JP2721723B2 - Heat-resistant cast alloy for gas turbine blades - Google Patents

Heat-resistant cast alloy for gas turbine blades

Info

Publication number
JP2721723B2
JP2721723B2 JP844990A JP844990A JP2721723B2 JP 2721723 B2 JP2721723 B2 JP 2721723B2 JP 844990 A JP844990 A JP 844990A JP 844990 A JP844990 A JP 844990A JP 2721723 B2 JP2721723 B2 JP 2721723B2
Authority
JP
Japan
Prior art keywords
test
heat
resistant cast
alloy
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP844990A
Other languages
Japanese (ja)
Other versions
JPH03215644A (en
Inventor
久孝 河合
郁生 岡田
一郎 辻
敬三 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP844990A priority Critical patent/JP2721723B2/en
Publication of JPH03215644A publication Critical patent/JPH03215644A/en
Application granted granted Critical
Publication of JP2721723B2 publication Critical patent/JP2721723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン翼用耐熱鋳造合金に関し、更に
詳しくはガスタービン、ジェットエンジンの高温部品
(タービン静翼)に適用されるCo基耐熱鋳造合金に関す
る。
Description: TECHNICAL FIELD The present invention relates to a heat-resistant cast alloy for gas turbine blades, and more particularly to a Co-based heat-resistant cast applied to high-temperature components (turbine stationary blades) of gas turbines and jet engines. Alloys.

〔従来の技術〕[Conventional technology]

ガスタービン、ジェットエンジンのタービン静翼には
Co基耐熱合金製精密鋳造品が使用されている。ガスター
ビン、ジェットエンジンの性能向上のためには入口ガス
温度を高める必要があり、このため、静翼については冷
却構造と使用する合金の高温強度改善の両面からの開発
が鋭意なされてきた。
Gas turbine and jet engine turbine vanes
Precision castings made of Co-based heat-resistant alloy are used. In order to improve the performance of gas turbines and jet engines, it is necessary to increase the inlet gas temperature. For this reason, there have been keen developments on the stationary blade in terms of both the cooling structure and the improvement of the high-temperature strength of the alloy used.

従来、静翼用鋳造合金として、第1表に示す合金が使
用されている。
Conventionally, alloys shown in Table 1 have been used as casting alloys for stationary blades.

X−40、X−45は古くから使用されている合金であ
り、FSX−414はCr含有量を高くし耐食性・耐酸化性を改
善した合金であり、MarM509はCを多く添加するととも
に、Ta,Tiを添加し高温強度を改善した合金である。
X-40 and X-45 are alloys that have been used for a long time, FSX-414 is an alloy having a high Cr content to improve corrosion resistance and oxidation resistance, and MarM509 adds a large amount of C and has a high Ta content. This is an alloy with improved high-temperature strength by adding Ti.

上述のとおり、入口ガス温度が高くなるに伴い、これ
らの改善を図った既存合金でも高温強度あるいは耐食・
耐酸化性の点で要求を満たすことができず、高温強度と
耐食・耐酸化性の両面について、すぐれた特性を有する
合金が要求されている。
As described above, as the inlet gas temperature increases, even existing alloys that have improved these properties have high temperature strength or corrosion resistance.
Since the requirements cannot be satisfied in terms of oxidation resistance, an alloy having excellent characteristics in both high-temperature strength and corrosion / oxidation resistance is required.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述したように、ガスタービン、ジェットエンジンの
タービン静翼にはCo基耐熱鋳造合金による精密鋳造品が
使用されている。しかし既存合金ではガスタービン入口
ガス温度が上昇するに伴い、特性を改善した高Cr,Co基
耐熱鋳造合金でも高温強度が不足しており、高C,Ta,Ti
添加Co基耐熱鋳造合金ではCr量が低いために、耐食・耐
酸化性が不足し寿命が短かい。
As described above, gas turbines and jet engine turbine stationary blades use precision castings made of a Co-based heat-resistant cast alloy. However, as the gas temperature at the gas turbine inlet rises with existing alloys, even high Cr, Co-based heat-resistant cast alloys with improved properties have insufficient high-temperature strength, and high C, Ta, Ti
Since the added Co-based heat-resistant cast alloy has a low Cr content, the corrosion resistance and oxidation resistance are insufficient and the life is short.

本発明は上記技術水準に鑑み、高温強度が高く、かつ
耐食・耐酸化性に優れたCo基耐熱鋳造合金を提供しよう
とするものである。
The present invention has been made in view of the above technical level, and aims to provide a Co-based heat-resistant cast alloy having high high-temperature strength and excellent corrosion resistance and oxidation resistance.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は高温強度が高く、かつ耐食・耐酸化性に優れ
たCo基耐熱鋳造合金を得るために、次の手段を採用し
た。
The present invention employs the following means in order to obtain a Co-based heat-resistant cast alloy having high high-temperature strength and excellent corrosion and oxidation resistance.

(1)溶接性を損わない範囲内で高Cとし、炭化物の析
出量を多くして強度向上を図った。炭化物形成元素とし
てCrの他に、Ta,Ti,Wを添加し、これらの元素の炭化物
による析出硬化を狙った。
(1) High C was set within a range that does not impair the weldability, and the precipitation amount of carbide was increased to improve the strength. In addition to Cr as a carbide forming element, Ta, Ti, and W were added to aim at precipitation hardening of these elements by carbide.

(2)炭化物の析出硬化以外にWによる固溶体強化を図
り、高温強度向上を狙った。
(2) In addition to precipitation hardening of carbides, solid solution strengthening by W was aimed at and high temperature strength was improved.

(3)耐食・耐酸化性の向上は、Cr添加により図った
が、組織安定性の点から許容される範囲内で多く添加し
た。又Laを添加し、より耐酸化性の向上を図った。
(3) The corrosion resistance and oxidation resistance were improved by adding Cr, but a large amount was added within an allowable range from the viewpoint of structural stability. Further, La was added to further improve oxidation resistance.

(4)Niは基質のオーステナイト(FCC)安定化のため
に添加した。
(4) Ni was added for austenite (FCC) stabilization of the substrate.

(5)又Alを少量添加することにより、一層の耐酸化性
の改善を図った。
(5) The oxidation resistance was further improved by adding a small amount of Al.

すなわち、本発明は重量%で、Cr:25〜32%、Ni:6〜1
2%、W:6〜8%、Ta:2〜5%:Ti:0.1〜0.3%、C:0.45〜
0.6%およびLa:0.02〜0.2%、Al:0.01〜0.2%の1種又
は2種、残部Coおよび不可避的不純物よりなるガスター
ビン翼用耐熱鋳造合金である。
That is, in the present invention, by weight%, Cr: 25-32%, Ni: 6-1
2%, W: 6 to 8%, Ta: 2 to 5%: Ti: 0.1 to 0.3%, C: 0.45 to
This is a heat-resistant cast alloy for gas turbine blades comprising one or two of 0.6%, La: 0.02 to 0.2%, and Al: 0.01 to 0.2%, the balance being Co and inevitable impurities.

〔作用〕[Action]

本発明の対象となるCo基耐熱鋳造合金の組成は第2表
に示す化学組成範囲のものであり、その組成範囲限定理
由を以下に述べる。
The composition of the Co-based heat-resistant cast alloy which is the object of the present invention is in the chemical composition range shown in Table 2, and the reasons for limiting the composition range are described below.

Cr;耐腐食性及び耐酸化性の点より是非必要な元素で
ある。又炭化物形成元素であり、炭化物を形成し高温強
度を得るためにも必要な元素である。特に、陸用ガスタ
ービン静翼に使用するにあたっては、燃料の多様性の点
から航空機エンジンの静翼以上に高温での耐腐食性が要
求される。なお、静翼には冷却のためのインサート等の
付属部品が溶接されるので、溶接性も静翼用合金に要求
される特性である。これらの点よりCrは25%以上必要で
ある。一方、あまり多すぎると高温長時間使用による組
織安定性に欠け、又溶接性が低下するので、32%以下と
した。
Cr: an essential element from the viewpoint of corrosion resistance and oxidation resistance. It is also a carbide-forming element and is necessary for forming carbides and obtaining high-temperature strength. In particular, when used for land gas turbine stationary blades, corrosion resistance at high temperatures is required more than that of aircraft engine stationary blades from the viewpoint of fuel diversity. Since an accessory such as an insert for cooling is welded to the stationary blade, weldability is also a characteristic required for the stationary blade alloy. From these points, Cr needs to be 25% or more. On the other hand, if the amount is too large, the structure stability due to long-time use at high temperature is lacking, and the weldability is reduced.

Ni;基質のオーステナイト(FCC)安定化元素であり、
又、加工性を改善する元素である。この点より6%以上
必要である。あまり多すぎるとCo基耐熱合金の特徴であ
る耐熱疲労特性、耐硫化性が低下するため、12%以下と
した。
Ni; austenitic (FCC) stabilizing element of the substrate,
Also, it is an element that improves workability. From this point, 6% or more is required. If the content is too large, the heat-resistant fatigue characteristics and the sulfidation resistance, which are the characteristics of the Co-based heat-resistant alloy, are reduced.

W;固溶体強化元素であり、Co基耐熱合金の高温強度を確
保するためには是非必要な元素である。又一部は炭化物
を形成し強度向上に寄与する。あまり多く添加すると高
温長時間使用による組織安定性に欠け、又延性を損なう
ので6〜8%とした。
W is a solid solution strengthening element, and is an indispensable element for securing the high-temperature strength of the Co-based heat-resistant alloy. Some also form carbides and contribute to strength improvement. If too much is added, tissue stability due to long-term use at high temperature is lacking, and ductility is impaired.

Ta;固溶体強化元素であるとともに炭化物形成元素であ
る。高C添加Co基耐熱合金でCr及びWによる炭化物形成
のみでは耐食・耐酸化に有効に働くCrあるいは固溶体強
固に有効に働くWが少なくなるので、Taを添加し、Cr、
Wが本来の効果を発揮できるように添加した。あまり多
く添加すると延性を損なうので2〜5%とした。
Ta is a solid solution strengthening element and a carbide forming element. In a high C-added Co-based heat-resistant alloy, Cr that effectively acts on corrosion and oxidation resistance or W that effectively acts on solid solution becomes less if only carbide is formed by Cr and W.
W was added so that the original effect could be exhibited. If too much is added, the ductility is impaired.

Ti;炭化物形成元素であり微細な炭化物を形成し、高温
強度向上に有効な元素である。Taと複合添加により、よ
り一層の高温強度向上を狙ったものである。あまり多く
添加すると延性を損ない、又高温強度もあまり変わらな
いので0.1〜0.3%とした。
Ti; a carbide-forming element that forms fine carbides and is effective for improving high-temperature strength. The aim is to further improve high-temperature strength by adding Ta and composite. If too much is added, the ductility is impaired, and the high temperature strength is not significantly changed.

La;Laの酸化物は緻密であり、耐酸化性に富むスケール
を形成する。したがって、少量の添加で著しく耐酸化性
が向上するが、このためには0.02%以上必要である。し
かし、Laは高価な元素であるので0.2%以下とした。
La; La oxide is dense and forms a scale with high oxidation resistance. Therefore, oxidation resistance is remarkably improved by adding a small amount, but 0.02% or more is required for this purpose. However, since La is an expensive element, the content is set to 0.2% or less.

C;炭化物形成元素であり炭化物を形成し、強度に寄与す
る。優れた高温強度を確保するためには、0.45%以上必
要である。しかし、多すぎると延性が著しく低下し、溶
接性が悪くなるので0.6%以下とした。
C; a carbide-forming element that forms carbide and contributes to strength. To ensure excellent high-temperature strength, 0.45% or more is required. However, if the content is too large, the ductility is significantly reduced and the weldability is deteriorated.

Al;緻密な酸化皮膜を形成し耐酸化性向上に寄与するの
で、Alを少量添加(概ね0.5%以下)してもよいが、La
を添加しているのでAlをあえて添加しなくてもよい。La
を添加しない場合は0.01〜02%必要である。なお、Laと
Alの両者を添加すれば一層の効果が発揮される。
Al: A small amount of Al (approximately 0.5% or less) may be added because it forms a dense oxide film and contributes to the improvement of oxidation resistance.
Since Al is added, it is not necessary to add Al. La
If not added, 0.01 to 02% is required. Note that La and
A further effect is exhibited by adding both of Al.

Zr,B;粒界デントライト境界を強化し、高温強度向上に
寄与するので、Zrを少量(0.5%以下)、Bを少量(0.0
2%以下)添加してもよい。
Zr, B: Since the grain boundary dentrite boundary is strengthened and contributes to the improvement of high-temperature strength, a small amount of Zr (0.5% or less) and a small amount of B (0.0%
2% or less).

残りはCoであるが、工業的に不可避な不純物元素、例
えば、Fe、Si、Mn、P、Ag等はできる限り低いことが望
ましい。
The balance is Co, but it is desirable that the impurity elements unavoidable in the industry, such as Fe, Si, Mn, P, and Ag, be as low as possible.

〔実施例〕〔Example〕

第1表に示す化学成分を有する供試材(φ25×200lm
m)を高周波溶解炉にて溶製した。供試材〜は本発
明合金であり、供試材(FSX414相当材)及び供試材
(Mar M509相当材)は比較材である。供試材以外は溶
製後、そのまま試験に供した。一方、供試材は溶製
後、1150℃×4時間保持、その後927℃まで炉冷、この
温度で10時間保持後、空冷なる熱処理を施こし試験に供
した。
Test material having the chemical components shown in Table 1 (φ25 × 200lm
m) was melted in a high-frequency melting furnace. The test materials are alloys of the present invention, and the test material (FSX414 equivalent material) and the test material (Mar M509 equivalent material) are comparative materials. Except for the test material, it was subjected to the test as it was after melting. On the other hand, the test material was melted, held at 1150 ° C. × 4 hours, then cooled in a furnace to 927 ° C., kept at this temperature for 10 hours, subjected to a heat treatment of air cooling, and subjected to a test.

次に、溶製のまま材あるいは熱処理材より引張試験片
(平行部直径d=6mmφ)、クリープ破断試験片(平行
部直径d=6mmφ)、腐食試験片(15×30×2tmm)及び
酸化試験片(15×30×2tmm)を加工した。
Then, Mom material or tensile from the heat-treated test piece of melting (parallel portion diameter d = diameter: 6 mm), the creep rupture test specimen (parallel part diameter d = diameter: 6 mm), corrosion test pieces (15 × 30 × 2 t mm ) and An oxidized test piece (15 × 30 × 2 t mm) was processed.

上述の試験片を用いて以下の試験を行なった。 The following tests were performed using the test pieces described above.

引張試験は850℃で行なった。その結果を第4表に示
す。
The tensile test was performed at 850 ° C. Table 4 shows the results.

第4表に示すとおり、供試材〜の引張性質は比較
材である供試材〜のそれに比べ、0.2%耐力及び引
張強さは供試材よりやや高く、供試材よりやや低い
傾向にある。一方、伸び、絞りについては供試材間で大
差はない。
As shown in Table 4, the tensile properties of the specimens were 0.2% proof stress and tensile strength slightly higher than those of the comparative specimens, and tended to be slightly lower than those of the specimens. is there. On the other hand, there is no great difference between the test materials in elongation and drawing.

クリープ破断試験を温度980℃、応力11.3kg/mm2なる
条件下で行なった。その結果も第4表に併せて示す。第
4表に示すとおり、供試材〜(本発明合金)の破断
時間は54〜75時間であるのに対し、比較材である供試材
のそれは1.7時間で著しく弱く、供試材のそれは80
時間であり強かった。一方、伸び、絞りについては、供
試材〜及びの間で有意差はなく、供試材は高い
値で延性に富む合金であった。
The creep rupture test was performed at a temperature of 980 ° C. and a stress of 11.3 kg / mm 2 . The results are also shown in Table 4. As shown in Table 4, the rupture time of the test material (the alloy of the present invention) was 54 to 75 hours, whereas that of the comparative material was 1.7 hours, which was significantly weaker. 80
It was time and strong. On the other hand, there was no significant difference between the test material and the elongation and drawing, and the test material was a high value and highly ductile alloy.

このようなクリープ破断性質の差は、化学成分による
ものと考えられる。即ち、供試材はTa、Tiが添加され
ておらず、又、C添加量も少ないために、炭化物の析出
硬化及び固溶強化の寄与が少なく、強度が弱くなったも
のと考えられる。その反面延性が高くなっている。な
お、供試材〜は供試材に比べC、Ta、Tiがやや低
いために強度が低かったものと推定される。
Such a difference in creep rupture properties is considered to be due to a chemical component. That is, it is considered that the test material did not contain Ta and Ti, and the addition amount of C was small, so that the contribution of precipitation hardening and solid solution strengthening of the carbide was small and the strength was weakened. On the other hand, ductility is high. In addition, it is presumed that the test materials were lower in strength because C, Ta, and Ti were slightly lower than the test materials.

次に、腐食試験をV2O5:Na2SO4=85%:15%なる腐食
灰を用い、20mg/cm2の割合で全面塗布し、850℃×20時
間大気電気炉中で加熱し、腐食させた。試験後、脱スケ
ールを行ない腐食量を測定した。その結果、腐食減量
は、供試材≫供試材供試材>供試材供試材
の順に少なかった。この結果、Cr量の少ない供試材
の腐食量は他の供試材に比べ著しく多かった。供試材
〜及びの間で大差はないが、上述の順の傾向が認め
られた。
Next, a corrosion test was performed using a corrosive ash of V 2 O 5 : Na 2 SO 4 = 85%: 15% at a rate of 20 mg / cm 2 and heated at 850 ° C. × 20 hours in an atmospheric electric furnace. Corroded. After the test, descaling was performed and the amount of corrosion was measured. As a result, the corrosion weight loss was smaller in the order of test material / test material / test material / test material. As a result, the amount of corrosion of the test material having a small Cr content was significantly higher than that of the other test materials. Although there is no significant difference between the test materials and, the above-mentioned tendency was observed.

最後に、酸化試験を行った。大気電気炉中で、1000℃
×100時間加熱して酸化させた。試験後、重量測定を行
い重量変化を求めた。いずれの供試材も重量増加であっ
た。重量増加量は供試材>供試材≫供試材供試
材供試材の順に少なかった。供試材及び供試材
は重量増加量が少なく、耐酸化性に優れている。これ
はLaあるいは又Alの効果と考えられる。
Finally, an oxidation test was performed. 1000 ℃ in atmospheric electric furnace
It was oxidized by heating for 100 hours. After the test, the weight was measured to determine the change in weight. The weight of all test materials increased. The amount of weight increase was smaller in the order of test material> test material≫test material test material. The test material and the test material have a small weight increase and are excellent in oxidation resistance. This is considered to be the effect of La or Al.

以上のとおり、本発明合金は既存合金の長所を持ち、
短所を補なった優れた高温強度を有し、かつ、耐食性と
耐酸化性を兼備したCo基耐熱鋳造合金である。
As described above, the alloy of the present invention has the advantages of existing alloys,
This is a Co-based heat-resistant cast alloy that has excellent high-temperature strength that compensates for the disadvantages and has both corrosion resistance and oxidation resistance.

〔発明の効果〕〔The invention's effect〕

以上のとおり、第2表に示す化学成分範囲のCo基耐熱
鋳造合金は第4表に示すとおり高温強度が高く、かつ耐
食・耐酸化性に優れたものである。
As described above, the Co-base heat-resistant cast alloy having the chemical composition range shown in Table 2 has a high high-temperature strength as shown in Table 4 and has excellent corrosion resistance and oxidation resistance.

即ち、高温強度の改善は、Wの固溶体強化の他に、高
Cとし、Ta、Ti、Wを添加し、炭化物の析出量を多く
し、析出硬化により図ったことにより、一方、耐食・耐
酸化性の改善は高CrとLa、Alの添加により図ったことに
よる。
That is, the improvement of the high-temperature strength is achieved by increasing the carbon content, adding Ta, Ti, and W, increasing the precipitation amount of carbides, and achieving precipitation hardening in addition to strengthening the solid solution of W. On the other hand, corrosion resistance and acid resistance are improved. The improvement of the chemical properties is due to the fact that the addition of high Cr, La and Al has been attempted.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%でCr:25〜32%、Ni:6〜12%、W:6〜
8%、Ta:2〜5%:Ti:0.1〜0.3%、C:0.45〜0.6%およ
びLa:0.02〜0.2%、Al:0.01〜0.2%の1種又は2種、残
部Coおよび不可避的不純物よりなるガスタービン翼用耐
熱鋳造合金。
1. Cr: 25-32%, Ni: 6-12%, W: 6-% by weight%
8%, Ta: 2 to 5%: Ti: 0.1 to 0.3%, C: 0.45 to 0.6%, La: 0.02 to 0.2%, Al: 0.01 to 0.2%, one or two kinds, balance Co and inevitable impurities Heat-resistant cast alloy for gas turbine blades.
JP844990A 1990-01-19 1990-01-19 Heat-resistant cast alloy for gas turbine blades Expired - Lifetime JP2721723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP844990A JP2721723B2 (en) 1990-01-19 1990-01-19 Heat-resistant cast alloy for gas turbine blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP844990A JP2721723B2 (en) 1990-01-19 1990-01-19 Heat-resistant cast alloy for gas turbine blades

Publications (2)

Publication Number Publication Date
JPH03215644A JPH03215644A (en) 1991-09-20
JP2721723B2 true JP2721723B2 (en) 1998-03-04

Family

ID=11693436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP844990A Expired - Lifetime JP2721723B2 (en) 1990-01-19 1990-01-19 Heat-resistant cast alloy for gas turbine blades

Country Status (1)

Country Link
JP (1) JP2721723B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694398A (en) * 1992-09-10 1994-04-05 Tech Res & Dev Inst Of Japan Def Agency Missile
WO1997005297A1 (en) * 1995-07-28 1997-02-13 Westinghouse Electric Corporation Cobalt alloy

Also Published As

Publication number Publication date
JPH03215644A (en) 1991-09-20

Similar Documents

Publication Publication Date Title
US4437913A (en) Cobalt base alloy
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
US20060266439A1 (en) Heat and corrosion resistant cast austenitic stainless steel alloy with improved high temperature strength
US5932033A (en) Silicide composite with niobium-based metallic phase and silicon-modified laves-type phase
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
EP0074603B1 (en) Gas turbine nozzle having superior thermal fatigue resistance
US5882586A (en) Heat-resistant nickel-based alloy excellent in weldability
US8048368B2 (en) High temperature and oxidation resistant material
US4615658A (en) Shroud for gas turbines
JPS629659B2 (en)
JP2721723B2 (en) Heat-resistant cast alloy for gas turbine blades
JP2002206143A (en) High strength low thermal expansion casting steel and ring-shaped parts for blade ring of gas turbine and for seal ring holding ring consisting of the high strength low thermal expansion casting steel
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JPS61163238A (en) Heat and corrosion resistant alloy for turbine
US3778256A (en) Heat-resistant alloy for a combustion liner of a gas turbine
JP3424314B2 (en) Heat resistant steel
JP3388998B2 (en) High strength austenitic heat-resistant steel with excellent weldability
US3577233A (en) High temperature brazing alloys
JPH06287667A (en) Heat resistant cast co-base alloy
JPS5837382B2 (en) Heat treatment method for nickel-based heat-resistant alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JP2778818B2 (en) Heat-resistant cast alloy for gas turbine
JP4256614B2 (en) High chromium-high nickel heat resistant alloy
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPH0778272B2 (en) Ductile recovery method for Co-based heat-resistant alloys