明においては灯油を燃料とした石油スト
ーブを代表例にとり実験した。実験に用いたストーブは
JIS82lO9(石油ストーブ)に規定されている開
放式放射型ストーブは燃焼時の外炎筒の温度が約750
℃であるものおよび約850℃であるものの2種類であ
り、灯油はJISK22O3(灯油)に規定されている
1号灯油 である。
Therefore, in the present invention, an experiment was conducted using a kerosene stove as a representative example. The stove used in the experiment is an open radiant stove specified by JIS821O9 (oil stove), and the temperature of the outer flame cylinder during combustion is approximately 750.
There are two types of kerosene, one with a temperature of approximately 850°C and one with a temperature of approximately 850°C, and the kerosene is No. 1 kerosene specified in JIS K22O3 (kerosene).

また燃焼はJISS2Ol9、7.9.1.(2)に規
定されている燃焼試験に準じて燃焼させた。開放式放射
型石油ストーブの場合、外炎筒および内炎筒からなる炎
筒ならびに放熱ネットおよびコイルが加熱体の役目を担
っている。それらのうち炎筒全部を実験供試材で製作し
、その外炎簡の性能を評価することにより実験供試材の
性能を評価した。外炎筒の性能評価方法 前記した2つの必須の性能を何によって評価するかは極
めて問題であるが、本発明では次の2方法で評価した。
Also, the combustion is based on JISS2Ol9, 7.9.1. It was burned in accordance with the combustion test specified in (2). In the case of an open radiant kerosene stove, a flame tube consisting of an outer flame tube and an inner flame tube, a heat dissipation net, and a coil serve as the heating body. The performance of the experimental material was evaluated by fabricating all of the flame tubes using the experimental material and evaluating the performance of the outer flame strip. Method for evaluating performance of outer flame tube Although it is extremely difficult to evaluate the above-mentioned two essential performances, in the present invention, the following two methods were used for evaluation.

a)熱電対による外炎筒の温度の測定 外炎筒が灯油の燃焼熱をどれだけ吸収するかは、換言す
れば、燃焼熱で外炎筒の温度がどれだけ上昇するかとい
うことである。
a) Measuring the temperature of the outer flame tube using a thermocouple How much heat of combustion of kerosene is absorbed by the outer flame tube is, in other words, how much the temperature of the outer flame tube rises due to the heat of combustion. .

したがって、外炎筒の定まった位置に熱電対を溶着し、
外炎筒の温度を測定することにより外炎筒の燃焼熱の吸
収能力の測定とした。b)赤外線温度計による外炎筒の
温度の測定加熱された物体がどれだけの熱エネルギーを
放射しているかを測定する1方法として、放射されてい
る赤外エネルギーを測定する方法があるので、その方法
を用い、測定器としては赤外エネルギーを温度番と換算
して測定する赤外温度を利用した。
Therefore, a thermocouple is welded to a fixed position on the outer flame tube,
By measuring the temperature of the outer flame tube, the ability of the outer flame tube to absorb combustion heat was measured. b) Measuring the temperature of the outer flame cylinder using an infrared thermometer One way to measure how much thermal energy a heated object is emitting is to measure the emitted infrared energy. Using this method, we used an infrared temperature measurement device that measures infrared energy by converting it into a temperature number.

本実験の場合、使用した石油ストーブの燃焼筒の構造か
ら、耐熱ガラスごしに赤外エネルギーを測定せねばなら
ぬので、耐熱ガラスに吸収されにくい波長、即ち1.8
μmおよび2.3μmの両波長で同時に測定出来て、被
測定物の放射率や灰色減光を消去できる2色赤外温度計
を使用した。.実験結果 供試材の初期性能 石油ストーブの燃焼は燃焼筒や燃焼芯が全く新しい場合
燃焼が不安定であるので、燃焼開始後10時間経過時点
での性能を初期の性能として、その測定値を求めた結果
を第2表に示した。
In the case of this experiment, due to the structure of the combustion tube of the kerosene stove used, it was necessary to measure infrared energy through heat-resistant glass.
A two-color infrared thermometer was used that can simultaneously measure at both wavelengths of μm and 2.3 μm, and can eliminate the emissivity and gray attenuation of the object to be measured. .. Experimental results Initial performance of the sample materials Combustion in a kerosene stove is unstable if the combustion tube or wick is completely new, so the performance at 10 hours after the start of combustion is taken as the initial performance, and the measured value is The obtained results are shown in Table 2.

第2表から次のことが解る。燃焼熱吸収能力の尺度とし
て熱電対によって測定した温度と、熱放射能力の尺度と
して赤外温度計によって測定した温度は、750℃スト
ーブおよび850℃ストーブの場合ともそれぞれ同じ約
20℃までのばらつきを示している。このばらつきは、
実験に使用したストーブ個々の特性によるもので、実験
材の差によるものではなく初期の性能は実験材すべてに
ついて同等である。供試材の長期性能 ストーブの燃焼を、8時間燃焼16時間冷却の周期で行
ない、燃焼時間320時間 (40周期)後の性能を長期性能(持久性)とし、その
測定値を第3表にまとめて示した。
The following can be seen from Table 2. Temperatures measured by thermocouples as a measure of the ability to absorb heat of combustion, and temperatures measured by infrared thermometers as a measure of the ability to radiate heat, have a variation of up to about 20°C, which is the same for both 750°C and 850°C stoves, respectively. It shows. This variation is
This is due to the characteristics of the individual stoves used in the experiment, and is not due to differences in the experimental materials; the initial performance is the same for all experimental materials. Long-term performance of the test material The stove was burned with a cycle of 8 hours of combustion and 16 hours of cooling, and the performance after 320 hours of burning time (40 cycles) was defined as long-term performance (durability), and the measured values are shown in Table 3. Shown all together.

ただし測定値は40周期後の性能が初期からどれだけ劣
化したかを表示するのが解り易いので第3表には初期温
度からの低下した温度(Δt’C)が表示してある。第
3表の測定値をもとに第1〜第4図を作成した。第1〜
第4図において、縦軸は性能劣化表示の温度差(Δt
’C )を、横軸にCaまたは希土類金属あるいはそれ
らの2種以上の合計添加量を示している。また図中A,
b)C,d,eの各曲線でTiおよびSiの含有量を表
示し、a線は試番25〜27、即ち、Ti含有量0.2
3〜0.28係(0.30係以下)でSi含有量0.2
0〜0.37係(0.50係未満);b線は試番15〜
24、即ち、Ti含有量0.31〜0.34係(0.3
0係を越え0.35係以下)でSi含有量0.20〜0
.59係(任意量);C線は試番9〜14、即ち、Ti
含有量0.36〜0.43係(0.35係を越え0.4
5係以下)でSi含有量0.53〜0.70係(0.5
0係以上);d線は試番4〜8、即ち、Ti含有量0.
36〜0.41係(0.35を越え0.45係以下)で
Si含有量0.23〜0.36係(0.50係未満);
e線は試番1〜3、即ちTi含有量0.48〜0.51
係(0.45係を越える場合 Si含有量0.50〜0
.72係(0.50%以上)を代表している。
However, since it is easy to understand that the measured value shows how much the performance after 40 cycles has deteriorated from the initial level, Table 3 shows the temperature decreased from the initial temperature (Δt'C). Figures 1 to 4 were created based on the measured values in Table 3. 1st~
In Figure 4, the vertical axis is the temperature difference (Δt
'C), the horizontal axis indicates the total amount of Ca, rare earth metal, or two or more thereof. Also, A in the figure,
b) The content of Ti and Si is displayed in each curve C, d, and e, and the a line is sample number 25 to 27, that is, Ti content 0.2
3 to 0.28 ratio (0.30 ratio or less) and Si content 0.2
0 to 0.37 ratio (less than 0.50 ratio); B line is trial number 15 to
24, that is, Ti content 0.31 to 0.34 (0.3
(over 0 coefficient and below 0.35 coefficient) and Si content 0.20 to 0
.. Section 59 (arbitrary amount); C line is trial number 9 to 14, that is, Ti
Content: 0.36 to 0.43 (over 0.35 and 0.4
5 or less) and the Si content is 0.53 to 0.70 (0.5
0 coefficient or higher); d-line is trial number 4 to 8, that is, Ti content is 0.
Si content is 0.23 to 0.36 (less than 0.50);
E-line is trial number 1 to 3, i.e. Ti content 0.48 to 0.51
(If it exceeds 0.45, the Si content is 0.50 to 0.
.. It represents Section 72 (more than 0.50%).

これらの図から次の結論が引きだされる。750℃スト
ーブの場合 燃焼熱吸収能力の持久性と組成の関係が 第1図に、熱放射能力の持久性と組成との関係が第3図
に示されている。
The following conclusions can be drawn from these figures. In the case of a 750°C stove, the relationship between the durability of combustion heat absorption ability and composition is shown in Figure 1, and the relationship between durability of heat radiation ability and composition is shown in Figure 3.

この両図よりCaおよび希土類金属と、Tiと、Siが
両性能の持久性に及ぼす影響は全く同じ傾向を示し、次
のようにまとめられる。
From these figures, the influences of Ca and rare earth metals, Ti, and Si on the durability of both performances show exactly the same tendency, and can be summarized as follows.

a)Caまたは希土類金属の添加による改善効果は少量
のうちは添加量に比例する が、その量が多くなるに従って飽和に近 づく。
a) The improvement effect due to the addition of Ca or rare earth metal is proportional to the amount added in a small amount, but as the amount increases, it approaches saturation.

単独または2種以上の合計の添加量が約0.010係で
一定となる。
The amount added alone or in total of two or more types is constant at about 0.010.

b)Ti添加量が多い場合程Caまたは希土類金属の添
加の効果は大きく表われる。
b) The greater the amount of Ti added, the greater the effect of adding Ca or rare earth metal becomes.

c)SiはTi含有量との関連において、性能に影響し
、Ti含有量が多い場合に Siの改善効果は大きく現われる。
c) Si affects performance in relation to the Ti content, and the improvement effect of Si becomes greater when the Ti content is large.

今第1図において、性能劣化温度差約55℃までの材料
が極めて良好な材料であるという考え本に立脚して、良
好な材料を得るための組成条件を求めると、a曲線は無
条件に良好な材料であることを示し、b曲線(Ti:0
.35%以下)はCaおよびまたは希土類金属の合計添
加量約0.0005%で、C曲線では0.001%で良
好な材料となるが、d曲線とe曲線では0.05%添加
しても良好な材料は得られない。
Now, in Figure 1, based on the idea that a material with a performance deterioration temperature difference of up to about 55°C is an extremely good material, when determining the composition conditions to obtain a good material, the a curve is unconditionally It shows that it is a good material, and the b curve (Ti:0
.. 35% or less), the total amount of Ca and/or rare earth metal added is about 0.0005%, and in the C curve, it is a good material at 0.001%, but in the d and e curves, even if 0.05% is added. Good materials are not available.

このことからまとめると、Caおよびまたは希土類金属
が合計で0.001%以上添加されていれば、Tiが0
.35%を越えても、0.5係以上のSiの共存のもと
に良好な材料が得られる。
To summarize from this, if Ca and/or rare earth metals are added in a total of 0.001% or more, Ti will be 0.
.. Even if it exceeds 35%, a good material can be obtained in the coexistence of Si with a coefficient of 0.5 or higher.

しかしTiが0.45%を越えるとSiやCaおよびも
しくは希土類金属の共存下においても良好な材料は得ら
れない。かくして特許請求の範囲に記載した関係が導き
出される。この関係を第3図において考察すれば、本発
明鋼では熱放射能力の劣化(温度低下)は約65℃に抑
えられているのに、比較鋼では90℃に及んでいる。
However, if Ti exceeds 0.45%, a good material cannot be obtained even in the coexistence of Si, Ca, and/or rare earth metals. Thus, the relationships described in the claims are derived. Considering this relationship in FIG. 3, the deterioration (temperature drop) in heat radiation ability is suppressed to about 65°C in the steel of the present invention, while it reaches 90°C in the comparative steel.

850にCストーブの場合 850℃ストーブの燃焼熱吸収能力の持 久性と組成の関係は第2図に示されている。For 850 and C stove 850℃ stove has the ability to absorb combustion heat. The relationship between durability and composition is shown in Figure 2.

ここでも750゜Cストーブの場合と全く同様の傾向が
見られ、本発明鋼では熱吸収能力の劣化(温度低下)は
約90℃に留められているのに比較鋼では130℃に及
んでいる。
The same trend as in the case of the 750°C stove can be seen here as well, with the deterioration of heat absorption capacity (temperature drop) in the inventive steel being kept at about 90°C, while in the comparative steel it reaches 130°C. .

850℃ストーブの熱放射能力の持久性 と組成の関係は第4図に示されている。Durability of heat radiation ability of 850℃ stove The relationship between and the composition is shown in FIG.

ここでもまた全く同じ傾向が見られ、本発明鋼では熱放
射能力の劣化(温度低下)は約100℃に留められてい
るのに対し、比較鋼では140℃に及んでいる。
Exactly the same tendency is seen here as well, with the deterioration of heat radiation ability (temperature drop) in the steel of the present invention being kept at about 100°C, while in the comparative steel it reaches 140°C.

このように本発明は耐熱性に優れたCr−Al系ステン
レス鋼であって、MnとTiとSiとCaおよびまたは
希土類の少なくとも1種とを含み、TiとSiの量が調
整された熱吸収放射性能の持久性に優れた鋼を提供する
ものである。
As described above, the present invention is a Cr-Al stainless steel with excellent heat resistance, which contains Mn, Ti, Si, Ca, and/or at least one rare earth element, and has a heat absorbing material with adjusted amounts of Ti and Si. This provides steel with excellent durability in radiation performance.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はいずれもCr−A7系ステンレス鋼に及ぼす
熱吸収放射能力の持久性に及ぼすTi,Si,Caおよ
びまたは希土類金属の相関関係を示す。 第1図:燃焼温度750℃の石油ストーブにおける熱吸
収能力の持久性に対する関係。第2図:燃焼温度850
゜Cの石油ストーブにおける熱吸収能力の持久性に対す
る関係。第3図:燃焼温度750゜Cの石油ストーブに
おける熱放射能力の持久性に対する関係。第4図:燃焼
温度850゜Cの石油ストーブにおける熱放射能力の持
久性に対する関係。これらの図において、A,b,c,
d,eの各曲線はTiとSiの含有量の区分を表わし、
a線:TiO.3O係以下、SiO.5O係未満;b線
:TiO.3O係を越え0.35係以下、Si任意量;
C線:TiO.35を越え0.45%以下、SiO.5
O係以上;d線:TiO.35係を越え0.45係以下
、SiO.5O%未満;e線:TiO.45%を越え、
SiO.5O%以上。
The attached drawings all show the correlation of Ti, Si, Ca and/or rare earth metals on the durability of heat absorption and radiation ability of Cr-A7 stainless steel. Figure 1: Relationship between heat absorption capacity and durability in a kerosene stove with a combustion temperature of 750°C. Figure 2: Combustion temperature 850
Relationship between heat absorption capacity and durability in a kerosene stove at °C. Figure 3: Relationship between heat radiation ability and durability in a kerosene stove with a combustion temperature of 750°C. Figure 4: Relationship between heat radiation capacity and durability in a kerosene stove with a combustion temperature of 850°C. In these figures, A, b, c,
Each curve d and e represents the division of Ti and Si content,
a-line: TiO. 3O section and below, SiO. Less than 5O; b line: TiO. More than 3O ratio and less than 0.35 ratio, arbitrary amount of Si;
C line: TiO. more than 35 and less than 0.45%, SiO. 5
O section or higher; d line: TiO. More than 35 ratio and less than 0.45 ratio, SiO. less than 50%; e-line: TiO. Over 45%,
SiO. More than 50%.

Claims (1)

【特許請求の範囲】[Claims] 1 重量でCr:12.0〜20.0%、Al:2.0
〜6.0%、Si:0.1〜0.90%、Ti:0.0
1〜0.45%、Caおよび希土類金属の1種または2
種以上:0.001〜0.050%、C:0.03%以
下、Mn:0.38%以下を含有し、残部が鉄および不
可避的不純物からなり、Ti含有量とSi含有量との関
係をTiが0.35%以下の場合はSi含有量を上記範
囲内の任意の含有量とし、Tiが0.35%を越え0.
45%以下の場合は、Si含有量を0.50%以上0.
90%以下とすることを特徴とする熱吸収放射特性の優
れた燃焼機器熱吸収放射体用ステンレス鋼。
1 Cr: 12.0-20.0%, Al: 2.0 by weight
~6.0%, Si: 0.1~0.90%, Ti: 0.0
1 to 0.45%, one or two of Ca and rare earth metals
Species or higher: 0.001 to 0.050%, C: 0.03% or less, Mn: 0.38% or less, the remainder consists of iron and inevitable impurities, and the Ti content and Si content are The relationship is that when Ti is 0.35% or less, the Si content is set to an arbitrary content within the above range, and when Ti exceeds 0.35%, the Si content is set to an arbitrary content within the above range.
If the Si content is 45% or less, increase the Si content to 0.50% or more.
A stainless steel for use in heat absorbing radiators of combustion equipment, which has excellent heat absorbing and radiating properties of 90% or less.
JP13978079A 1979-10-31 1979-10-31 Stainless steel for combustion equipment heat absorption radiator Expired JPS5930782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13978079A JPS5930782B2 (en) 1979-10-31 1979-10-31 Stainless steel for combustion equipment heat absorption radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13978079A JPS5930782B2 (en) 1979-10-31 1979-10-31 Stainless steel for combustion equipment heat absorption radiator

Publications (2)

Publication Number Publication Date
JPS5665966A JPS5665966A (en) 1981-06-04
JPS5930782B2 true JPS5930782B2 (en) 1984-07-28

Family

ID=15253240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13978079A Expired JPS5930782B2 (en) 1979-10-31 1979-10-31 Stainless steel for combustion equipment heat absorption radiator

Country Status (1)

Country Link
JP (1) JPS5930782B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285469A (en) * 1988-05-11 1989-11-16 Komatsu Zoki Kk Truck-base general purpose vehicle
WO1993018196A1 (en) * 1992-03-09 1993-09-16 Nippon Steel Corporation Fe-Cr-Al ALLOY STEEL SHEET AND PRODUCTION THEREOF

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661169A (en) * 1982-04-12 1987-04-28 Allegheny Ludlum Corporation Producing an iron-chromium-aluminum alloy with an adherent textured aluminum oxide surface
US5578265A (en) * 1992-09-08 1996-11-26 Sandvik Ab Ferritic stainless steel alloy for use as catalytic converter material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285469A (en) * 1988-05-11 1989-11-16 Komatsu Zoki Kk Truck-base general purpose vehicle
WO1993018196A1 (en) * 1992-03-09 1993-09-16 Nippon Steel Corporation Fe-Cr-Al ALLOY STEEL SHEET AND PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPS5665966A (en) 1981-06-04

Similar Documents

Publication Publication Date Title
TR201802979T4 (en) Nickel-chromium-alloy.
JPH03274245A (en) Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance
RU2472868C2 (en) Steel for high-strength parts from strips, plates or pipes with excellent deformability, which is especially useful for methods of high-temperature application of coatings
JPS5930782B2 (en) Stainless steel for combustion equipment heat absorption radiator
JPS5911660B2 (en) Stainless steel for combustion equipment heat absorption radiator
US2127245A (en) Alloy
US5350559A (en) Ferrite steel which excels in high-temperature strength and toughness
JPS5915976B2 (en) Ferritic stainless steel with excellent oxidation resistance
JP4042367B2 (en) Thermocouple, protective tube material and method of using the material
JPS5942745B2 (en) Non-thermal heat working Cr-Mo steel with excellent strength and toughness
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JPH02156049A (en) Heat resisting steel for ethylene decomposition furnace tube
JPS5924172B2 (en) heat resistant bimetal
Erdős et al. Temperature dependence of the yield strength of heat-resistant steels
JPS599617B2 (en) Ferritic stainless steel with excellent oxidation resistance and workability
JPS60257991A (en) Welding wire for 9cr-mo steel
RU2206632C2 (en) Two-layer corrosion-resistant steel
JP3298365B2 (en) Austenitic stainless steel for high-temperature welding equipment
SU148085A1 (en)
JPH0238655B2 (en)
SU834220A1 (en) Steel
JPS607699B2 (en) Ferrite stainless steel with excellent discoloration resistance at high temperatures
JPS61117251A (en) Heat resisting steel
JPS58224148A (en) Chromium steel for member of exhaust system of automobile
KR800001346B1 (en) Heat-resisting austenite stainless steel