JPS58126965A - Shroud for gas turbine - Google Patents

Shroud for gas turbine

Info

Publication number
JPS58126965A
JPS58126965A JP767482A JP767482A JPS58126965A JP S58126965 A JPS58126965 A JP S58126965A JP 767482 A JP767482 A JP 767482A JP 767482 A JP767482 A JP 767482A JP S58126965 A JPS58126965 A JP S58126965A
Authority
JP
Japan
Prior art keywords
gas turbine
shroud
less
weight
thermal fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP767482A
Other languages
Japanese (ja)
Other versions
JPS6153423B2 (en
Inventor
Hiromi Kozobara
楮原 広美
Nobuyuki Iizuka
飯塚 信之
Hiroshi Fukui
寛 福井
Masahiko Sakamoto
坂本 征彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP767482A priority Critical patent/JPS58126965A/en
Publication of JPS58126965A publication Critical patent/JPS58126965A/en
Publication of JPS6153423B2 publication Critical patent/JPS6153423B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a shroud material for a gas turbine with superior thermal fatigue resistance, superior strength at high temp. and superior moisture resistance at high temp. by subjecting a steel contg. specified amounts of C, Cr and Ni to soln. heat-treatment and aging. CONSTITUTION:The composition of a steel is composed of, by weight, 0.25- 0.7%, especially 0.3-0.5% C, 20-35%, especially 25-30% Cr, 20-40%, especially 25-35% Ni and the balance Fe. The steel is subjected to soln. heat-treatment and aging to form an austenite structure and to adjust the alpha phase content to <=5%. Thus, a shroud material for a gas turbine is obtd. It is preferable to add one or more among 0.1-0.5% Ti, 0.1-5% Nb, 0.1-1% rare earth element, 5- 20% Co, <7% W or Mo, <2% Mn and <2% Si besides said components.

Description

【発明の詳細な説明】 本発明は、ガスタービン用シュラウドに関する。[Detailed description of the invention] The present invention relates to a shroud for a gas turbine.

w/11図に例示される如く、ガスタービン用シュラウ
ド1は、タービンケーシング2内周面の、ブレード3先
端対向部に配設されるものであって、第2図に示される
如き外観を有する。第1図中、4は7’L/−ド3が取
シ付けられるタービンディスクでおる。
As illustrated in FIG. . In FIG. 1, 4 is a turbine disk to which a 7' L/- door 3 is attached.

このようなガスタービン用シュラクトは、厚肉形状であ
るとともに、高温の腐食性ガスに繰シ返しさらされると
ころから、高い熱応力が繰シ返し発生するようになる。
Such gas turbine shrugs have a thick wall shape and are repeatedly exposed to high-temperature corrosive gases, so that high thermal stress is repeatedly generated.

一方、近年高効率ガスタービンが開発されてお9、シュ
ラウドのメタル温度も700〜900Cに達するように
なってきた。このようなシュラウドには、25Cr−2
ONi系080831088相当材が便用されているが
、一層高い熱応力を受けるために、熱疲労割れが発生し
、部材寿命が蚊くなるという問題かめる。
On the other hand, as high-efficiency gas turbines have been developed in recent years9, the metal temperature of the shroud has come to reach 700 to 900C. For such a shroud, 25Cr-2
ONi-based materials equivalent to 080831088 are commonly used, but because they are subjected to higher thermal stress, thermal fatigue cracking occurs and the service life of the material is shortened.

本発明の目的はこのような従来技術の問題点を解消し、
耐熱疲労性、高温強度及び高温耐食性に優れたガスター
ビン用シュラウドを提供するに8る。
The purpose of the present invention is to solve the problems of the prior art,
It is an object of the present invention to provide a shroud for a gas turbine having excellent thermal fatigue resistance, high-temperature strength, and high-temperature corrosion resistance.

本発明者らは、80831088材の割れを詳細に調査
検討したところ、割れは熱疲労によるもので、σ相に沿
った割れと粒界割れの混合でるるか、その原因は(1)
加熱中に針状の脆いσ相が多量に析出し、σ相自身が割
れる他、σ相によ9粒内変形が困難となり、粒界への応
力集中を助長する、(2)粒界にフィルム状炭化物が連
続して生成し、高い熱応力でそれ自身が破壊し、粒界割
れが一気に伝播する、(3) 1ili温腐食による粒
界侵食が生じ、くさび作用で1割れが加速される、とい
うことでめることを発見した。
The present inventors conducted a detailed investigation into the cracks in the 80831088 material, and found that the cracks were due to thermal fatigue, and that the cause was a mixture of cracks along the σ phase and intergranular cracks.
During heating, a large amount of acicular, brittle σ phase precipitates, and in addition to cracking the σ phase itself, the σ phase also makes deformation within the grain difficult, promoting stress concentration at grain boundaries. Film-like carbides are formed continuously and are destroyed by high thermal stress, causing intergranular cracks to propagate all at once. (3) Intergranular erosion occurs due to 1ili hot corrosion, and 1 crack is accelerated by wedge action. That's how I discovered Mele.

本発明はこのような知見に基づいてなされたも    
 1のであって、重量でC0,25〜α7%、 Cr 
20〜35%、Ni2O〜40%、残部pezりなり、
オーステナイト組織を有するガスタービン用シュラウド
、及び、真意でCO,25〜0.7%、Cr2O〜35
%、Ni2O〜40%並びにTto、x〜0.5%、N
bO,1〜5%、希土類元素0.1〜1%I cos〜
20%、W及び/又はMO7%以下、Mn2%以下、8
i2%以下の1櫨又は2種以上、残部peよりな9、オ
ーステナイト組織を有するガスタービン用シュラウド、
によって上記目的を達成するものである。
The present invention was made based on this knowledge.
1, C0.25~α7% by weight, Cr
20-35%, Ni2O-40%, remainder pez,
Gas turbine shroud with austenitic structure and CO, 25 to 0.7%, Cr2O to 35
%, Ni2O ~ 40% and Tto, x ~ 0.5%, N
bO, 1-5%, rare earth elements 0.1-1%I cos~
20%, W and/or MO 7% or less, Mn 2% or less, 8
A shroud for a gas turbine having an austenitic structure, with one or more types of oak having an i2% or less, and the remainder being pe.
This achieves the above objective.

次に、まず成分を限定した理由について説明する。友だ
し、本明細書において%は特に規定されない@シ重量%
を示す。
Next, the reason for limiting the components will be explained first. It is a friend, and in this specification, % is not particularly specified.
shows.

c:crt耐熱疲労性と高温強度を向上する上で非常に
産資な役割を示す。Cが0.25%を下層るとσ相が析
出し易くなると同時に、粒界にフィルム状の炭化物が連
続して析出するので好ましくない。また、Cの含有率が
高いとセル粒界に脆い共晶炭化物量及び二次炭化物量が
多くなシ、熱疲労性が低下する。従ってCは0.25〜
0.7%とされる。七の中でも0.3〜0.5%が最も
好ましい。
c: CRT plays an extremely important role in improving thermal fatigue resistance and high temperature strength. If C is lower than 0.25%, the σ phase tends to precipitate, and at the same time, film-like carbides precipitate continuously at the grain boundaries, which is not preferable. Furthermore, if the C content is high, the amount of brittle eutectic carbides and secondary carbides will be large at the cell grain boundaries, resulting in a decrease in thermal fatigue properties. Therefore, C is 0.25~
It is estimated to be 0.7%. Among the seven, 0.3 to 0.5% is most preferable.

Cr:シュラウド材の高温腐食による粒界侵食全抑制す
るにはCrは20%以上を必要とし、lた高温で使用中
に炭化物の過剰析出、お工ひσ相の析出による脆化の面
から35%を越えることば好マシくない。従ってCrの
含有率は20〜35%と限定する。この内でも25〜3
0%が最も適している。
Cr: To completely suppress grain boundary erosion due to high-temperature corrosion of the shroud material, Cr is required to be at least 20%. Anything over 35% is not good. Therefore, the Cr content is limited to 20 to 35%. Among these, 25 to 3
0% is most suitable.

Ni:Niは基地をオーステナイトにし、鍋温強1fe
向上させる他、組織を安定化しσ相の析出を防止するが
、そのためには20%以上が必要でおる。またH+は尚
温耐食性の上からも多い方が良い。しかしその量が40
%を超えると共晶炭化物量が多くなり耐熱疲労性が低下
する。従ってN1の含有率は20〜40%でめるが、特
に25〜35%が適している。
Ni: Ni makes the base austenite, and the pot temperature is 1fe.
In addition to improving the structure, it also stabilizes the structure and prevents precipitation of the σ phase, but for this purpose, 20% or more is required. Also, from the viewpoint of still-temperature corrosion resistance, it is better to have a large amount of H+. However, the amount is 40
%, the amount of eutectic carbide increases and thermal fatigue resistance decreases. Therefore, the content of N1 can be set at 20 to 40%, but 25 to 35% is particularly suitable.

Ti、Nb:これらの元素は、Ti単独の場合はTiC
,、Nb単独の場合はN’bc、NbとTIとを複合添
加した場合は(Ti、Nb)Cの如くMC型の炭化物を
形成する。その量からして析出強化はめまり期待で@な
いが、析出強化に幼果の大きい二次Cr炭化物の析出及
び酸量を適当に抑え、長時間にわたシ高温強度の低下を
抑制する。
Ti, Nb: These elements are TiC when Ti is used alone.
,, When Nb is added alone, N'bc is formed, and when Nb and TI are added in combination, an MC type carbide is formed such as (Ti, Nb)C. Judging from the amount, precipitation strengthening is not expected, but the precipitation of large secondary Cr carbides and the amount of acid are suppressed appropriately for precipitation strengthening, and the decline in high temperature strength is suppressed over a long period of time.

鷹た、粒界へのCr炭化物の連続析出も抑制する。It also suppresses the continuous precipitation of Cr carbides at grain boundaries.

これらの元素が少ないと効果は小さく、ま九多くなると
これらのMC炭化物の増加によシニ次Cr炭化物が減少
し高温強度が低下する。アトミックフシ1 (Atom
ic 1atjo )でM/C(MはMC型炭化物を作
る金属元素の和)が0.2〜0.3が最も好ましい。従
ってTi、NbはそれぞれTiが0.1〜0.5%、N
bが0.1〜5%が特に好ましい。
If the content of these elements is small, the effect will be small, and if the content is too large, the secondary Cr carbides will decrease due to the increase in these MC carbides, resulting in a decrease in high-temperature strength. Atomic Fushi 1 (Atom
ic 1atjo ) and M/C (M is the sum of metal elements forming the MC type carbide) is most preferably 0.2 to 0.3. Therefore, Ti and Nb are respectively 0.1 to 0.5% Ti and Nb.
Particularly preferably b is 0.1 to 5%.

希土類元素:希土類元素は、Ti、 Nbの働きを助け
るために添加するもので、少ないと効果がなく、多くな
ると鋳造割れを生じるので配合量で0.1〜1%、籍に
0.1〜0.5%とするのが好ましい。
Rare earth elements: Rare earth elements are added to help the functions of Ti and Nb.If there is too little, it will have no effect, and if it is too large, it will cause cracks in casting. The content is preferably 0.5%.

W、Mo :w、MOは基地の同浴強化を目的として添
加されるもので口)、添加量が多いほど高温強直が向上
する。しかしその量が7%を起えると共晶炭化物が多く
晶出して耐熱疲労性が低下する。本発明において、W、
MOは添加しなくてもかなシの高温強度を有するので、
シュラウド材としても十分でるる。
W, Mo: W, MO is added for the purpose of strengthening the base in the same bath), and the higher the amount added, the better the high temperature tetanicity is. However, if the amount exceeds 7%, a large amount of eutectic carbides will crystallize, resulting in a decrease in thermal fatigue resistance. In the present invention, W,
MO has excellent high-temperature strength even without addition, so
It can also be used as shroud material.

CO:COは基地を強化させるための同浴電化を目的と
して5%以上添加するものであるが20%を超えてもそ
の割シには効果が小さいのでCOは5〜20%が適当で
るる。
CO: CO is added at 5% or more for the purpose of electrifying the same bath to strengthen the base, but even if it exceeds 20%, the effect is small, so 5 to 20% CO is appropriate. .

なお、σ相は50%を越えると熱疲労への影響がWA者
となるのでσ相は5%以下にするのが好ましい。そのた
めには、次式に示すNYが2−5以下になる組成にする
Note that if the σ phase exceeds 50%, the influence on thermal fatigue becomes WA, so it is preferable to keep the σ phase at 5% or less. For this purpose, the composition should be such that NY shown in the following formula is 2-5 or less.

NY=(0,66Ni士1.71CO+2.66Fe+
3.66M11+4.66 (Cr+MO+W)+6.
66S i )/100 ただし、式中Ni、Co、Fe、Mn、Cr。
NY=(0,66Ni 1.71CO+2.66Fe+
3.66M11+4.66 (Cr+MO+W)+6.
66S i )/100 However, in the formula, Ni, Co, Fe, Mn, and Cr.

MO,W、Stは、それぞれの元素のxt含有率(百分
比)である。
MO, W, and St are the xt contents (percentages) of the respective elements.

なお、8i、Mnは脱酸剤として添加されるものでめる
が、上記式より、これらの添加量は少なくするのが好ま
しく、それぞれ2%以下が適当でるる。
Note that 8i and Mn are added as deoxidizing agents, but from the above formula, it is preferable to reduce the amount of these added, and each is suitably 2% or less.

本発明においては、このような組成の合金を例えばn密
鋳造法にニジ所定の形状に成形してシュ2ウドを得る。
In the present invention, a shudder is obtained by molding an alloy having such a composition into a predetermined shape using, for example, an n-tight casting method.

鋳造後、熱処理金施すことも特性の向上の面から好まし
い。このような熱処理として、溶体化処理後、時効処理
する方法が挙げられる。
It is also preferable to perform heat treatment after casting from the viewpoint of improving properties. Examples of such heat treatment include a method in which solution treatment is followed by aging treatment.

以下、実施例に↓シ本発明金具体的に説明する。Hereinafter, the present invention will be specifically explained in Examples.

実施例 表1にその組成(重量%)を示す供試材によシ、7ユラ
ウド材の性能試験を行なった。ただし、表1中、A1は
比較のための従来材<5U831088)であシ、42
〜8は本発明に係る供試材である。
EXAMPLE A performance test was carried out on a 7-layer material whose composition (wt%) is shown in Table 1. However, in Table 1, A1 is a conventional material <5U831088) for comparison, and 42
-8 are test materials according to the present invention.

表1の41〜8に示す如き供試材を各々、精密鈎造法に
よりISmφX100mtの棒に鋳造しfC後、溶体化
処理(1175CX2h→空冷)及び時効処!(850
CX4h→空冷)を行なった。
The test materials shown in 41 to 8 in Table 1 were each cast into rods of ISmφX100mt by the precision hook making method, and after fC, solution treatment (1175CX2h → air cooling) and aging treatment! (850
CX4h → air cooling).

得られた熱処理品から、10mφXI□a+tの熱疲労
試験片を得、850Cで6分間保持後水冷を300回繰
シ返し、試験片の断面に発生し九割れの長さによシ、耐
熱疲労性の評価を行なつ九。6各の試験片に発生した割
れ長さく■)を第3図に示す。(なお、A7の供試材に
ついて、鋳造のまま熱処理を施さずに、同様な方豊で耐
熱疲労性を試験した結果もあわせて示す。)第3図ニジ
、本とがわかる。特に希土類元素としてミツシュメタル
を添加したム3〜5、COを離別したA7の耐熱疲労性
は著しく向上している。Wを9%添加したA6は、wo
m加量が多いため、耐熱疲労性の向上は小さい、また、
A7の熱処理材と非熱処理材との比較から、本発明の7
ユラウド材は非熱処理材であっても十分に優れた耐熱疲
労性を示すが、前述の如き熱処理を行なうと一段と優れ
た耐熱疲労性を示すことが明らかである。熱処理による
耐熱疲労性の向上効果は、共晶炭化物の少ないシュラク
ト材はど大きい。
A thermal fatigue test piece of 10 mφ 9. Perform a sexual evaluation. Figure 3 shows the length of the crack that occurred in each test piece. (In addition, the results of testing the thermal fatigue resistance of the A7 sample material in a similar manner without heat treatment as it was cast are also shown.) Figure 3 shows the results. In particular, the thermal fatigue resistance of Mums 3 to 5 in which Mitshu metal was added as a rare earth element and A7 in which CO was separated was significantly improved. A6 with 9% W added is wo
Since the addition of m is large, the improvement in thermal fatigue resistance is small, and
From the comparison of A7 heat-treated material and non-heat-treated material, 7 of the present invention
Yuroud material exhibits sufficiently excellent thermal fatigue resistance even when it is not heat treated, but it is clear that it exhibits even more excellent thermal fatigue resistance when heat treated as described above. The effect of heat treatment on improving thermal fatigue resistance is greater for shracto materials with fewer eutectic carbides.

また、A1(従来材)のシュラウドと43(本発明材)
のシュラウドを、−年間使用した後の組織を#I4図に
示す。第4図において、(a)及び(b)#′i従来材
の7ユラウドであるが、従来材には多数の割れが深く発
生しておシ、粒界にはフィルム状炭化物が、粒内にはウ
ィドマンステッテン状の針状炭化物が多量に見られる。
In addition, the shroud of A1 (conventional material) and 43 (invention material)
Figure #I4 shows the structure of the shroud after being used for -years. In Fig. 4, (a) and (b) #'i conventional material has a diameter of 7 mils, but the conventional material has many deep cracks, and there are film-like carbides at the grain boundaries and inside the grains. A large amount of Widmanstätten-like acicular carbides can be seen in the area.

このような従来材のシュラウドは既に溶接補修を必要と
する。一方(C)に示す本発明のシュラウド材は、σ相
が殆ど見られず、粒界炭化物も不連続でめ夛、割れ発生
は軽微であるので、補修をすることなしに、引き続き使
用可能である。なお倍率は、(→は100倍、(b)及
び(C)は400倍である。
Such conventional shrouds already require welding repairs. On the other hand, the shroud material of the present invention shown in (C) has almost no σ phase, grain boundary carbides are discontinuous, and the occurrence of cracks and cracks is slight, so it can be used continuously without repair. be. Note that the magnification is (→ is 100 times, and (b) and (C) is 400 times.

本発明材のシュラウドはクリープ破断強度も著しく優れ
ておプ、特に長時間側で顕著でめった。
The shroud made of the material of the present invention also had an extremely excellent creep rupture strength, which was particularly noticeable over long periods of time.

Cれは本発明材は加熱脆化が小さいことを意味している
C indicates that the material of the present invention is less susceptible to heat embrittlement.

なお、本発明においては、MC型炭化物形成元素Ti、
NbO代9に、zr、 Hft v等の他OMCII炭
化物形成元素を添加しても、はぼ同等の効果が期待でき
る。
In addition, in the present invention, the MC type carbide forming element Ti,
Even if other OMCII carbide-forming elements such as zr and Hftv are added to the NbO moiety 9, almost the same effect can be expected.

以上の通シ、本発明のガスタービン用シュラクトは、耐
熱疲労性、高温強度、高温耐食性に優れておプ、部材寿
命が著しく延長される。
In summary, the gas turbine shrug of the present invention has excellent thermal fatigue resistance, high-temperature strength, and high-temperature corrosion resistance, and has a significantly extended service life.

【図面の簡単な説明】[Brief explanation of the drawing]

IN1図線ガスタービン用シュラウドの配設状態を示す
概略図、IE2図はガスタービン用シュラクトの外観を
示す見an図でるる。第3図は従来材及び本発明材の熱
疲労試験によシ発生した割れ長さを示すグラフ、第4図
は1年間使用した後のガスタービン用シュラクトの金属
組織の顕微鏡写真でToシ、(荀及び(呻は従来材、(
C)は本発明材(ム3)である。 1・・・シュラウド、2・・・タービンケーシング、3
・・・ブレード、4・・・タービンディスク。    
  、’E;F3.’、”q代理人 弁理士 高1m明
媚最T
Figure IN1 is a schematic diagram showing the arrangement of a shroud for a gas turbine, and Figure IE2 is a schematic diagram showing the appearance of a shroud for a gas turbine. Figure 3 is a graph showing the length of cracks that occurred in thermal fatigue tests of conventional materials and materials of the present invention, and Figure 4 is a micrograph of the metal structure of shracto for gas turbines after one year of use. (Xun and (Oan are conventional materials, (
C) is the material of the present invention (Mu3). 1... Shroud, 2... Turbine casing, 3
...Blade, 4...Turbine disk.
,'E;F3. ','q agent patent attorney high 1m tall

Claims (1)

【特許請求の範囲】 1、重量−eco、25〜0.7%1cr20〜35%
。 Ni2O〜40%、!1部Feよ?)’ID、オーステ
ナイト組織を有するガスタービン用シュラウド。 2、σ相含有率が5%以下であることを特徴とする特許
請求の範囲第1項記載のガスタービン用シェラウド。 3、重量cas 〜(L5%、0r25%30%。 N1zs〜3s%、残部pcよシなる特許請求のaS第
1項又は第2項記載のガスタービン用シェラウド。 4.4体化感層後、時効処理されていることを特徴とす
る特許請求の範囲1111項ないしts3項のいずれか
1項に記載のガスタービン用シュラウド。 5、重量でCa、25〜α7%e Cr 2G〜3s%
。 Ni 20〜40%fiヒKT i O,1〜0.5%
、 N bO01〜5%、希土類元素α1〜1%I C
05〜20%、W及び/又はMO7%以下+M”2%以
下、8i2%以下の1種又は2種以上、残部peよシな
シ、オーステナイト組織を有するガスタービン用シュ2
ウド。 6、σ相含有率が5%以下でおることを特徴とする特許
請求の範囲第5項記載のガスタービン用シュラクト。 7、c、CreNiの含有率が、重量で、CG、3〜α
5%I Cr 25〜30%−Nl 25〜35%であ
ることを特徴とする特許請求の範囲第5項又は1M6項
記載のガスタービン用シュラウド。 8、溶体化処逸後、時効処理されていることを特徴とす
る特許請求の範囲第5項ないし第7項のいずれか1項に
記載のガスタービン用シュラウド。 9、次式で算出されるNiの値が2−5以下であること
を特徴とする特許請求の範囲第5項ないし第8項のいず
れか1項に記載のガスタービン用シェラウド。 Nv=(0,618Ni+1.71CG+166Fa十
&66Mfl+4.66 (Cr+MO+W)−166
si)/100 式中N 1 p C’ * F e+ M ” + C
’ HM O*w、siはそれぞれの元素の重量含有率
(百分比)である。
[Claims] 1. Weight - eco, 25-0.7% 1cr20-35%
. Ni2O~40%,! Part 1 Fe? )'ID, a shroud for a gas turbine having an austenitic structure. 2. The sheroud for a gas turbine according to claim 1, wherein the σ phase content is 5% or less. 3. Sheroud for a gas turbine according to aS paragraph 1 or 2 of the patent claim, in which the weight is cas ~ (L5%, 0r25% 30%. N1zs ~ 3s%, and the remainder is pc. The shroud for a gas turbine according to any one of claims 1111 to ts3, characterized in that it has been subjected to an aging treatment. 5. Ca, 25 to α7% e Cr 2G to 3s% by weight
. Ni 20-40% fi KT i O, 1-0.5%
, N bO 1-5%, rare earth element α 1-1% IC
05 to 20%, W and/or MO 7% or less + M" 2% or less, 8i 2% or less, one or more types, the balance is PE, the gas turbine shrew 2 has an austenitic structure
Udo. 6. The shract for a gas turbine according to claim 5, wherein the σ phase content is 5% or less. 7, c, CreNi content is CG, 3 to α by weight
5% ICr 25-30%-Nl 25-35%, The shroud for a gas turbine according to claim 5 or 1M6. 8. The shroud for a gas turbine according to any one of claims 5 to 7, which is subjected to an aging treatment after solution treatment. 9. The gas turbine shroud according to any one of claims 5 to 8, wherein the value of Ni calculated by the following formula is 2-5 or less. Nv=(0,618Ni+1.71CG+166Fa&66Mfl+4.66 (Cr+MO+W)-166
si)/100 where N 1 p C' * Fe + M '' + C
' HM O*w, si is the weight content (percentage) of each element.
JP767482A 1982-01-22 1982-01-22 Shroud for gas turbine Granted JPS58126965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP767482A JPS58126965A (en) 1982-01-22 1982-01-22 Shroud for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP767482A JPS58126965A (en) 1982-01-22 1982-01-22 Shroud for gas turbine

Publications (2)

Publication Number Publication Date
JPS58126965A true JPS58126965A (en) 1983-07-28
JPS6153423B2 JPS6153423B2 (en) 1986-11-18

Family

ID=11672336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP767482A Granted JPS58126965A (en) 1982-01-22 1982-01-22 Shroud for gas turbine

Country Status (1)

Country Link
JP (1) JPS58126965A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011600B2 (en) 2003-02-28 2006-03-14 Fallbrook Technologies Inc. Continuously variable transmission
EP3521119A1 (en) 2005-10-28 2019-08-07 Fallbrook Intellectual Property Company LLC Vehicle comprising a continuously variable transmission
US20070155567A1 (en) 2005-11-22 2007-07-05 Fallbrook Technologies Inc. Continuously variable transmission
CA2858525C (en) 2005-12-09 2016-07-26 Fallbrook Intellectual Property Company Llc Continuously variable transmission
EP1811202A1 (en) 2005-12-30 2007-07-25 Fallbrook Technologies, Inc. A continuously variable gear transmission
US8376903B2 (en) 2006-11-08 2013-02-19 Fallbrook Intellectual Property Company Llc Clamping force generator
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
WO2009157920A1 (en) 2008-06-23 2009-12-30 Fallbrook Technologies Inc. Continuously variable transmission
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
WO2020176392A1 (en) 2019-02-26 2020-09-03 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Also Published As

Publication number Publication date
JPS6153423B2 (en) 1986-11-18

Similar Documents

Publication Publication Date Title
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JPS604895B2 (en) Structure with excellent stress corrosion cracking resistance and its manufacturing method
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JPS58126965A (en) Shroud for gas turbine
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JPS5834129A (en) Heat-resistant metallic material
JP3412234B2 (en) Alloy for exhaust valve
JPS6058773B2 (en) Ni-Cr-W alloy with improved high temperature fatigue strength and its manufacturing method
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JPS5837382B2 (en) Heat treatment method for nickel-based heat-resistant alloy
JPH06287667A (en) Heat resistant cast co-base alloy
JP3424314B2 (en) Heat resistant steel
JPS61238942A (en) Heat resisting alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPH03134144A (en) Nickel-base alloy member and its manufacture
JPS6013050A (en) Heat-resistant alloy
JPH07331370A (en) Cobalt-chrominum-nickel-aluminum alloy for ultrahigh temperature use
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPS644579B2 (en)
JP2004091816A (en) Nickel-based alloy, heat treatment method for nickel-based alloy, and member for nuclear power with the use of nickel-based alloy
JPS6353234A (en) Structural member having heat resistance and high strength
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
JPS58189359A (en) Heat resistant alloy for exhaust valve
JP3449644B2 (en) Heat-resistant cast steel