JP2778818B2 - Heat-resistant cast alloy for gas turbine - Google Patents

Heat-resistant cast alloy for gas turbine

Info

Publication number
JP2778818B2
JP2778818B2 JP2255157A JP25515790A JP2778818B2 JP 2778818 B2 JP2778818 B2 JP 2778818B2 JP 2255157 A JP2255157 A JP 2255157A JP 25515790 A JP25515790 A JP 25515790A JP 2778818 B2 JP2778818 B2 JP 2778818B2
Authority
JP
Japan
Prior art keywords
test
heat
alloy
resistant cast
cast alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2255157A
Other languages
Japanese (ja)
Other versions
JPH04136134A (en
Inventor
久孝 河合
郁生 岡田
孝二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2255157A priority Critical patent/JP2778818B2/en
Publication of JPH04136134A publication Critical patent/JPH04136134A/en
Application granted granted Critical
Publication of JP2778818B2 publication Critical patent/JP2778818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン、ジェットエンジンの高温部品
(タービン静翼)に適用されるガスタービン用耐熱鋳造
合金に関する。
Description: TECHNICAL FIELD The present invention relates to a heat-resistant cast alloy for gas turbines applied to high-temperature parts (turbine vanes) of gas turbines and jet engines.

〔従来の技術〕[Conventional technology]

ガスタービン、ジェットエンジンのタービン静翼には
Co基耐熱合金製精密鋳造品が主に使用されている。ガス
タービン、ジェットエンジンの性能向上を図るためには
入口ガス温度を高める必要があり、このため静翼につい
ては冷却構造と使用する合金の高温強度改善の両面から
の開発が鋭意なされてきた。
Gas turbine and jet engine turbine vanes
Precision castings made of Co-based heat-resistant alloys are mainly used. In order to improve the performance of gas turbines and jet engines, it is necessary to increase the inlet gas temperature. For this reason, the development of stationary blades has been keenly developed from both aspects of cooling structure and improvement of the high-temperature strength of the alloy used.

静翼用鋳造合金としては第3表に示すような合金があ
る。X−40、X−45は古くから使用されている合金であ
り、FSX−414はCr含有量を高くし耐食・耐酸化性を改善
した合金である。MarM509はCを多く添加するととも
に、Ta、Tiを添加し、高温強度を改善した合金である。
又日立開発新合金{福井、他、「日本ガスタービン学会
誌」8−30(1980)P.48}はX−40とFSX−414の長所を
取入れた合金で、高温強度改善のためさらにTiとZrを少
量添加している。MHI新合金(特願平2〜88449号)は、
MarM509合金を基に耐酸化性・耐食性を改良したもので
ある。
Cast alloys for stationary blades include the alloys shown in Table 3. X-40 and X-45 are alloys that have been used for a long time, and FSX-414 is an alloy having a high Cr content and improved corrosion and oxidation resistance. MarM509 is an alloy in which a large amount of C is added and Ta and Ti are added to improve the high-temperature strength.
Also, Hitachi developed new alloy (Fukui, et al., Journal of the Gas Turbine Society of Japan, 8-30 (1980) P.48) is an alloy that incorporates the advantages of X-40 and FSX-414. And a small amount of Zr. MHI New Alloy (Japanese Patent Application No. 2-88449)
It has improved oxidation and corrosion resistance based on MarM509 alloy.

しかしながら、入口ガス温度が高くなるに伴い、これ
らの改善を図った既存合金でも、高温強度あるいは耐食
・耐酸化性、溶接性の点で要求を十分満すことができ
ず、高温強度、耐食・耐酸化性及び溶接性の点でバラン
スの取れた特性を有する合金が要求されている。
However, as the inlet gas temperature rises, existing alloys that have improved these properties cannot sufficiently satisfy the requirements of high-temperature strength, corrosion resistance, oxidation resistance, and weldability, and have high temperature strength, corrosion resistance, and corrosion resistance. There is a demand for alloys having balanced properties in terms of oxidation resistance and weldability.

〔発明が解決しようとする課題〕 ガスタービン、ジェットエンジンのタービン静翼には
Co基耐熱鋳造合金による精密鋳造品が使用されている。
しかし既存合金ではガスタービン入口ガス温度の上昇に
伴い、特性を改善した高CrCo基耐熱鋳造合金(FSX414
日立開発新合金)では高温強度が不足であり、高C、T
a、Ti添加Co耐熱鋳造合金(MarM509)では、Cr量が低い
ため耐食・耐酸化性が不足し寿命が短い。
[Problems to be Solved by the Invention] Gas turbine and jet engine turbine vanes
Precision castings made of Co-base heat-resistant cast alloys are used.
However, in the case of existing alloys, high CrCo-based heat-resistant cast alloys (FSX414
Hitachi developed new alloy) lacks high-temperature strength and has high C and T
a) In the heat-resistant cast alloy containing Ti (CoM) (MarM509), the corrosion resistance and oxidation resistance are insufficient due to the low Cr content, and the life is short.

一方、MHI新合金では、合金元素が多量に添加されて
おり、高温強度、耐食・耐酸化性は十分であるが、添加
量が多いため溶接性にやや問題がある。
On the other hand, the MHI new alloy contains a large amount of alloying elements and has sufficient high-temperature strength, corrosion resistance and oxidation resistance, but has a problem in weldability due to the large amount of addition.

本発明は上記技術水準に鑑み、高温強度が高く、耐食
・耐酸化性に優れ、かつ溶接性に優れたガスタービン用
耐熱鋳造合金を開発提供しようとするものである。
The present invention has been made in view of the above technical level, and aims to develop and provide a heat-resistant cast alloy for gas turbines having high high-temperature strength, excellent corrosion resistance and oxidation resistance, and excellent weldability.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は (1) 重量%で、Cr:25〜28%、Ni:8〜12%、W:6〜8
%、Ta:1.5〜2.5%、Ti:0.1〜0.3%、Al:0.2〜0.5%、S
e:0.5〜2%、C:0.3〜0.45%、B:0.005〜0.02%、残部C
o及び不可避的不純物よりなることを特徴とするガスタ
ービン用耐熱鋳造合金。
The present invention relates to (1) by weight: Cr: 25 to 28%, Ni: 8 to 12%, W: 6 to 8
%, Ta: 1.5-2.5%, Ti: 0.1-0.3%, Al: 0.2-0.5%, S
e: 0.5 to 2%, C: 0.3 to 0.45%, B: 0.005 to 0.02%, balance C
A heat-resistant cast alloy for gas turbines, comprising: o and unavoidable impurities.

(2) 重量%で、Cr:25〜28%、Ni:8〜12%、W:6〜8
%、Ta:1.5〜2.5%、Ti:0.1〜0.3%、Al:0.2〜0.5%、S
e:0.5〜2%、C:0.3〜0.45%、B:0.005〜0.02%、Zr:0.
05〜0.5%、残部Co及び不可避的不純物よりなることを
特徴とするガスタービン用耐熱鋳造合金。
(2) By weight%, Cr: 25 to 28%, Ni: 8 to 12%, W: 6 to 8
%, Ta: 1.5-2.5%, Ti: 0.1-0.3%, Al: 0.2-0.5%, S
e: 0.5 to 2%, C: 0.3 to 0.45%, B: 0.005 to 0.02%, Zr: 0.
A heat-resistant cast alloy for gas turbines, characterized in that the alloy consists of 05-0.5%, the balance being Co and inevitable impurities.

である。It is.

すなわち、本発明は高温強度が高く、かつ耐食・耐酸
化性に優れたガスタービン用耐熱鋳造合金を開発するた
めに次の手段を採用したものである。
That is, the present invention employs the following means in order to develop a heat-resistant cast alloy for gas turbines having high high-temperature strength and excellent corrosion and oxidation resistance.

(1) Coをベースとし、溶接性を損なわない範囲内で
高Cとし、炭化物の析出量を多くして強度向上を酸っ
た。炭化物形成元素としてCrの他にTa、Ti、Wを添加
し、これらの元素の炭化物による析出硬化を狙った。
(1) Based on Co, the C content was increased to the extent that weldability was not impaired, and the amount of carbide precipitation was increased to improve strength. Ta, Ti, and W were added as carbide forming elements in addition to Cr, and precipitation hardening of these elements by carbides was aimed at.

(2) 炭化物の析出硬化以外にWによる固溶体強化を
酸り、高温強度向上を狙った。
(2) In addition to precipitation hardening of carbides, solid solution strengthening by W was used to improve high-temperature strength.

(3) Bを少量添加して粒界強化を図り、高温強度の
向上を狙った。
(3) A small amount of B was added to strengthen the grain boundaries and to improve the high-temperature strength.

(4) 耐食・耐酸化性の向上は基本的にはCr添加によ
り図ったが、組織安定性の展から許容される範囲で多く
添加した。又SeおよびAlを少量添加することにより耐酸
化性の向上を狙った。
(4) Although corrosion resistance and oxidation resistance were basically improved by adding Cr, a large amount was added within an allowable range in view of the structural stability. The oxidation resistance was also improved by adding a small amount of Se and Al.

(5) Niは基室のオーステナイト(FCC)安定化のた
めに添加した。
(5) Ni was added to stabilize austenite (FCC) in the base chamber.

以上のような合金元素の組合せにより、目標とする高
強度、耐食・耐酸化性及び溶接性の点でバランスのとれ
た特性を有するガスタービン用耐熱鋳造合金が提供でき
るようになった。
The combination of the above alloy elements has made it possible to provide a heat-resistant cast alloy for gas turbines having the target properties of balancing high strength, corrosion resistance, oxidation resistance and weldability.

〔作用〕[Action]

本発明の対象となるCo基であるガスタービン用耐熱鋳
造合金の組成の成分範囲限定理由を以下に述べる。
The reasons for limiting the composition range of the composition of the heat-resistant cast alloy for a gas turbine, which is a Co-base that is an object of the present invention, will be described below.

Cr;耐食性及び耐酸化性の点より是非必要な元素であ
る。又、炭化物形成元素であり炭化物を形成し、高温強
度を得るためにも必要な元素である。特に、陸用ガスタ
ービンの静翼に使用するにあたっては燃料の多様性の点
から、航空機エンジンの静翼以上に高温での耐食性が要
求される。又静翼には冷却のためのインサート等の付属
部品が溶接されるので、溶接性も静翼用合金に要求され
る特性である。耐食・耐酸化性の点よりCrは25%以上必
要であるが、あまり多すぎると高温長時間使用による組
織安定性に欠け、又、溶接性に欠けるので28%以下とし
た。
Cr: an essential element from the viewpoint of corrosion resistance and oxidation resistance. Further, it is a carbide forming element and is necessary for forming carbide and obtaining high-temperature strength. In particular, when used for stationary blades of land gas turbines, corrosion resistance at high temperatures is required more than that of aircraft engine stationary blades in view of the variety of fuels. In addition, since accessory parts such as inserts for cooling are welded to the stationary blade, weldability is also a characteristic required for a stationary blade alloy. Cr is required to be 25% or more from the viewpoint of corrosion resistance and oxidation resistance. However, if it is too much, it lacks structural stability due to long-time use at high temperature and lacks weldability.

Ni;基質のオーステナイト(FCC)安定化元素であり、又
加工性を改善する元素である。安定にこれらの点を確保
するためには8%以上必要であるが、あまり多すぎると
Co基耐熱合金の特徴である耐熱疲労特性、耐硫化性が低
下するため12%以下とした。
Ni: an element for stabilizing austenite (FCC) in a substrate and an element for improving workability. 8% or more is necessary to secure these points stably, but too much
Since the thermal fatigue characteristics and sulfide resistance, which are the characteristics of Co-based heat-resistant alloys, are reduced, the content is set to 12% or less.

W;固溶体強化元素であり、Co基耐熱合金の高温強度を確
保するためには是非必要な元素である。又一部は炭化物
を形成して強度向上に寄与するが、あまり多く添加する
とW単相が析出したり、高温長時間使用による組織安定
性に欠け、又延性を損うので6〜8%とした。
W is a solid solution strengthening element, and is an indispensable element for securing the high-temperature strength of the Co-based heat-resistant alloy. Some also form carbides to contribute to strength improvement, but if added too much, a W single phase precipitates, lacks structural stability due to long-term use at high temperatures, and impairs ductility. did.

Ta;固溶体強化元素であるとともに炭化物形成元素であ
る。C量が多いCo基耐熱合金ではCr及びWによる炭化物
形成のみでは耐食・耐酸化に有効に働くCrあるいは固溶
体強化に有効に働くWが少なくなるので、Taを添加しC
r,Wが本来の効果を発揮できる量を多くするために添加
した。あまり多く添加すると延性を損ない溶接性に欠け
るので1.5〜2.5%とした。
Ta is a solid solution strengthening element and a carbide forming element. In a Co-based heat-resistant alloy having a large amount of C, only Cr and W form carbides to reduce the amount of Cr that works effectively for corrosion and oxidation resistance or the amount of W that works effectively for solid solution strengthening.
r and W were added in order to increase the amount that can exhibit the original effect. If too much is added, ductility is impaired and weldability is poor, so the content was made 1.5 to 2.5%.

Ti;炭化物形成元素であり、微細な炭化物を形成し高温
強度向上に有効な元素である。Taと複合添加により、よ
り一層の高温強度向上を狙ったものである。あまり多く
添加すると延性を損ない又は、高温強度もあまり変わら
ないので0.1〜0.3%とした。
Ti; a carbide-forming element that forms fine carbides and is effective in improving high-temperature strength. The aim is to further improve high-temperature strength by adding Ta and composite. If too much is added, the ductility is impaired or the high temperature strength does not change much, so the content was made 0.1 to 0.3%.

Se;Seの添加により緻密な酸化膜の密着性を著しく向上
させることにより耐酸・耐食性を向上させる。このため
には0.5%以上必要である。しかし、高価な元素である
ので2%以下とした。
Se; Addition of Se significantly improves the adhesion of the dense oxide film, thereby improving the acid resistance and corrosion resistance. For this purpose, 0.5% or more is required. However, since it is an expensive element, the content is set to 2% or less.

Al;緻密な酸化膜を形成し耐酸化性向上に寄与するのでA
lの添加は有効である。あまり多く添加しても、その有
効は変わらないので0.2〜0.5%とした。
Al: A because it forms a dense oxide film and contributes to oxidation resistance improvement
The addition of l is effective. Even if too much is added, its effectiveness does not change, so it was made 0.2-0.5%.

B;粒界及びデンドライト境界を強化し、高温強度向上に
寄与するのでBの添加は有効である。あまり多く添加す
ると延性、溶接性を損うので0.005〜0.02%とした。
B: Addition of B is effective because it strengthens grain boundaries and dendrite boundaries and contributes to improvement in high-temperature strength. If too much is added, ductility and weldability are impaired, so the content was made 0.005 to 0.02%.

C;炭化物形成元素であり、炭化物を形成し強度に寄与す
る。優れた高温強度を確保するためには多い程よいが、
多すぎると延性が著しく低下し溶接性も低下する。強度
と延性、溶接性のバランスの点から0.3〜0.45%が最良
である。
C: a carbide-forming element that forms carbide and contributes to strength. The more it is, the better to ensure excellent high-temperature strength,
If it is too large, the ductility is significantly reduced and the weldability is also reduced. 0.3 to 0.45% is the best in terms of balance between strength, ductility and weldability.

Zr;粒界及びデンドライト境界を強化し、高温強度向上
を図るためには0.05%以上必要である。あまり多量に添
加すると延性及び強度を損うので0.5%以下とした。
Zr: 0.05% or more is required to strengthen grain boundaries and dendrite boundaries and improve high-temperature strength. If added in an excessively large amount, ductility and strength are impaired.

残りはCoであるが、工業的に不可避な不純物元素、例え
ばFe、Si、Mn、P、Ag等はできる限り低いことが望まし
い。
The balance is Co, but it is desirable that impurity elements inevitably industrially inevitable, such as Fe, Si, Mn, P, and Ag, are as low as possible.

〔実施例〕〔Example〕

第1表に示す化学組成を有する供試材(φ25×200lm
m)を高周波溶解炉にて溶製した。供試材〜は本発
明合金である。供試材はMaeM509の耐食・耐酸化性を
改良したもの(MHI新合金)及び供試材はFSX414相当
材であって、比較材である。供試材以外は溶製後、そ
のまま試験に供した。一方供試材は溶製後、1150℃×
4時間保持後、927℃まで炉冷、この温度で10時間保持
後、空冷なる熱処理を施こし試験に供した。
Specimen having the chemical composition shown in Table 1 (φ25 × 200lm
m) was melted in a high-frequency melting furnace. Test materials are alloys of the present invention. The test material is a material with improved corrosion and oxidation resistance of MaeM509 (MHI new alloy) and the test material is FSX414 equivalent material, which is a comparative material. Except for the test material, it was subjected to the test as it was after melting. On the other hand, the test material was melted,
After holding for 4 hours, the furnace was cooled to 927 ° C., held at this temperature for 10 hours, and then subjected to a heat treatment of air cooling and subjected to a test.

次に、溶製のまま材あるいは熱処理材より引張試験片
(平行部直径d=6mmφ)、クリープ破断試験片(平行
部直径d=6mmφ)、腐食試験片(15×30×2mmt)及び
酸化試験片(15×30×2mmt)を加工した。又溶接性試験
片(20×80×3mmt)を加工した。上述の試験片を用い
て、以下の試験を行った。
Next, a tensile test specimen (parallel diameter d = 6 mmφ), a creep rupture test specimen (parallel diameter d = 6 mmφ), a corrosion test specimen (15 × 30 × 2 mmt) and an oxidation test Pieces (15 × 30 × 2 mmt) were processed. A weldability test piece (20 × 80 × 3 mmt) was processed. The following tests were performed using the test pieces described above.

引張試験は標点距離21mmで850℃で行なった。その結
果を第2表に示す。
The tensile test was performed at 850 ° C. with a gauge length of 21 mm. Table 2 shows the results.

第2表に示すとおり、供試材〜の引張性質は比較
材である供試材〜に比べ、0.2%耐力及び引張強さ
は供試材よりやや高く、供試材と同程度である。一
方、伸び、絞りについては供試材間で大差ない。
As shown in Table 2, the tensile strength of the test material is 0.2% proof stress and the tensile strength is slightly higher than that of the test material, which is comparable to that of the test material. On the other hand, there is no significant difference between the test materials in elongation and drawing.

クリープ破断試験を標点距離30mmで温度980℃、応力1
1.3kg/mm2なる条件下で行った。その結果を第2表に示
す。第2表に示すとおり、供試材〜(本発明合金)
の破断時間は37.7〜54時間であるのに対し、比較材であ
る供試材のそれは75時間であり強く、供試材のそれ
は1.7時間であり著しく弱かった。一方、伸び、絞りに
ついては供試材が最も高く、供試材〜がこれに続
き、供試材は最も低かった。このようなクリープ破断
性質の差が化学成分によるものと考えられる。すなわ
ち、供試材はTa,Tiが添加されておらず、又C添加量
も少ないために、炭化物の析出硬化及び固溶体強化の寄
与が少なく、強度が低かったものと考えられる。その反
面延性が高くなっている。なお、供試材〜は供試材
に比べ、C,Ta,Tiがやや低いために強度が低く、その
反面延性が高かったものと考えられる。
A creep rupture test was conducted at a temperature of 980 ° C and a stress of 1 at a gauge length of 30mm.
The test was performed under the condition of 1.3 kg / mm 2 . Table 2 shows the results. As shown in Table 2, test materials ~ (alloys of the present invention)
The rupture time was 37.7 to 54 hours, whereas that of the comparative sample was 75 hours, which was strong, and that of the test material was 1.7 hours, which was extremely weak. On the other hand, with respect to elongation and drawing, the test material was the highest, followed by the test material, and the test material was the lowest. It is considered that such a difference in creep rupture properties is due to a chemical component. That is, it is considered that since the test material did not contain Ta and Ti and had a small addition amount of C, the contribution of precipitation hardening of carbide and strengthening of solid solution was small and the strength was low. On the other hand, ductility is high. In addition, it is considered that the test materials (1) to (4) had lower strength and slightly higher ductility because C, Ta, and Ti were slightly lower than the test materials.

次に耐食性試験をV2O5:Na2SO4=85%:15%なる腐食灰
を用い、20mmg/cm2の割合で全面塗布し、850℃×20時間
大気電気炉中で加熱し、腐食させた。試験後、脱スケー
ルを行ない腐食量を測定した。その結果を第2表に示す
が、該表にみられるように腐食減量は本発明合金である
供試材,,及び比較材である供試材はほゞ同じ
であったが、比較材である供試材が一番少なかった。
これは供試材はCr量が他のものに比べ多いためと考え
られる。
Next, a corrosion resistance test was performed using a corrosive ash of V 2 O 5 : Na 2 SO 4 = 85%: 15%, applied over the entire surface at a rate of 20 mmg / cm 2 , and heated in an atmospheric electric furnace at 850 ° C. × 20 hours. Corroded. After the test, descaling was performed and the amount of corrosion was measured. The results are shown in Table 2. As can be seen from the table, the corrosion loss was almost the same for the test material as the alloy of the present invention and the test material as the comparative material. There were few test materials.
This is probably because the test material had a higher Cr content than the other materials.

耐酸化性試験は、大気電気炉中で1000℃×100時間加
熱し、酸化させることにより行なった。試験後重量測定
を行ない重量変化を求めた。その結果を第2表に示す。
いずれの供試材も重量増加であった。重量増加量は第2
表からは明らかではないが、供試材>供試材供試
材供試材,供試材の順に少なかった。これはA
l、Se、Laの効果と考えられる。
The oxidation resistance test was performed by heating at 1000 ° C. for 100 hours in an atmospheric electric furnace to oxidize. After the test, the weight was measured to determine the change in weight. Table 2 shows the results.
The weight of all test materials increased. Weight gain is second
Although it is not clear from the table, the order of specimens> specimens was smaller in the order of specimens, specimens. This is A
It is considered to be the effect of l, Se, and La.

次に、溶接性試験を、TIG溶接による母材の溶融試験
により行なった。試験後、ビードの外観状況及び液体浸
透探傷検査により割れの発生を求めた。その結果を第2
表に示す。供試材のビード終点のクレータ部に微細な
指示が検出された。これは供試材はC量が高いため、
炭化物の析出量が多く、延性が他の供試材より低いため
と考えられる。
Next, a weldability test was performed by a melting test of the base material by TIG welding. After the test, the appearance of the bead and the occurrence of cracks were determined by liquid penetration inspection. The result is
It is shown in the table. A fine instruction was detected in the crater at the end of the bead of the test material. This is because the test material has a high C content,
It is considered that the amount of precipitated carbide was large and the ductility was lower than that of other test materials.

以上おとおり、本発明合金は高温強度、耐食性・耐酸
化性及び溶接性を兼備したバランスの取れたCo基耐熱鋳
造合金である。
As described above, the alloy of the present invention is a balanced Co-based heat-resistant cast alloy having high-temperature strength, corrosion resistance, oxidation resistance, and weldability.

〔発明の効果〕〔The invention's effect〕

以上のとおり、本発明のガスタービン用耐熱鋳造合金
は高温強度、耐食・耐酸化性及び溶接性のいずれも優れ
たバランスの取れたものであり、ガスタービン、ジェッ
トエンジンの高温部品に有利に適用しうる効果を奏す
る。
As described above, the heat-resistant cast alloy for gas turbines of the present invention has a good balance of high-temperature strength, corrosion resistance, oxidation resistance and weldability, and is advantageously applied to high-temperature parts of gas turbines and jet engines. It has a possible effect.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−38562(JP,A) 特公 昭59−53340(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 19/07──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-38562 (JP, A) JP-B-59-53340 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 19/07

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、Cr:25〜28%、Ni:8〜12%、W:6
〜8%、Ta:1.5〜2.5%、Ti:0.1〜0.3%、Al:0.2〜0.5
%、Se:0.5〜2%、C:0.3〜0.45%、B:0.005〜0.02%、
残部Co及び不可避的不純物よりなることを特徴とするガ
スタービン用耐熱鋳造合金。
(1) Cr: 25 to 28%, Ni: 8 to 12%, W: 6% by weight
-8%, Ta: 1.5-2.5%, Ti: 0.1-0.3%, Al: 0.2-0.5
%, Se: 0.5 to 2%, C: 0.3 to 0.45%, B: 0.005 to 0.02%,
A heat-resistant cast alloy for gas turbines, comprising a balance of Co and unavoidable impurities.
【請求項2】重量%で、Cr:25〜28%、Ni:8〜12%、W:6
〜8%、Ta:1.5〜2.5%、Ti:0.1〜0.3%、Al:0.2〜0.5
%、Se:0.5〜2%、C:0.3〜0.45%、B:0.005〜0.02%、
Zr:0.05〜0.5%、残部Co及び不可避的不純物よりなるこ
とを特徴とするガスタービン用耐熱鋳造合金。
2. Cr: 25 to 28%, Ni: 8 to 12%, W: 6% by weight
-8%, Ta: 1.5-2.5%, Ti: 0.1-0.3%, Al: 0.2-0.5
%, Se: 0.5 to 2%, C: 0.3 to 0.45%, B: 0.005 to 0.02%,
Zr: A heat-resistant cast alloy for gas turbines, comprising 0.05 to 0.5%, the balance being Co and unavoidable impurities.
JP2255157A 1990-09-27 1990-09-27 Heat-resistant cast alloy for gas turbine Expired - Fee Related JP2778818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2255157A JP2778818B2 (en) 1990-09-27 1990-09-27 Heat-resistant cast alloy for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2255157A JP2778818B2 (en) 1990-09-27 1990-09-27 Heat-resistant cast alloy for gas turbine

Publications (2)

Publication Number Publication Date
JPH04136134A JPH04136134A (en) 1992-05-11
JP2778818B2 true JP2778818B2 (en) 1998-07-23

Family

ID=17274860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2255157A Expired - Fee Related JP2778818B2 (en) 1990-09-27 1990-09-27 Heat-resistant cast alloy for gas turbine

Country Status (1)

Country Link
JP (1) JP2778818B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3230846C2 (en) * 1982-08-19 1985-03-28 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach Device for conveying sheets or bundles of sheets
JPH0778272B2 (en) * 1986-08-04 1995-08-23 三菱重工業株式会社 Ductile recovery method for Co-based heat-resistant alloys

Also Published As

Publication number Publication date
JPH04136134A (en) 1992-05-11

Similar Documents

Publication Publication Date Title
JP3375817B2 (en) Welding wire for high chromium ferritic steel
JP3168158B2 (en) Ni-based heat-resistant brazing material with excellent wettability and corrosion resistance
JP2002144080A (en) Ni BASED HEAT RESISTANT BRAZING FILLER METAL
CN113234961B (en) 1100 ℃ high-temperature-resistant antioxidant combustion chamber alloy and preparation method thereof
JPS5845345A (en) Nozzle for gas turbine with superior thermal fatigue resistance
JPS629659B2 (en)
JPH0317242A (en) Material system for high-temperature jet engine
US5718867A (en) Alloy based on a silicide containing at least chromium and molybdenum
JPH07238353A (en) Iron-aluminum alloy and application of this alloy
JP3241745B2 (en) Alloy compositions and articles for cobalt-based forging
JP2778818B2 (en) Heat-resistant cast alloy for gas turbine
JP3912815B2 (en) High temperature sulfidation corrosion resistant Ni-base alloy
JPH06142980A (en) Welding material for austenitic stainless steel having excellent high-temperature strength
JP3420815B2 (en) Oxidation and corrosion resistant alloys based on doped iron aluminide and their use
US3778256A (en) Heat-resistant alloy for a combustion liner of a gas turbine
US3577233A (en) High temperature brazing alloys
JP2721723B2 (en) Heat-resistant cast alloy for gas turbine blades
JPH06287667A (en) Heat resistant cast co-base alloy
JP3424314B2 (en) Heat resistant steel
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPS6249344B2 (en)
JP4256614B2 (en) High chromium-high nickel heat resistant alloy
JPH0770683A (en) Heat resistant cast co-based alloy for gas turbine
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
JPS61548A (en) Co-base high-strength heat-resistant alloy for gas turbine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees