JPS61117251A - Heat resisting steel - Google Patents

Heat resisting steel

Info

Publication number
JPS61117251A
JPS61117251A JP23734984A JP23734984A JPS61117251A JP S61117251 A JPS61117251 A JP S61117251A JP 23734984 A JP23734984 A JP 23734984A JP 23734984 A JP23734984 A JP 23734984A JP S61117251 A JPS61117251 A JP S61117251A
Authority
JP
Japan
Prior art keywords
resistance
heat
thermal fatigue
steel
heat resisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23734984A
Other languages
Japanese (ja)
Inventor
Susumu Isobe
磯部 晋
Kenkichi Matsunaga
松永 健吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23734984A priority Critical patent/JPS61117251A/en
Publication of JPS61117251A publication Critical patent/JPS61117251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the ferritic heat resisting steel having superior thermal fatigue characteristic, by providing specific amounts of (C+N), Si, Mn, Cr, Al, and 1 or >=2 kinds among Nb, Ti, and Zr. CONSTITUTION:The heat resisting steel consists of, by weight, 0.05-0.4% (C+N), 0.5-3.5% Si, <2% Mn, 18-25% Cr, 0.2-2% Al, 0.1-1.5%, in total, of 1 or >=2 kinds among Nb, Ti, and Zr, and the balance Fe, or further contains 1 or >=2 kinds selected from 0.3-3% Ni, 0.3-3% Mo, 0.5-3% W, 0.2-2% V, and 0.001-0.01% B.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えばディーゼルエンジンのプレチャンバ
−等の内燃機関用燃焼室部材として使用され、このよう
な燃焼室部材に要求される熱疲労性、耐ヒートクラツク
性および耐食性が優れた耐熱鋼に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is used as a combustion chamber member for an internal combustion engine, such as a pre-chamber of a diesel engine, and has a thermal fatigue resistance required for such a combustion chamber member. , relates to heat-resistant steel with excellent heat crack resistance and corrosion resistance.

(従来技術) 近年、ディーゼルエンジンの小型化および高出力化に伴
ない、エンジン部品の熱負荷はますます大きくなり、そ
れにつれて種々の材料上の問題が発生している。そして
、とくに、小型ディーゼルエンジンに採用されている渦
流燃焼室噴口部は。
(Prior Art) In recent years, with the miniaturization and increase in output of diesel engines, the heat load on engine parts has become increasingly large, and various material problems have accordingly occurred. And especially the nozzle part of the vortex combustion chamber used in small diesel engines.

高温の燃焼ガスが高速で噴出するため高温にさらされる
と同時に、空気圧縮時には冷却されるため、加熱−冷却
の繰返しを受け、熱疲労による損傷が著しい。
Since high-temperature combustion gas is ejected at high speed, it is exposed to high temperatures, and at the same time, it is cooled during air compression, so it is subjected to repeated heating and cooling, resulting in significant damage due to thermal fatigue.

したがって、このような情勢から、熱疲労性および耐ヒ
ートクラツク性の良好な渦流燃焼室および噴口部用耐熱
鋼の開発が要望されている。
Therefore, under these circumstances, there is a demand for the development of a heat-resistant steel for the vortex combustion chamber and the nozzle part, which has good thermal fatigue resistance and heat crack resistance.

従来、ディーゼルエンジン用プレチャンバ−材としては
、5UH3,5UH31,5UH661およびNimo
cast80などの耐熱鋼および超耐熱合金が用いられ
ているが、いずれもプレチャンバ−の寿命を決定する熱
疲労性および耐熱性に問題がある。
Conventionally, pre-chamber materials for diesel engines include 5UH3, 5UH31, 5UH661 and Nimo
Heat-resistant steels and super heat-resistant alloys such as cast80 are used, but both have problems with thermal fatigue and heat resistance, which determine the life of the prechamber.

(発明の目的) そこで1本発明者らは、上記の要望に対処することを目
的として種々の合金について詳細な検討を加えた結果、
以下に示す化学組成のフェライト系耐熱鋼が例えば従来
のプレチャンバ−材に比較して熱疲労性および耐熱性が
非常に優れていることを見い出した。
(Purpose of the Invention) Therefore, the present inventors conducted detailed studies on various alloys with the aim of meeting the above-mentioned needs, and found that:
It has been found that a ferritic heat-resistant steel having the chemical composition shown below has extremely superior thermal fatigue resistance and heat resistance compared to, for example, conventional prechamber materials.

(発明の構成) すなわち、この発明の第一発明による鋼は、重量%で、
C+N:0.05〜0.40%、Si:0.5〜3.5
%、Mn:2.0%以下、Cr:18.0〜25.0%
、Al:0.2〜2.0%、ならびにNb、Tiおよび
Zrのうちから選んだ一種または二種以上を合計量で0
.1〜1.5%含有し、残余が実質的にFeからなる熱
疲労性の優れたフェライト系耐熱鋼であり、また、第二
発明による鋼は1重量%で、C+N:0.05〜0.4
0%、Si:0.5〜3.5%、Mn:2.0%以下、
Cr:18.0〜25.0%、AfL: 0 、2〜2
 、0%、ならびにN b 、 T iおよびZrのう
ちから選んだ一種または二種以上を合計量で0.1〜1
.5%含有し、さらにNi :0.3〜3.0.Mo:
0.3〜3.0%、W:0.5〜3.0%、V:0.2
〜2.0%オヨびB:O,0O1−o、oi%のうちか
ら選んだ一種または二種以上を含有し、残余が実質的に
Feからなる熱疲労性の優れたフェライト系耐熱鋼であ
る。
(Structure of the Invention) That is, the steel according to the first invention of the present invention has, in weight%,
C+N: 0.05-0.40%, Si: 0.5-3.5
%, Mn: 2.0% or less, Cr: 18.0 to 25.0%
, Al: 0.2 to 2.0%, and one or more selected from Nb, Ti, and Zr in a total amount of 0.
.. It is a ferritic heat-resistant steel with excellent thermal fatigue properties, containing 1% to 1.5% and the remainder substantially consisting of Fe, and the steel according to the second invention has a content of 1% by weight and C+N: 0.05 to 0. .4
0%, Si: 0.5 to 3.5%, Mn: 2.0% or less,
Cr: 18.0-25.0%, AfL: 0, 2-2
, 0%, and one or more selected from N b , Ti and Zr in a total amount of 0.1 to 1
.. 5%, and further contains Ni: 0.3 to 3.0. Mo:
0.3-3.0%, W: 0.5-3.0%, V: 0.2
~2.0% Oyobi B: A ferritic heat-resistant steel with excellent thermal fatigue properties, containing one or more selected from O, 0O1-O, and oi%, with the remainder essentially consisting of Fe. be.

次に、この発明による耐熱鋼の合金組成(重量%)の限
定理由を述べる。
Next, the reason for limiting the alloy composition (wt%) of the heat-resistant steel according to the present invention will be described.

C+N:0.05〜0.40% これらの元素は、Cr、Nb、TiおよびZr等と反応
して炭窒化物を形成し、高温強度を高めるほか、結晶粒
の粗大化を防止し、靭延性を向上させる効果がある。ま
た、プレチャンバ−は精密鋳造で製造することが多いが
、この場合、これらの元素は湯流れ性を向上する作用を
もつ、そして、以上の効果を得るためには最低0.05
%含有させることが必要であるが、添加し過ぎるとフェ
ライト相が不安定となり、オーステナイト相が生じ、熱
疲労性が低下するので0.40%以下とした。なお、こ
の発明においては、CおよびNのいずれか一方の含有量
が有効量以下である場合も含むものである。
C+N: 0.05-0.40% These elements react with Cr, Nb, Ti, Zr, etc. to form carbonitrides, increasing high-temperature strength, preventing coarsening of crystal grains, and improving toughness. It has the effect of improving ductility. In addition, prechambers are often manufactured by precision casting, and in this case, these elements have the effect of improving the flowability of the metal, and in order to obtain the above effect, a minimum of 0.05
%, but if too much is added, the ferrite phase becomes unstable, an austenite phase is formed, and thermal fatigue properties are reduced, so the content is set to 0.40% or less. Note that the present invention also includes cases where the content of either C or N is less than the effective amount.

St :0.5〜3.5% Siは脱酸精錬剤として作用するほか、耐酸化性、耐食
性および耐浸炭性を向上させ、さらに湯流れ性を高める
元素であるが、このような効果を得るためには0.5%
以上の添加が必要である。
St: 0.5-3.5% Si is an element that not only acts as a deoxidizing refining agent, but also improves oxidation resistance, corrosion resistance, and carburization resistance, and also improves the flowability of the metal. 0.5% to get
The above additions are necessary.

しかし、過剰に添加するとσ相の析出などによる靭延性
の低下が生じ、熱疲労性および耐ヒートクラツク性が劣
化するので365%以下にとどめた。
However, if added in excess, the toughness and ductility would decrease due to the precipitation of the σ phase, leading to deterioration of thermal fatigue properties and heat crack resistance, so the content was limited to 365% or less.

Mn:2.0%以下 MnはStと同様に脱酸精錬剤としての作用があるが、
添加しすぎると耐酸化性が劣化するので2.0%以下と
した。
Mn: 2.0% or less Mn acts as a deoxidizing refining agent like St, but
If added too much, oxidation resistance deteriorates, so the content was set at 2.0% or less.

Cr: 18.0〜25.0% Crは優れた耐酸化性および耐食性を得るためには必須
の元素である。しかし、添加しすぎるとσ相の析出など
により靭延性が低下するためia、o〜25.0%の範
囲に限定した。
Cr: 18.0-25.0% Cr is an essential element in order to obtain excellent oxidation resistance and corrosion resistance. However, if it is added too much, the toughness and ductility will decrease due to the precipitation of σ phase, etc., so it is limited to a range of ia, o to 25.0%.

An : 0 、2〜2.0% AfLはCrと同様に耐酸化性および耐食性を高めるの
に有効な元素である。また、フェライト系耐熱鋼におい
ては靭延性の低下を招くσ相の析出を抑える効果がある
。そして、このような効果を得るためには最低0.2%
の添加が必要であるが、活性元素であるため過剰の添加
は製造性を劣化させるため2.0%以下とした。
An: 0, 2-2.0% AfL, like Cr, is an effective element for increasing oxidation resistance and corrosion resistance. In addition, in ferritic heat-resistant steel, it has the effect of suppressing the precipitation of σ phase, which causes a decrease in toughness and ductility. In order to obtain such an effect, a minimum of 0.2%
However, since it is an active element, excessive addition deteriorates manufacturability, so the amount was set at 2.0% or less.

Nb、TiおよびZr:合計量0.1〜1.5%これら
の元素はCおよびNと反応して炭窒化物を形成し、高温
強度を高めるほか、前述のように結晶粒の粗大化を抑え
て靭延性を向上させる働きをする。そして、このような
効果を得るためには最低0.1%の添加は必要であるが
、多量に添加してもその効果は飽和するばかりでなく、
コスト高を招くため最高1.5%に限定した6Ni:0
.3 〜3.0  % 、MO:0.3 〜3.0%、
W:0.5〜3.0%、V:0.2〜2.0%およびB
:0’、001〜0゜01%のうちの一種または二種以
上 N i 、 M o 、 W 、 V 、 Bはいずれ
も強度の向上に有効な元素であるので、必要に応じてこ
れらの一種または二種以上を添加する。これらのうち、
とくにNiはフェライト基地の強化および靭延性の向上
に効果のある元素であるが、添加し過ぎるとフェライト
相が不安定となりオーステナイト相が生じ、熱疲労性が
低下するのでその範囲を0.3〜3.0%に限定した。
Nb, Ti, and Zr: Total amount 0.1-1.5% These elements react with C and N to form carbonitrides, increasing high-temperature strength and, as mentioned above, reducing the coarsening of crystal grains. It works to suppress and improve toughness and ductility. In order to obtain such an effect, it is necessary to add at least 0.1%, but even if a large amount is added, the effect will not only be saturated;
6Ni:0 limited to a maximum of 1.5% due to high cost
.. 3 ~ 3.0%, MO: 0.3 ~ 3.0%,
W: 0.5-3.0%, V: 0.2-2.0% and B
:0', 001 to 0°01% or more Ni, Mo, W, V, and B are all effective elements for improving strength, so one or more of these may be used as necessary. Or add two or more kinds. Of these,
In particular, Ni is an element that is effective in strengthening the ferrite base and improving toughness and ductility, but if it is added too much, the ferrite phase becomes unstable and an austenite phase is generated, which reduces thermal fatigue properties, so the range should be limited to 0.3~ It was limited to 3.0%.

また、M o 、 W 。Also, M o, W.

■、はいずれもCおよびNと反応して炭窒化物を形成し
、高温強度を高める元素であるが、過剰の第  1 添加は耐酸化性を劣化させるほか、靭延性の低下の招く
ので、MOにあっては0.3〜3.0%。
(2) is an element that reacts with C and N to form carbonitrides and increases high-temperature strength, but excessive addition of the first element not only deteriorates oxidation resistance but also causes a decrease in toughness and ductility. For MO, it is 0.3-3.0%.

Wにあっては0.5〜3.0%、■にあっては0.2〜
2,0%に限定した。さらに、Bは粒界に偏析して粒界
を強化し、熱疲労性および耐ヒートクラツク性を改善す
る元素である。そして、このような効果を得るためには
最低0.001%の添加が必要であるが、多量に添加し
てもその効果は飽和するばかりでなく、逆に耐酸化性の
低下やfiFiA化物の析出に起因する高温強度の劣化
を招くのでその上限を0.01%とした。
0.5-3.0% for W, 0.2-3.0% for ■
It was limited to 2.0%. Furthermore, B is an element that segregates at grain boundaries, strengthens the grain boundaries, and improves thermal fatigue resistance and heat crack resistance. In order to obtain such an effect, it is necessary to add at least 0.001%, but even if a large amount is added, the effect will not only be saturated, but also cause a decrease in oxidation resistance and the formation of fiFiA compounds. Since this leads to deterioration of high-temperature strength due to precipitation, the upper limit was set at 0.01%.

(実施例) 次に、この発明による耐熱鋼の特徴を実施例により詳細
に説明する。
(Example) Next, the characteristics of the heat-resistant steel according to the present invention will be explained in detail using examples.

第1表に示す化学組成を有する本発明鋼A−Iおよび比
較鋼J−Mをそれぞれ高周波銹導炉で溶製し、JISA
号舟型に鋳込んで舟型試験片を製作した。
Inventive steel A-I and comparative steel J-M having the chemical compositions shown in Table 1 were melted in a high-frequency induction furnace, and JISA
A boat-shaped test piece was produced by casting in a boat-shaped shape.

賽 〈実施例1(熱疲労性)〉 まず、舟型試験片から熱疲労試験片(平行部属径10a
u+、平行部長さ40 ms)を採取した。熱疲労試験
は、拘束歪量を±0.6%(低温側:引張歪(300℃
で+0.6%)、高温側:圧縮歪(750℃で一〇、S
%))に調整し、第1図に示した熱サイクルで行い、破
断までの繰返し数を求めた。その結果を第2表に示す。
Dice (Example 1 (thermal fatigue)) First, from a boat-shaped test piece to a heat fatigue test piece (parallel part metal diameter 10a
u+, parallel length 40 ms) was collected. In the thermal fatigue test, the amount of restraint strain was ±0.6% (low temperature side: tensile strain (300℃)
+0.6%), high temperature side: compressive strain (10 at 750℃, S
%)) and subjected to the thermal cycle shown in FIG. 1, and the number of cycles until breakage was determined. The results are shown in Table 2.

7′ /′ /′ 、/ /′ 第2表に示すように本発明鋼A−Iはいずれも比較鋼J
および従来鋼に−Mに比較して破断までの繰返し数が多
く、熱疲労性が優れていることが明らかである。
7'/'/', / /' As shown in Table 2, the invention steels A-I and comparative steel J
It is clear that the number of cycles until fracture is greater than that of conventional steel and -M, and that it has excellent thermal fatigue properties.

〈実施例2(耐ヒートクラツク性)〉 次ば3飛型試験片から第2図に示す形状のプレチャンバ
−を切削で作製し、ヒートクラック試験を行った。
<Example 2 (Heat Crack Resistance)> Next, a prechamber having the shape shown in FIG. 2 was prepared by cutting from the 3-fly test piece, and a heat crack test was conducted.

第3図にその試験方法を示す、第3図(a)は試験片の
加熱状況を示す図であって、図において、1はAl製ホ
ルダー、2はプレチャンバ−13はバーナーであり、バ
ーナー3で酸素+プロパンの燃焼炎4を発生させてプレ
チャンバ−2を加熱する。また、第3図(b)は熱サイ
クル波形を示す図であって、室温からのバーナー加熱→
空冷→噴霧水冷→室温→バーナー加熱が112秒毎に繰
り返される。そこで、ここでは、上記のように、プレチ
ャンバ−2にバーナー3で900℃まで加熱後冷却され
る熱サイクルを与え、50サイクル毎にプレチャンバ−
2のヒートクラック発生有無をチェックした。第3表に
本発明鋼A〜工および比較鋼JNMのビートクラック発
生までの熱サイクル数を示す。
Fig. 3 shows the test method, and Fig. 3(a) shows the heating status of the test piece. In the figure, 1 is an Al holder, 2 is a prechamber, and 13 is a burner. 3, a combustion flame 4 of oxygen + propane is generated to heat the prechamber 2. Moreover, FIG. 3(b) is a diagram showing a thermal cycle waveform, in which burner heating from room temperature→
Air cooling → spray water cooling → room temperature → burner heating is repeated every 112 seconds. Therefore, as mentioned above, the prechamber 2 is given a thermal cycle in which it is heated to 900°C by the burner 3 and then cooled, and the prechamber is heated every 50 cycles.
The presence or absence of heat cracks in No. 2 was checked. Table 3 shows the number of thermal cycles until the occurrence of beat cracks for the steels A to JNM of the present invention and comparative steel JNM.

第3表に示すように1本発明鋼A−Iのヒートクラック
発生時期は、比較鋼J −Mのそれに比べて非常に遅く
、プレチャンバ−として非常に重要な特性である耐ヒー
トクラツク性が優れていることが明らかである。
As shown in Table 3, the timing of heat crack occurrence in Inventive Steel A-I is much later than that in Comparative Steel J-M, and it has excellent heat crack resistance, which is a very important property for a pre-chamber. It is clear that

〈実施例3(耐酸化性および耐食性)〉ディーゼルエン
ジンのプレチャンバ−には上記したような熱疲労性およ
び耐ヒートクラツク性のほかに、耐酸化性および耐高温
腐食性が要求されるため、本発明鋼についてもこれらの
特性を調査した。
<Example 3 (Oxidation resistance and corrosion resistance)> In addition to the above-mentioned thermal fatigue and heat crack resistance, the prechamber of a diesel engine is required to have oxidation resistance and high temperature corrosion resistance. These properties of the invented steel were also investigated.

そこで、第1表に示す組成の供試材の舟型試験片から外
径7層層、長さ15腸腸の円柱試験片を作製し、酸化試
験および腐食試験を行った。
Therefore, a cylindrical test piece with an outer diameter of 7 layers and a length of 15 intestine was prepared from a boat-shaped test piece of the sample material having the composition shown in Table 1, and an oxidation test and a corrosion test were conducted.

酸化試験は、電気炉を用いて、900℃の静止大気中で
200hr加熱することによって行った。
The oxidation test was conducted using an electric furnace by heating at 900° C. in a static atmosphere for 200 hours.

また、耐酸化性の評価は、加熱後に試験片表面に生じた
スケールを除去した後の重量を測定し、試験前のそれと
比較する酸化減量法を用いた。
In addition, the oxidation resistance was evaluated using an oxidation loss method in which the weight of the test piece was measured after removing scale generated on the surface of the test piece after heating and compared with that before the test.

ディーゼルエンジンでは燃料に微量の硫黄を含むため、
この硫黄が燃焼生成物に濃縮され、プレチャンバ−がサ
ルファアタックを受けて腐食される。そこで、本発明鋼
についてもSアタック試験を行った。ここでは、上記円
柱試験片を870℃に加熱した合成法(IC+10Cu
SOn +6BaSOa +2Na2304 )中で8
0時間加熱し、酸化試験と同様に脱スケール後の腐食減
量を求めた。
Diesel engines contain trace amounts of sulfur in their fuel, so
This sulfur is concentrated in the combustion products and the prechamber is attacked and corroded by sulfur. Therefore, the S attack test was also conducted on the steel of the present invention. Here, a synthesis method (IC+10Cu
8 in SOn +6BaSOa +2Na2304)
After heating for 0 hours, the corrosion loss after descaling was determined in the same manner as in the oxidation test.

第4表に、これらの結果をまとめて示す。Table 4 summarizes these results.

7′ /′ 第4表 (Ig  / c112 ) 第4表に示すように、耐酸化性を向上する元素であるS
t 、CrおよびA!2.をかなりの量含有する本発明
鋼は非常に耐酸化性および耐食性が優れていることが明
らかである。そして、とくにCr含有量の少ない比較鋼
Kに比べて耐酸化性および耐サルファアタック性が優れ
ており、また、Ni含有量の多い比較鋼りおよびMに比
べて耐サルファアタック性が優れていることが明らかで
ある。
7'/' Table 4 (Ig/c112) As shown in Table 4, S, an element that improves oxidation resistance,
t, Cr and A! 2. It is clear that the steel of the present invention containing a considerable amount of oxidation and corrosion resistance is very good. In particular, it has better oxidation resistance and sulfur attack resistance than comparison steel K, which has a low Cr content, and it has better sulfur attack resistance than comparison steel and M, which have a high Ni content. That is clear.

(発明の効果) 以上説明してきたように、この発明による耐熱鋼は1重
量%で、C+N:0.05〜0.40%、Si:0.5
〜3.5%、Mn:2.0%以下、Cr:18.0〜2
5.0%、All:0.2〜.2.0%、ならびにNb
、TiおよびZrのうちから選んだ一種または二種以上
を合計量で0.1〜1.5%含有し、さらに必要に応じ
て、Ni:0.3〜3.0%、Mo:0.3〜3.0%
、W:0.5〜3.0%、V:0.2〜2.0%および
B:0.001〜0−01%のうちから選んだ一種また
は二種以上を含有し、残余が実質的にFeよりなるもの
であるから、熱疲労性および耐熱性が著しく優れており
、さらには耐酸化性および耐食性にも著しく優れたもの
であり、例えばディーゼルエンジンのプレチャンバ−材
等の燃焼室部材に適したものであるという非常に優れた
効果がもたらされる。
(Effects of the Invention) As explained above, the heat-resistant steel according to the present invention contains 1% by weight, C+N: 0.05-0.40%, and Si: 0.5%.
~3.5%, Mn: 2.0% or less, Cr: 18.0-2
5.0%, All: 0.2~. 2.0%, as well as Nb
, Ti and Zr in a total amount of 0.1 to 1.5%, and if necessary, Ni: 0.3 to 3.0%, Mo: 0. 3-3.0%
, W: 0.5-3.0%, V: 0.2-2.0% and B: 0.001-0-01%, and the remainder is substantially Since it is essentially made of Fe, it has extremely excellent thermal fatigue resistance and heat resistance, and also has extremely excellent oxidation resistance and corrosion resistance. This provides a very good effect of being suitable for parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熟サイクル試験における加熱・冷却条件を示す
説明図、第2図はプレチャンバ−の形状を示す斜面説明
図、第3図(a)はプレチャンバ−に対する加熱状況を
示す説明図、第3図(b)はプレチャンバ−に対する熱
サイクル波形を示す説明図である。 特許出願人   大同特殊鋼株式会社 代理人弁理士  小  塩    豊 第3図 (a)1 (b)
Fig. 1 is an explanatory diagram showing the heating and cooling conditions in the ripening cycle test, Fig. 2 is an explanatory diagram of the slope showing the shape of the pre-chamber, and Fig. 3 (a) is an explanatory diagram showing the heating situation for the pre-chamber. FIG. 3(b) is an explanatory diagram showing a thermal cycle waveform for the prechamber. Patent applicant Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Oshio Figure 3 (a) 1 (b)

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C+N:0.05〜0.40%、Si
:0.5〜3.5%、Mn:2.0%以下、Cr:18
.0〜25.0%、Al:0.2〜2.0%、ならびに
Nb、TiおよびZrのうちから選んだ一種または二種
以上を合計量で0.1〜1.5%含有し、残余が実質的
にFeからなる熱疲労性の優れたフェライト系耐熱鋼。
(1) In weight%, C+N: 0.05-0.40%, Si
: 0.5 to 3.5%, Mn: 2.0% or less, Cr: 18
.. 0 to 25.0%, Al: 0.2 to 2.0%, and one or more selected from Nb, Ti, and Zr in a total amount of 0.1 to 1.5%, with the remainder A ferritic heat-resistant steel with excellent thermal fatigue properties, consisting essentially of Fe.
(2)重量%で、C+N:0.05〜0.40%、Si
:0.5〜3.5%、Mn:2.0%以下、Cr:18
.0〜25.0%、Al:0.2〜2.0%、ならびに
Nb、TiおよびZrのうちから選んだ一種または二種
以上を合計量で0.1〜1.5%含有し、さらにNi:
0.3〜3.0、Mo:0.3〜3.0%、W:0.5
〜3.0%、V:0.2〜2.0%およびB:0.00
1〜0.01%のうちから選んだ一種または二種以上を
含有し、残余が実質的にFeからなる熱疲労性の優れた
フェライト系耐熱鋼。
(2) In weight%, C+N: 0.05-0.40%, Si
: 0.5 to 3.5%, Mn: 2.0% or less, Cr: 18
.. 0 to 25.0%, Al: 0.2 to 2.0%, and one or more selected from Nb, Ti, and Zr in a total amount of 0.1 to 1.5%, and further Ni:
0.3-3.0, Mo: 0.3-3.0%, W: 0.5
~3.0%, V:0.2-2.0% and B:0.00
A ferritic heat-resistant steel containing one or more selected from 1 to 0.01%, with the remainder substantially consisting of Fe and having excellent thermal fatigue properties.
JP23734984A 1984-11-09 1984-11-09 Heat resisting steel Pending JPS61117251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23734984A JPS61117251A (en) 1984-11-09 1984-11-09 Heat resisting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23734984A JPS61117251A (en) 1984-11-09 1984-11-09 Heat resisting steel

Publications (1)

Publication Number Publication Date
JPS61117251A true JPS61117251A (en) 1986-06-04

Family

ID=17014072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23734984A Pending JPS61117251A (en) 1984-11-09 1984-11-09 Heat resisting steel

Country Status (1)

Country Link
JP (1) JPS61117251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175841A (en) * 1987-10-14 1990-07-09 Nissan Motor Co Ltd Heat resistant cast steel
US5096514A (en) * 1990-01-31 1992-03-17 Hitachi Metals, Ltd. Heat-resistant ferritic cast steel having excellent thermal fatigue resistance
WO2003027343A1 (en) * 2001-09-26 2003-04-03 Thyssenkrupp Acciai Speciali Terni S.P.A. Ferritic stainless steel and use thereof in the manufacture for high temperature resistant products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175841A (en) * 1987-10-14 1990-07-09 Nissan Motor Co Ltd Heat resistant cast steel
JPH07113139B2 (en) * 1987-10-14 1995-12-06 日産自動車株式会社 Exhaust manifold and automobile turbine housing with excellent castability and heat fatigue resistance
US5096514A (en) * 1990-01-31 1992-03-17 Hitachi Metals, Ltd. Heat-resistant ferritic cast steel having excellent thermal fatigue resistance
WO2003027343A1 (en) * 2001-09-26 2003-04-03 Thyssenkrupp Acciai Speciali Terni S.P.A. Ferritic stainless steel and use thereof in the manufacture for high temperature resistant products

Similar Documents

Publication Publication Date Title
JPH03274245A (en) Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance
JPS648695B2 (en)
JPWO2002063056A1 (en) Steel and air preheater with excellent sulfuric acid dew point corrosion resistance
JPS6250542B2 (en)
JPS58126965A (en) Shroud for gas turbine
JPS61117251A (en) Heat resisting steel
JPS6346141B2 (en)
JP2860260B2 (en) High corrosion resistance Ni-based alloy
JPH0445239A (en) Alloy for spark plug
JPH09209092A (en) Secondary combustion chamber mouthpiece for diesel engine
JP4245720B2 (en) High Mn austenitic stainless steel with improved high temperature oxidation characteristics
JPH07238349A (en) Heat resistant steel
JPH02163335A (en) Electrode for spark plug
JPH02163336A (en) Intergranular corrosion-resistant ni-base alloy and method for corrosion testing
JPH05320830A (en) Ferritic heat resistant cast steel and its manufacture
JPH11302798A (en) High nitrogen austenitic heat resistant steel
JPH03285050A (en) Exhaust valve steel excellent in high temperature characteristic
JP3381457B2 (en) Austenitic stainless steel for high temperature with excellent weldability
JPS6046343A (en) Alloy for exhaust valve
JPS62156255A (en) Martensitic heat resisting steel
JPS61217552A (en) Soft magnetic stainless steel for cold forging
JPS63199850A (en) Low alloyed heat resisting cast steel
JPS59211557A (en) Heat-resistant steel
JP3142224B2 (en) Ferritic heat-resistant cast steel and diesel engine pre-combustion chamber member using the same
JPH09209090A (en) Heat resistant steel