JP4042367B2 - Thermocouple, protective tube material and method of using the material - Google Patents

Thermocouple, protective tube material and method of using the material Download PDF

Info

Publication number
JP4042367B2
JP4042367B2 JP2001244374A JP2001244374A JP4042367B2 JP 4042367 B2 JP4042367 B2 JP 4042367B2 JP 2001244374 A JP2001244374 A JP 2001244374A JP 2001244374 A JP2001244374 A JP 2001244374A JP 4042367 B2 JP4042367 B2 JP 4042367B2
Authority
JP
Japan
Prior art keywords
mass
less
thermocouple
protective tube
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001244374A
Other languages
Japanese (ja)
Other versions
JP2003055726A (en
Inventor
達朗 本田
千尋 植松
伸夫 大塚
耕三 ▲高▼田
玉範 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001244374A priority Critical patent/JP4042367B2/en
Publication of JP2003055726A publication Critical patent/JP2003055726A/en
Application granted granted Critical
Publication of JP4042367B2 publication Critical patent/JP4042367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱電対と、その保護管材料およびその材料の使用方法に関し、特に高炉炉底部付近に使用する熱電対と、その保護管材料およびその材料の使用方法に関する。
【0002】
【従来の技術】
高炉の新設には多額の設備投資を必要とすることから、高炉の寿命を極力延ばすことがコスト低減のために不可欠である。そのためにはリアルタイムに高炉炉底部レンガの侵食状況を監視し異常発生時には、適切な操業条件の変更や補修が必要となる。このレンガの侵食状況を間接的に調査する手段として、炉底部に埋設した熱電対を用いる方法が一般に用いられる。この方法は熱が伝導する方向に2箇所以上埋設した熱電対の測温値と、あらかじめ求めておいたレンガの熱伝導率より、溶銑温度に達するレンガ厚み、すなわちレンガ残存厚みを推定するものである。
【0003】
この熱電対は、炉内の腐食環境に耐えられるように保護管で覆われ、さらに保護管と熱電対の間には電気的絶縁体(たとえばMgO)が詰められており、保護管材料としては、例えばSUS310Sやインコネル600等が用いられている。以下、保護管内に熱電対を挿入するタイプの熱電対をシース熱電対という。
【0004】
【発明が解決しようとする課題】
しかし、従来のシース熱電対では、高炉火入れ後10年で、場合によっては3〜5年で劣化をきたし、熱電対の断線が発生したり、前記絶縁体の絶縁性能の低下により所定の温度測定精度が得られなくなるという問題が生じる。近年、高炉寿命が10年を越え、さらに今後建設される高炉では20年以上の炉寿命が期待され、高炉炉底部に埋設したシース熱電対を設置後、その補修や更新をすることが実質上困難となる。このため、高炉炉底部において20年以上の長期に亘って安定した性能を有するシース熱電対を開発することが必須となってきている。
【0005】
本発明の目的は、高炉炉底部の温度監視を長期間安定して行うことが可能な熱電対と、その保護管材料およびその材料の使用方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、休止中の高炉炉底からシース熱電対を回収し、その損傷要因を鋭意調査検討した結果、下記の知見を得た。
(A)シース熱電対の劣化の主要因は、高炉炉内ガス(以下、高炉ガスともいう)によるシース熱電対の保護管の腐食である。
(B)高温部位(200〜500℃)ではCOによる浸炭とH2Sによる高温硫化腐食により、一方、低温部位(<200℃)では高炉ガス中の酸成分(塩酸および硫酸)が保護管表面に結露する際に生じる腐食(以下、酸露点腐食ともいう)により保護管が腐食損傷を受ける。
【0007】
上記知見をもとに、各種試験材について、材料評価試験を行い、下記の知見を得た。
(a)高炉ガス環境下(≧200℃)での耐浸炭性は、NiとCrとをそれぞれ15質量%(以下、単に%で質量%を表す)以上含む試験材で顕著に向上する。
【0008】
(b)高炉ガスが結露する際に発生する酸に対する耐食性は、Ni、Crをそれぞれ15%以上含有し、かつ、Mo、Wの一種以上の合計で3%以上含有した試験材で向上する。さらに、Taを1%以上試験材に含有させると酸に対する耐食性が一層向上する。
【0009】
(c)高炉ガス環境下、高温硫化腐食に対する耐食性はNiとCrとをそれぞれ15%以上含有し、Coを10%以上含有する試験材で、きわめて顕著に向上する。
【0010】
(d)さらに、Si、Alの一種以上を1%以上3%以下試験材に含有させると高温硫化腐食に対する腐食性は一層向上する。
本発明は、以上の知見に基づいてなされたもので、その要旨は、下記の通りである。
(1)Ni15質量%以上70質量%以下と、Cr15質量%以上30質量%以下とを含有し、さらにMoおよびWの一種類以上を合計量で3質量%以上30質量%以下含有し、残部がFeおよび不可避的不純物であることを特徴とする、耐酸露点腐食性を示す、高炉用シース熱電対の保護管材料。
(2)さらに、Taを1質量%以上10質量%以下含有することを特徴とする上記(1)に記載の高炉用シース熱電対の保護管材料。
(3)Ni15質量%以上70質量%以下と、Cr15質量%以上30質量%以下とを含有し、さらにCoを10質量%以上30質量%以下含有し、残部がFeおよび不可避的不純物であることを特徴とする、耐高温硫化腐食性を示す、高炉用シース熱電対の保護管材料。
(4)さらに、SiおよびAlの一種類以上を合計量で1質量%以上3質量%以下含有することを特徴とする上記(3)に記載の高炉用シース熱電対の保護管材料。
(5)上記(1)または(2)記載の材料と上記(3)または(4)記載の材料とを重ねて多重保護管を構成したことを特徴とする高炉用シース熱電対の保護管。
(6)Ni15質量%以上70質量%以下と、Cr15質量%以上30質量%以下とを含有し、さらにMoおよびWの一種類以上を合計量で3質量%以上30質量%以下含有し、残部がFeおよび不可避的不純物である耐酸露点腐食性を示す材料からなる保護管を備えることを特徴とする高炉用シース熱電対。
(7)さらに、Taを1質量%以上10質量%以下含有することを特徴とする上記(6)に記載の高炉用シース熱電対。
(8)Ni15質量%以上70質量%以下と、Cr15質量%以上30質量%以下とを含有し、さらにCoを10質量%以上30質量%以下含有し、残部がFeおよび不可避的不純物である耐高温硫化腐食性を示す材料からなる保護管を備えることを特徴とする高炉用シース熱電対。
(9)さらに、SiおよびAlの一種類以上を合計量で1質量%以上3質量%以下含有することを特徴とする上記(8)に記載の高炉用シース熱電対。
(10)上記( )または(2)の材料と、上記(3)または( )の材料とから構成した多重保護管を備えることを特徴とする高炉用シース熱電対。
【0011】
【発明の実施の形態】
図1は、本発明の保護管材料の適用場所を示すシース熱電対の概念図である。ここで、1:シース熱電対、2:保護管、3:熱電対素線、4:絶縁体、5:スリーブ内絶縁体、6:スリーブおよび7:補償導線である。
【0012】
保護管2に本発明の材料を使用するが、炉底低温部(温度:200℃未満)で使用する保護管は、Ni−Cr基合金にMoおよびWの一種類以上を合計量で3%以上含有した材料、または、さらにTaを1%以上含有した材料を使用すると、酸露点腐食に対する耐食性が良好となる。炉底低温部から高温部(温度:200℃以上)にまたがるように埋設する保護管は、Ni−Cr基合金にMoおよびWの一種類以上を合計量で3%以上含有した材料、または、さらにTaを1%以上含有した材料と、Ni−Cr基合金にCoを10%以上含有した材料、または、さらにSiおよびAlの一種類以上を合計量で1%以上含有する材料とを重ね多層化した多重管を使用すると、酸露点腐食に対する耐食性および高温硫化腐食に対する耐食性が良好となる。
【0013】
本発明の高炉用シース熱電対の保護管材料を構成する各成分元素の作用と含有率の好ましい範囲等ついて以下に説明する。
(1)Cr:Crは、Cr23皮膜を合金表面に均一に生成させやすく高炉ガスによる浸炭や高温硫化腐食に対する合金の耐食性を高める作用がある合金元素である。また、Crは不働体被膜の重要な構成元素であり、酸露点腐食環境下における合金の耐食性の向上にも寄与する。高炉ガスによる浸炭、高温硫化腐食に対する耐久性を高める効果は15%以上でみられることから下限を15%とした。上限は特に限定しないが30%とするのが好ましい。その理由はCrを30%超としても効果が飽和するからである。好ましい範囲は18〜30%である。
【0014】
(2)Ni:Niは高温での炭素原子との反応性が乏しく、合金中の炭素原子の拡散速度を低める作用が在ることから、浸炭環境における合金の耐食性を向上させる合金元素である。高炉ガスによる耐浸炭性、酸露点腐食に対する耐食性を高める効果は15%以上でみられることから、下限を15%とした。上限は70%とするのが好ましい。その理由は本発明に必要な他の元素濃度を考慮すると70%を超えることはないからである。さらに好ましくは40〜70%である。
【0015】
(3)Mo、W:Moは酸露点腐食環境下で不働体皮膜を構成する重要な合金元素であり、酸露点腐食環境下での合金の耐食性向上に寄与する元素である。また、Moは、その硫化物が耐食性に寄与し、高温硫化腐食を抑制する効果がある合金元素である。Wは、Moと同様の効果がある合金元素である。
【0016】
すなわち、Mo、Wのいずれも、高炉ガスによる耐高温硫化腐食性、酸露点腐食に対する耐食性を高めるために必要な合金元素であり、その効果はMo、Wのいずれか1種以上の合計3%以上でみられることから、下限を3%とした。上限は30%とするのが好ましい。その理由は30%を超えると加工性が悪くなり、高炉用のシース熱電対の製作が困難となるからである。さらに好ましい範囲は10〜20%である。
【0017】
(4)Ta:Taを1%以上含有すると、より酸露点腐食に対する耐食性が向上する。上限は10%とするのが好ましい。その理由は多量に加えると加工性が悪くなり、10%を超えると高炉用シース熱電対を製作することが困難となるからである。さらに好ましい範囲は1〜5%である。
【0018】
(5)Co:Coは、高温硫化腐食環境で耐食性に優れるCoSの保護皮膜を形成するため、合金の高温硫化腐食の耐食性を高める作用がある合金元素である。10%以上で効果が急激に増大し30%を超えても効果があまり変化しない。好ましい範囲は10〜30%である。
【0019】
(6)Si、Al:Si、Alは、いずれも高炉ガスによるAl23、SiO2といった保護性酸化皮膜を形成するため、合金の耐高温硫化腐食性をさらに高める作用がある合金元素である。その効果がSiおよびAlの一種類以上を合計量で1%以上含有させるとみられることから、下限を1%以上とした。上限は3%とするのが好ましい。その理由は、3%を超えるとも耐高温硫化腐食性能が飽和するからである。
【0020】
(7)不可避的不純物としては、脱酸精錬の際に混入する0.5%程度のMnやSiがある。
シース熱電対の一般的な基本構成は、前記図1に示した通りであるが、各部について以下に説明する。
【0021】
熱電対素線:熱電対素線としては、K型やN型等が使用され、温度測定精度の劣化が比較的小さなN型が好ましい。
絶縁体:絶縁体としては、MgOやAl23等が使用され、価格の面から割安なMgOが好ましい。
【0022】
スリーブ内絶縁体:スリーブ内絶縁体としては、エポキシ樹脂やガラス等が使用されているが、施工の簡便さの面からエポキシ樹脂が好ましい。
補償導線:補償導線としては、銅と銅−ニッケル合金との組み合わせや、鉄と銅−ニッケル合金との組み合わせからなるK型熱電対用のもの、または2種類の銅−ニッケル合金からなるN型熱電対のものが使用され、それぞれの補償導線は通常ビニル被覆されている。
【0023】
スリーブ:スリーブの材質としては、SUS304、SUS310SまたはSUS316等が使用される。
なお、保護管の外径が12mmを超えると、その熱電対を伝って高炉内の溶銑が流出することが経験的に知られているので、保護管の外径は12mm以下が望ましい。一方、保護管の外径が6mm未満であると、熱電対としての耐熱性が劣化することが懸念される。従って、保護管の外径は6〜12mmとすることが望ましい。
【0024】
また、熱電対には接地型と非接地型がある。接地型熱電対は保護管に熱電対先端が電気的に導通しているものであり、応答性が優れているという特徴がある。一方、非接地型熱電対は熱電対と保護管が電気的に絶縁されているものであり、耐ノイズ性が優れているという特徴がある。従って、高炉で熱電対を使用する場合は、高い応答性よりも優れた耐ノイズ性が求められることが多く、非接地型熱電対が望ましい。
【0025】
【実施例】
従来例、本発明例および比較例として、市販されている4種の材料と新たに溶製した14種の材料とを用いて評価試験を行った。
【0026】
評価項目は、耐塩酸性、耐硫酸性、耐高温硫化腐食性および耐浸炭性である。これらの評価試験に用いた試験材の製造方法は次の通りである。
(1)真空誘導加熱炉で所定の化学成分の試験材を50kg溶解し、インゴットに鋳造した。
【0027】
(2)このインゴットの外表面を切削し取り除いた後1200℃で5時間加熱し、1200℃から1050℃の温度範囲で熱間鍛造を行い、鍛造後の試験材のサイズを厚み20mm、幅100mm、長さ約3mとした。
【0028】
(3)この鍛造材を1200℃で2時間加熱し、軟化焼鈍を行い、さらに冷間圧延により厚み14mmの冷延板とした。冷間圧延後の溶体化熱処理は1180℃で1時間加熱保持後に水冷した。
【0029】
(4)試験材番号1:インコネル600、試験材番号2:SUS310S、試験材番号3:SS400(炭素綱)、試験材番号4:SUS304、は市販の熱延板を用い、各種試験材の圧延板中央部から厚さ2mm、幅10mm、長さ25mmの短冊状試験片を切り出し耐塩酸性、耐硫酸性および耐高温硫化腐食性の評価を行い、耐浸炭試験には厚さ4mm、幅20mm、長さ30mmの短冊状試験片を切り出し評価試験に供した。
【0030】
評価試験条件は次の通りである。
(A)耐塩酸性試験:5%塩酸溶液中(温度60℃)に試験片を5時間浸漬し、腐食減量を測定した。
【0031】
(B)耐硫酸性試験:70%硫酸溶液中(温度100℃)に試験片を5時間浸漬し腐食減量を測定した。
(C)耐高温硫化腐食試験:高炉ガスを模擬した1.5%H2S−20%CO−20%CO2−1.6%H2O−残り56.9%N2気流中、500℃で100時間加熱し、試験後の試験片を化学的に脱スケールし、その際の減量を測定した。
【0032】
(D)耐浸炭性試験:90%CO−10%H2ガスを通気しながら、550℃で100時間加熱処理を行い、処理後に試験片表面を深さ約0.5mm切削し、切削分のC含有量を化学分析により求め、簿材のC含有量との差異をC増加量として求め、その値で耐浸炭性を評価した。
【0033】
表1に試験に使用した材料の化学成分(質量%)を示す。
表2に酸露点腐食試験結果を示す。
表3に高温硫化腐食試験結果を示す。
【0034】
表4に浸炭試験結果を示す。
【0035】
【表1】

Figure 0004042367
【0036】
【表2】
Figure 0004042367
【0037】
【表3】
Figure 0004042367
【0038】
【表4】
Figure 0004042367
【0039】
なお、各試験の目標は下記の通りとした。
(a)耐塩酸性:腐食減量が10mg/cm2以下
(b)耐硫酸性:腐食減量が100mg/cm2以下
(c)耐高温硫化腐食性:腐食減量が50mg/cm2以下
(d)耐浸炭性:Cの増量が0.5%以下
表1〜4に示すように、本発明の試験材番号10〜14は耐塩酸性および耐硫酸性の目標を達成し、耐高温硫化腐食性および耐浸炭性も目標を達成した。
【0040】
特に、Taを1.81%含有させた試験材番号14は、耐塩酸性および耐硫酸性がさらに向上した。
試験材番号15〜18は、耐塩酸性および耐硫酸性が試験材番号10〜14に比較して低下したが目標を達成し、耐高温硫化腐食性が試験材番号10〜14に比較してさらに向上した。特に、Siをそれぞれ2.76%、1.08%含有する試験材番号16、17およびAlを1.1%含有する試験材番号18は、耐高温硫化腐食性がさらに向上した。
【0041】
なお、試験材番号10〜18は、全て耐浸炭性が良好であり、目標を達成した。
【0042】
【発明の効果】
本発明の熱電対と、その保護管材料およびその材料の使用方法により、高炉炉底部付近の温度監視を長期間安定して行うことができる。
【図面の簡単な説明】
【図1】本発明の保護管材料の適用場所を示すシ−ス熱電対の概念図である。
【符号の説明】
1:シース熱電対、
2:保護管、
3:熱電対素線、
4:絶縁体、
5:樹脂、
6:スリーブ、
7:補償導線。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermocouple, a material for the protective tube, and a method for using the material, and more particularly, to a thermocouple used near the bottom of the blast furnace furnace, a material for the protective tube, and a method for using the material.
[0002]
[Prior art]
Since the construction of a new blast furnace requires a large amount of capital investment, extending the life of the blast furnace as much as possible is indispensable for reducing costs. For that purpose, the erosion status of the brick at the bottom of the blast furnace furnace is monitored in real time, and when an abnormality occurs, it is necessary to change or repair appropriate operating conditions. As a means for indirectly examining the erosion status of the brick, a method using a thermocouple embedded in the furnace bottom is generally used. This method estimates the brick thickness that reaches the hot metal temperature, that is, the remaining brick thickness, based on the measured temperature of two or more thermocouples embedded in the direction in which heat is conducted and the thermal conductivity of the brick determined in advance. is there.
[0003]
This thermocouple is covered with a protective tube so that it can withstand the corrosive environment in the furnace, and further, an electrical insulator (for example, MgO) is packed between the protective tube and the thermocouple. For example, SUS310S or Inconel 600 is used. Hereinafter, a thermocouple in which a thermocouple is inserted into a protective tube is referred to as a sheath thermocouple.
[0004]
[Problems to be solved by the invention]
However, conventional sheathed thermocouples have deteriorated in 10 years after blast furnace firing, and in some cases in 3-5 years, the thermocouple is broken, or a predetermined temperature measurement is performed due to a decrease in insulation performance of the insulator. There arises a problem that accuracy cannot be obtained. In recent years, the life of the blast furnace has exceeded 10 years, and the blast furnace constructed in the future is expected to have a furnace life of more than 20 years. After installing a sheathed thermocouple embedded in the bottom of the blast furnace furnace, it is practical to repair or renew it. It becomes difficult. For this reason, it has become essential to develop a sheathed thermocouple having stable performance over a long period of 20 years or longer at the bottom of the blast furnace.
[0005]
An object of the present invention is to provide a thermocouple capable of stably monitoring the temperature at the bottom of a blast furnace furnace for a long period of time, a protective tube material thereof, and a method of using the material.
[0006]
[Means for Solving the Problems]
The inventors of the present invention recovered the sheath thermocouple from the blast furnace bottom during the outage, and earnestly studied and examined the cause of damage. As a result, the following knowledge was obtained.
(A) The main cause of deterioration of the sheath thermocouple is corrosion of the protective tube of the sheath thermocouple due to blast furnace gas (hereinafter also referred to as blast furnace gas).
(B) Carburization by CO and high temperature sulfidation corrosion by H 2 S at high temperature (200 to 500 ° C), while acid components (hydrochloric acid and sulfuric acid) in blast furnace gas are at the surface of the protective tube at low temperature (<200 ° C) The protective tube is corroded by corrosion caused by condensation (hereinafter also referred to as acid dew point corrosion).
[0007]
Based on the above knowledge, a material evaluation test was performed on various test materials, and the following knowledge was obtained.
(A) The carburization resistance in a blast furnace gas environment (≧ 200 ° C.) is remarkably improved by a test material containing 15% by mass (hereinafter simply referred to as “%”) of Ni and Cr.
[0008]
(B) The corrosion resistance against the acid generated when the blast furnace gas is condensed is improved by a test material containing 15% or more of Ni and Cr, respectively, and 3% or more in total of one or more of Mo and W. Furthermore, when 1% or more of Ta is contained in the test material, the corrosion resistance against acid is further improved.
[0009]
(C) Under the blast furnace gas environment, the corrosion resistance against high-temperature sulfidation corrosion is remarkably improved by a test material containing 15% or more of Ni and Cr and 10% or more of Co.
[0010]
(d) Further, when one or more of Si and Al are contained in the test material in an amount of 1% to 3%, the corrosiveness against high temperature sulfidation corrosion is further improved.
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) Ni : 15% by mass or more and 70% by mass or less , Cr : 15% by mass or more and 30% by mass or less, and further one or more kinds of Mo and W in a total amount of 3% by mass or more and 30% by mass or less A protective tube material for a sheathed thermocouple for a blast furnace, which has acid dew point corrosion resistance, and contains Fe and inevitable impurities.
(2) The protective tube material for a sheathed thermocouple for a blast furnace as described in (1) above, further containing Ta in an amount of 1% by mass to 10% by mass .
(3) Ni : 15 mass% or more and 70 mass% or less , Cr : 15 mass% or more and 30 mass% or less , Co is further contained 10 mass% or more and 30 mass% or less, and the remainder is Fe and unavoidable A protective tube material for a sheathed thermocouple for a blast furnace showing high-temperature sulfidation corrosion resistance, characterized by being an impurity.
(4) The protective tube material for a sheathed thermocouple for a blast furnace according to (3) above, further comprising one or more types of Si and Al in a total amount of 1% by mass to 3% by mass .
(5) A protective tube for a blast furnace sheath thermocouple, characterized in that a multiple protective tube is configured by overlapping the material described in (1) or (2) above and the material described in (3) or (4) above.
(6) Ni : 15% by mass or more and 70% by mass or less , Cr : 15% by mass or more and 30% by mass or less, and further one or more kinds of Mo and W in a total amount of 3% by mass or more and 30% by mass or less A sheathed thermocouple for a blast furnace, comprising a protective tube made of a material that contains an acid dew point corrosion resistance that is contained and the balance being Fe and inevitable impurities.
(7) The sheath thermocouple for a blast furnace as described in (6) above, further including Ta in an amount of 1% by mass to 10% by mass .
(8) Ni : 15 mass% or more and 70 mass% or less , Cr : 15 mass% or more and 30 mass% or less , Co is further contained 10 mass% or more and 30 mass% or less, and the remainder is Fe and inevitable A sheath thermocouple for a blast furnace, comprising a protective tube made of a material exhibiting high-temperature sulfidation corrosion resistance which is an impurity.
(9) The blast furnace sheath thermocouple according to (8), further including one or more types of Si and Al in a total amount of 1% by mass to 3% by mass .
(10) A blast furnace sheathed thermocouple comprising a multiple protective tube made of the material ( 1 ) or (2) and the material (3) or ( 4 ) .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a conceptual diagram of a sheath thermocouple showing an application place of the protective tube material of the present invention. Here, 1: sheathed thermocouple, 2: protective tube, 3: thermocouple element, 4: insulator, 5: insulator in sleeve, 6: sleeve, and 7: compensating conductor.
[0012]
Although the material of the present invention is used for the protective tube 2, the protective tube used in the furnace bottom low temperature portion (temperature: less than 200 ° C.) is 3% in total of one or more kinds of Mo and W in the Ni—Cr base alloy. When a material containing the above or a material containing 1% or more of Ta is used, the corrosion resistance against acid dew point corrosion is improved. The protective tube embedded so as to extend from the low temperature part of the furnace bottom to the high temperature part (temperature: 200 ° C. or higher) is a material containing at least 3% of Mo and W in a total amount of Ni—Cr based alloy, or Furthermore, a multilayer containing a material containing 1% or more of Ta and a material containing 10% or more of Co in a Ni—Cr based alloy, or a material containing 1% or more of Si and Al in total amount When the multi-layered pipe is used, the corrosion resistance against acid dew point corrosion and the corrosion resistance against high temperature sulfidation corrosion are improved.
[0013]
The action of each component element constituting the protective tube material for the blast furnace sheath thermocouple of the present invention, the preferable range of the content, and the like will be described below.
(1) Cr: Cr is an alloy element that has an effect of enhancing the corrosion resistance of the alloy against carburizing and high-temperature sulfidation corrosion by blast furnace gas, easily forming a Cr 2 O 3 film uniformly on the alloy surface. Cr is an important constituent element of the passive film, and contributes to improvement of the corrosion resistance of the alloy in an acid dew point corrosion environment. Since the effect of enhancing the durability against carburization and high-temperature sulfidation corrosion by blast furnace gas is seen at 15% or more, the lower limit was made 15%. The upper limit is not particularly limited, but is preferably 30%. The reason is that the effect is saturated even if Cr exceeds 30%. A preferred range is 18-30%.
[0014]
(2) Ni: Ni is an alloy element that improves the corrosion resistance of the alloy in a carburized environment because it has poor reactivity with carbon atoms at high temperatures and has the effect of reducing the diffusion rate of carbon atoms in the alloy. Since the effect of enhancing the carburization resistance and acid dew point corrosion resistance by blast furnace gas is seen at 15% or more, the lower limit was made 15%. The upper limit is preferably 70%. The reason is that it does not exceed 70% in consideration of the concentration of other elements necessary for the present invention. More preferably, it is 40 to 70%.
[0015]
(3) Mo, W: Mo is an important alloying element that constitutes a passive film in an acid dew point corrosion environment, and is an element that contributes to improving the corrosion resistance of the alloy in an acid dew point corrosion environment. Mo is an alloy element whose sulfide contributes to corrosion resistance and has an effect of suppressing high-temperature sulfidation corrosion. W is an alloy element having the same effect as Mo.
[0016]
That is, both Mo and W are alloy elements necessary for improving the high-temperature sulfidation corrosion resistance by blast furnace gas and the corrosion resistance against acid dew point corrosion, and the effect is a total of 3% of at least one of Mo and W. From the above, the lower limit was made 3%. The upper limit is preferably 30%. The reason is that if it exceeds 30%, the workability deteriorates and it becomes difficult to manufacture a sheath thermocouple for a blast furnace. A more preferable range is 10 to 20%.
[0017]
(4) Ta: When Ta is contained at 1% or more, the corrosion resistance against acid dew point corrosion is further improved. The upper limit is preferably 10%. The reason is that if a large amount is added, the workability deteriorates, and if it exceeds 10%, it becomes difficult to produce a sheath thermocouple for a blast furnace. A more preferable range is 1 to 5%.
[0018]
(5) Co: Co is an alloy element that has the effect of increasing the corrosion resistance of high-temperature sulfidation corrosion of an alloy in order to form a protective film of CoS that is excellent in corrosion resistance in a high-temperature sulfidation corrosion environment. The effect increases rapidly at 10% or more, and the effect does not change much even if it exceeds 30%. A preferred range is 10-30%.
[0019]
(6) Si, Al: Si and Al are alloy elements that have the effect of further enhancing the high-temperature sulfidation corrosion resistance of the alloy because they form protective oxide films such as Al 2 O 3 and SiO 2 by blast furnace gas. is there. Since the effect seems to contain 1% or more of Si and Al in a total amount, the lower limit was made 1% or more. The upper limit is preferably 3%. The reason is that even if it exceeds 3%, the high-temperature sulfidation corrosion resistance is saturated.
[0020]
(7) As unavoidable impurities, there are about 0.5% Mn and Si mixed during deoxidation refining.
The general basic configuration of the sheath thermocouple is as shown in FIG. 1, and each part will be described below.
[0021]
Thermocouple wire: As the thermocouple wire, a K-type or an N-type is used, and an N-type with relatively little deterioration in temperature measurement accuracy is preferable.
Insulator: As the insulator, MgO, Al 2 O 3 or the like is used, and cheap MgO is preferable from the viewpoint of price.
[0022]
Insulator in sleeve: As the insulator in the sleeve, epoxy resin, glass or the like is used, but epoxy resin is preferable from the viewpoint of easy construction.
Compensation lead: As a compensation lead, a combination of copper and copper-nickel alloy, a K-type thermocouple made of a combination of iron and copper-nickel alloy, or an N-type made of two types of copper-nickel alloys Thermocouples are used and each compensating lead is usually vinyl coated.
[0023]
Sleeve: As a material of the sleeve, SUS304, SUS310S, SUS316 or the like is used.
It is empirically known that when the outer diameter of the protective tube exceeds 12 mm, the hot metal in the blast furnace flows out through the thermocouple, so the outer diameter of the protective tube is preferably 12 mm or less. On the other hand, if the outer diameter of the protective tube is less than 6 mm, there is a concern that the heat resistance as a thermocouple deteriorates. Therefore, the outer diameter of the protective tube is preferably 6 to 12 mm.
[0024]
Thermocouples are classified into a grounded type and a non-grounded type. The grounding type thermocouple is characterized in that the tip of the thermocouple is electrically connected to the protective tube and has excellent responsiveness. On the other hand, a non-grounded thermocouple is characterized in that the thermocouple and the protective tube are electrically insulated, and has excellent noise resistance. Therefore, when using a thermocouple in a blast furnace, noise resistance superior to high responsiveness is often required, and an ungrounded thermocouple is desirable.
[0025]
【Example】
As a conventional example, an example of the present invention, and a comparative example, an evaluation test was performed using four types of commercially available materials and 14 types of newly prepared materials.
[0026]
Evaluation items are hydrochloric acid resistance, sulfuric acid resistance, high-temperature sulfidation corrosion resistance, and carburization resistance. The manufacturing method of the test material used for these evaluation tests is as follows.
(1) 50 kg of a test material having a predetermined chemical component was melted in a vacuum induction heating furnace and cast into an ingot.
[0027]
(2) After cutting and removing the outer surface of this ingot, it was heated at 1200 ° C. for 5 hours, hot forged in a temperature range of 1200 ° C. to 1050 ° C., and the size of the test material after forging was 20 mm in thickness and 100 mm in width. The length was about 3 m.
[0028]
(3) The forged material was heated at 1200 ° C. for 2 hours, softened and annealed, and further cold-rolled to form a cold-rolled sheet having a thickness of 14 mm. The solution heat treatment after cold rolling was carried out at 1180 ° C. for 1 hour and then cooled with water.
[0029]
(4) Test material number 1: Inconel 600, Test material number 2: SUS310S, Test material number 3: SS400 (carbon steel), Test material number 4: SUS304, using commercially available hot-rolled plates, rolling various test materials A strip-shaped test piece having a thickness of 2 mm, a width of 10 mm, and a length of 25 mm was cut out from the center of the plate and evaluated for hydrochloric acid resistance, sulfuric acid resistance, and high-temperature sulfidation corrosion resistance. A strip-shaped test piece having a length of 30 mm was cut out and subjected to an evaluation test.
[0030]
The evaluation test conditions are as follows.
(A) Hydrochloric acid resistance test: A test piece was immersed in a 5% hydrochloric acid solution (temperature: 60 ° C.) for 5 hours, and the corrosion weight loss was measured.
[0031]
(B) Sulfuric acid resistance test: A test piece was immersed in a 70% sulfuric acid solution (at a temperature of 100 ° C.) for 5 hours to measure the corrosion weight loss.
(C) High-temperature sulfidation corrosion test: 1.5% H 2 S-20% CO-20% CO 2 -1.6% H 2 O-remaining 56.9% in N 2 air flow simulating blast furnace gas, 500 It heated at 100 degreeC for 100 hours, the test piece after a test was chemically descaled, and the weight loss in that case was measured.
[0032]
(D) Carburization resistance test: Heating is performed at 550 ° C. for 100 hours while aeration of 90% CO-10% H 2 gas, and the surface of the test piece is cut to a depth of about 0.5 mm after the treatment. C content was calculated | required by the chemical analysis, the difference with C content of a book material was calculated | required as C increase amount, and the carburization resistance was evaluated by the value.
[0033]
Table 1 shows the chemical composition (mass%) of the materials used in the test.
Table 2 shows the acid dew point corrosion test results.
Table 3 shows the results of the high temperature sulfide corrosion test.
[0034]
Table 4 shows the carburization test results.
[0035]
[Table 1]
Figure 0004042367
[0036]
[Table 2]
Figure 0004042367
[0037]
[Table 3]
Figure 0004042367
[0038]
[Table 4]
Figure 0004042367
[0039]
The targets for each test were as follows.
(A) Hydrochloric acid resistance: Corrosion weight loss is 10 mg / cm 2 or less (b) Sulfuric acid resistance: Corrosion weight loss is 100 mg / cm 2 or less (c) High temperature sulfidation corrosion resistance: Corrosion weight loss is 50 mg / cm 2 or less (d) Resistance Carburization: C increase is 0.5% or less As shown in Tables 1 to 4, test materials Nos. 10 to 14 of the present invention achieve the goals of hydrochloric acid resistance and sulfuric acid resistance, and are resistant to high-temperature sulfidation corrosion and resistance. The carburizing performance was also achieved.
[0040]
In particular, Test Material No. 14 containing 1.81% Ta further improved hydrochloric acid resistance and sulfuric acid resistance.
Test materials Nos. 15 to 18 achieved the target although hydrochloric acid resistance and sulfuric acid resistance were lowered as compared with test materials Nos. 10 to 14, and high-temperature sulfidation corrosion resistance was further compared to test materials Nos. 10 to 14. Improved. In particular, Test Material Nos. 16 and 17 containing 2.76% and 1.08% Si and Test Material No. 18 containing 1.1% Al further improved the high-temperature sulfidation corrosion resistance.
[0041]
In addition, all of the test material numbers 10 to 18 had good carburization resistance and achieved the target.
[0042]
【The invention's effect】
By the thermocouple of the present invention, its protective tube material, and the method of using the material, it is possible to stably monitor the temperature near the bottom of the blast furnace furnace for a long time.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a sheathed thermocouple showing an application place of a protective tube material of the present invention.
[Explanation of symbols]
1: sheath thermocouple,
2: Protection tube,
3: Thermocouple wire,
4: Insulator,
5: Resin,
6: Sleeve,
7: Compensation lead.

Claims (10)

Ni15質量%以上70質量%以下と、Cr15質量%以上30質量%以下とを含有し、さらにMoおよびWの一種類以上を合計量で3質量%以上30質量%以下含有し、残部がFeおよび不可避的不純物であることを特徴とする、耐酸露点腐食性を示す、高炉用シース熱電対の保護管材料。Ni : 15% by mass or more and 70% by mass or less , Cr : 15% by mass or more and 30% by mass or less , further containing one or more kinds of Mo and W in a total amount of 3% by mass or more and 30% by mass or less , A protective tube material for a blast furnace sheath thermocouple exhibiting acid dew point corrosion resistance, wherein the balance is Fe and inevitable impurities. さらに、Taを1質量%以上10質量%以下含有することを特徴とする請求項1に記載の高炉用シース熱電対の保護管材料。The protective tube material for a sheathed thermocouple for a blast furnace according to claim 1, further comprising Ta in an amount of 1 mass% to 10 mass% . Ni15質量%以上70質量%以下と、Cr15質量%以上30質量%以下とを含有し、さらにCoを10質量%以上30質量%以下含有し、残部がFeおよび不可避的不純物であることを特徴とする、耐高温硫化腐食性を示す、高炉用シース熱電対の保護管材料。Ni : 15 mass% or more and 70 mass% or less , Cr : 15 mass% or more and 30 mass% or less , Co is further contained 10 mass% or more and 30 mass% or less, and the remainder is Fe and inevitable impurities A protective tube material for a sheathed thermocouple for a blast furnace that exhibits high-temperature sulfidation corrosion resistance. さらに、SiおよびAlの一種類以上を合計量で1質量%以上3質量%以下含有することを特徴とする請求項3に記載の高炉用シース熱電対の保護管材料。The protective tube material for a sheathed thermocouple for a blast furnace according to claim 3, further comprising one or more types of Si and Al in a total amount of 1% by mass or more and 3% by mass or less . 上記請求項1または2記載の材料と請求項3または4記載の材料とを重ねて多重保護管を構成したことを特徴とする高炉用シース熱電対の保護管。A protective tube for a blast furnace sheath thermocouple, wherein a multiple protective tube is formed by overlapping the material according to claim 1 or 2 and the material according to claim 3 or 4. Ni15質量%以上70質量%以下と、Cr15質量%以上30質量%以下とを含有し、さらにMoおよびWの一種類以上を合計量で3質量%以上30質量%以下含有し、残部がFeおよび不可避的不純物である、耐酸露点腐食性を示す材料からなる保護管を備えることを特徴とする高炉用シース熱電対。Ni : 15% by mass or more and 70% by mass or less , Cr : 15% by mass or more and 30% by mass or less , further containing one or more kinds of Mo and W in a total amount of 3% by mass or more and 30% by mass or less , A sheathed thermocouple for a blast furnace, comprising a protective tube made of a material exhibiting acid dew point corrosion resistance, the balance being Fe and inevitable impurities. さらに、Taを1質量%以上10質量%以下含有することを特徴とする請求項6に記載の高炉用シース熱電対。Furthermore, Ta is contained in 1 mass% or more and 10 mass% or less , The sheath thermocouple for blast furnaces of Claim 6 characterized by the above-mentioned. Ni15質量%以上70質量%以下と、Cr15質量%以上30質量%以下とを含有し、さらにCoを10質量%以上30質量%以下含有し、残部がFeおよび不可避的不純物である、耐高温硫化腐食性を示す材料からなる保護管を備えることを特徴とする高炉用シース熱電対。Ni : 15 mass% or more and 70 mass% or less , Cr : 15 mass% or more and 30 mass% or less , Co is further contained 10 mass% or more and 30 mass% or less, and the remainder is Fe and inevitable impurities A sheath thermocouple for a blast furnace comprising a protective tube made of a material exhibiting high-temperature sulfidation corrosion resistance. さらに、SiおよびAlの一種類以上を合計量で1質量%以上3質量%以下含有することを特徴とする請求項8に記載の高炉用シース熱電対。Furthermore, 1 or more types of Si and Al are contained in 1 mass% or more and 3 mass% or less in total amount, The sheath thermocouple for blast furnaces of Claim 8 characterized by the above-mentioned. 請求項またはの材料と、請求項または4の材料とから構成した多重保護管を備えたことを特徴とする高炉用シース熱電対。A sheath thermocouple for a blast furnace, comprising a multiple protection tube made of the material of claim 1 or 2 and the material of claim 3 or 4 .
JP2001244374A 2001-08-10 2001-08-10 Thermocouple, protective tube material and method of using the material Expired - Fee Related JP4042367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001244374A JP4042367B2 (en) 2001-08-10 2001-08-10 Thermocouple, protective tube material and method of using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244374A JP4042367B2 (en) 2001-08-10 2001-08-10 Thermocouple, protective tube material and method of using the material

Publications (2)

Publication Number Publication Date
JP2003055726A JP2003055726A (en) 2003-02-26
JP4042367B2 true JP4042367B2 (en) 2008-02-06

Family

ID=19074316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244374A Expired - Fee Related JP4042367B2 (en) 2001-08-10 2001-08-10 Thermocouple, protective tube material and method of using the material

Country Status (1)

Country Link
JP (1) JP4042367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535211A (en) * 2014-12-19 2015-04-22 西安近代化学研究所 Thermocouple protecting device suitable for fireball response temperature testing in blast field

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967770B2 (en) * 2007-04-11 2012-07-04 山里産業株式会社 Double sheath type thermocouple and manufacturing method thereof
JP4784843B2 (en) * 2008-11-12 2011-10-05 株式会社鷺宮製作所 Temperature measuring sensor and manufacturing method of temperature measuring sensor
EP2698439B1 (en) * 2012-08-17 2014-10-01 Alstom Technology Ltd Oxidation resistant nickel alloy
CN112845659B (en) * 2021-01-05 2022-09-16 太原科技大学 Preparation method of UNS N06600 small-caliber precise seamless pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535211A (en) * 2014-12-19 2015-04-22 西安近代化学研究所 Thermocouple protecting device suitable for fireball response temperature testing in blast field

Also Published As

Publication number Publication date
JP2003055726A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
CN104245977B (en) There is the nickel-chromium-alloy of good workability, creep resistant and corrosion resistance
JP4996243B2 (en) Austenitic stainless steel containing molybdenum
KR101282804B1 (en) Durable iron-chromium-aluminum alloy showing minor changes in heat resistance
JP5888737B2 (en) Austenitic Fe-Ni-Cr alloy
JP4390089B2 (en) Ni-based alloy
CN102791899A (en) Ferrite-based stainless steel for use in components of automobile exhaust system
KR20150114543A (en) Nickel-based alloy with silicon, aluminum and chromium
JPS648695B2 (en)
JP2004507616A (en) Oxidation- and corrosion-resistant molybdenum-containing austenitic stainless steel
JPWO2002063056A1 (en) Steel and air preheater with excellent sulfuric acid dew point corrosion resistance
JP2010516903A (en) Use of iron-chromium-aluminum alloys that exhibit long life and slight changes in heat resistance
JP4042367B2 (en) Thermocouple, protective tube material and method of using the material
CA1306123C (en) Exterior protective member made of austenitic stainless steel fora sheathing heater element
JPH09324246A (en) Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance
JP3926492B2 (en) Ferritic stainless steel sheet with oxide scale that has excellent high-temperature strength during intermittent heating and is difficult to peel off during intermittent heating
JP4245720B2 (en) High Mn austenitic stainless steel with improved high temperature oxidation characteristics
JPH07116556B2 (en) Austenitic heat resistant steel for processing
JP3973456B2 (en) Austenitic stainless steel with excellent high temperature salt damage corrosion resistance
JP2004519555A (en) Oxidation- and corrosion-resistant molybdenum-containing austenitic stainless steel
JPH03229838A (en) Steel excellent in high temperature corrosion resistance in the presence of chloride
RU2206632C2 (en) Two-layer corrosion-resistant steel
JPH11302798A (en) High nitrogen austenitic heat resistant steel
JP2021070857A (en) Ferritic stainless steel having high temperature creep strength and excellent workability
JPH08269642A (en) Austenitic heat resistant steel for internal combustion engine exhaust gas cleaning system
JP2778818B2 (en) Heat-resistant cast alloy for gas turbine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Ref document number: 4042367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees