JPH03215644A - Heat-resistant cast alloy for gas turbine blade - Google Patents

Heat-resistant cast alloy for gas turbine blade

Info

Publication number
JPH03215644A
JPH03215644A JP844990A JP844990A JPH03215644A JP H03215644 A JPH03215644 A JP H03215644A JP 844990 A JP844990 A JP 844990A JP 844990 A JP844990 A JP 844990A JP H03215644 A JPH03215644 A JP H03215644A
Authority
JP
Japan
Prior art keywords
strength
oxidation resistance
cast alloy
heat
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP844990A
Other languages
Japanese (ja)
Other versions
JP2721723B2 (en
Inventor
Hisataka Kawai
久孝 河合
Ikuo Okada
郁生 岡田
Ichiro Tsuji
一郎 辻
Keizo Tsukagoshi
敬三 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP844990A priority Critical patent/JP2721723B2/en
Publication of JPH03215644A publication Critical patent/JPH03215644A/en
Application granted granted Critical
Publication of JP2721723B2 publication Critical patent/JP2721723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve the high temp. strength, corrosion resistance and oxidation resistance of a heat-resistant cast alloy by increasing the amt. of C in a Co base alloy and adding specified amounts of Ta, Ti and W thereto as well as Cr as a carbide forming element. CONSTITUTION:The compsn. of this Co base cast alloy used for a turbine stationary blade of a gas turbine jet engine is formed of, by weight, 25 to 32% Cr, 6 to 12% Ni, 6 to 8% W, 2 to 5% Ta, 0.1 to 0.3% Ti, 0.45 to 0.6% C, one or 2 kinds of 0.02 to 0.2% La and 0.01 to 0.2% Al and the balance Co with inevitable impurities. Besides the strengthening of solid soln. by W, the C content is increased and the amt. of carbides to be precipitated is increased by the addition of Ta, Ti and W to attain precipitation hardening, by which its high temp. strength can be improved. Furthermore, by the increase of Cr and by the addition of La and Al, its corrosion resistance and oxidation resistance can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン翼用耐熱鋳造合金に関し、更に詳
しくはガスタービン、ジエ”/トエンジンの高温部品(
タービン静翼)に適用されるCo基耐熱鋳造合金に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant cast alloy for gas turbine blades, and more particularly for high-temperature parts of gas turbines and jet engines.
This invention relates to a Co-based heat-resistant cast alloy that is applied to turbine stator blades.

〔従来の技術] ガスタービン、ジェットエンジンのタービン静翼にはC
O基耐熱合金製精密鋳造品が使用されている。ガスター
ビン、ジェットエンジンの性能向上のためには入口ガス
温度を高める必要があり、このため、静翼については冷
却構造と使用する合金の高温強度改善の両面からの開発
が鋭意なされてきた。
[Prior art] Turbine stationary blades of gas turbines and jet engines contain C.
Precision castings made of O-based heat-resistant alloys are used. In order to improve the performance of gas turbines and jet engines, it is necessary to increase the inlet gas temperature, and for this reason, efforts have been made to develop stator vanes from both the cooling structure and the high-temperature strength improvement of the alloys used.

従来、静翼用鋳造合金として、第1表に示す合金が使用
されている。
Conventionally, alloys shown in Table 1 have been used as cast alloys for stator blades.

x−40、X−45は古くから使用されている合金であ
り、FSX− 414はCr含有量を高くし耐食性・耐
酸化性を改善した合金であり、MarM509はCを多
く添加するとともに、Ta, Tiを添加し高温強度を
改善した合金である。
x-40 and This is an alloy with improved high-temperature strength by adding Ti.

上述のとおり、入口ガス温度が高くなるに伴い、これら
の改善を図った既存合金でも高温強度あるいは耐食・耐
酸化性の点で要求を満たすことができず、高温強度と耐
食・耐酸化性の両面について、すぐれた特性を有する合
金が要求されている。
As mentioned above, as the inlet gas temperature increases, even existing alloys with these improvements cannot meet the requirements in terms of high-temperature strength or corrosion and oxidation resistance. Alloys with excellent properties on both sides are required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、ガスタービン、ジェットエンジンのタ
ービン静翼にはCO基耐熱鋳造合金による精密鋳造品が
使用されている。しかし既存合金ではガスタービン入口
ガス温度が上昇するに伴い、特性を改善した高Cr, 
Co基耐熱鋳造合金でも高温強度が不足しており、高C
. Ta, Ti添加Co基耐熱鋳造合金ではCr量が
低いために、耐食・耐酸化性が不足し寿命が短かい。
As mentioned above, precision castings made of CO-based heat-resistant casting alloys are used for turbine stationary blades of gas turbines and jet engines. However, with existing alloys, as the gas temperature at the gas turbine inlet increases, high Cr, which has improved properties,
Co-based heat-resistant cast alloys also lack high-temperature strength, and high C
.. Ta and Ti-added Co-based heat-resistant cast alloys have a low Cr content, so they lack corrosion and oxidation resistance and have a short lifespan.

本発明は上記技術水準に鑑み、高温強度が高く、かつ耐
食・耐酸化性に優れたCo基耐熱鋳造合金を提供しよう
とするものである。
In view of the above-mentioned state of the art, the present invention aims to provide a Co-based heat-resistant cast alloy that has high high-temperature strength and excellent corrosion resistance and oxidation resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は高温強度が高く、かつ耐食・耐酸化性に優れた
Co基耐熱鋳造合金を得るために、次の手段を採用した
The present invention employs the following means in order to obtain a Co-based heat-resistant cast alloy that has high high-temperature strength and excellent corrosion resistance and oxidation resistance.

(1)溶接性を損わない範囲内で高Cとし、炭化物の析
出量を多くして強度向上を図った。炭化物形成元素とし
てCrの他に、Ta, Ti, Wを添加し、これらの
元素の炭化物による析出硬化を狙った。
(1) The strength was improved by increasing the carbon content within a range that does not impair weldability and increasing the amount of carbide precipitation. In addition to Cr, Ta, Ti, and W were added as carbide-forming elements to aim at precipitation hardening by carbides of these elements.

(2)炭化物の析出硬化以外にWによる固溶体強化を図
り、高温強度向上を狙った。
(2) In addition to precipitation hardening of carbides, solid solution strengthening with W was aimed at improving high-temperature strength.

(3)耐食・耐酸化性の向上は、Cr添加により図った
が、組織安定性の点から許容される範囲内で多く添加し
た。又Laを添加し、より耐酸化性の向上を図った。
(3) Corrosion resistance and oxidation resistance were improved by adding Cr, but from the viewpoint of structural stability, the amount of Cr added was within the allowable range. Furthermore, La was added to further improve the oxidation resistance.

(4)  Niは基質の才一ステナイト (FCC)安
定化のために添加した。
(4) Ni was added to stabilize the substrate FC.

(5)又A1を少量添加することにより、一層の耐酸化
性の改善を図った。
(5) Furthermore, by adding a small amount of A1, the oxidation resistance was further improved.

すなわち、本発明は重量%で、Cr:25〜32%、N
l:6〜12%、W:6〜8%、Ta:2〜5%: T
i : 0. 1〜0.3%、C:0.45〜0.6%
およびLa: 0. 0 2 〜0. 2%、A1:0
.01〜0,2%の1種又は2種、残部COおよび不可
避的不純物よりなるガスタービン翼用耐熱鋳造合金であ
る。
That is, in the present invention, Cr: 25-32%, N
l: 6-12%, W: 6-8%, Ta: 2-5%: T
i: 0. 1-0.3%, C: 0.45-0.6%
and La: 0. 0 2 ~ 0. 2%, A1:0
.. This is a heat-resistant casting alloy for gas turbine blades consisting of one or two types of 0.01 to 0.2%, the balance being CO and inevitable impurities.

〔作 用〕[For production]

本発明の対象となるCo基耐熱鋳造合金の組成は第2表
に示す化学組成範囲のものであり、その組成範囲限定理
由を以下に述べる。
The composition of the Co-based heat-resistant casting alloy that is the object of the present invention is within the chemical composition range shown in Table 2, and the reason for limiting the composition range will be described below.

Cr;耐腐食性及び耐酸化性の点より是非必要な元素で
ある。又炭化物形成元素であり、炭化物を形成し高温強
度を得るためにも必要な元素である。特に、陸用ガスタ
ービン静翼に使用するにあたっては、燃料の多様性の点
から航空機エンジンの静翼以上に高温での耐腐食性が要
求される。なお、静翼には冷却のためのインサート等の
付属部品が溶接されるので、溶接性も静翼用合金に要求
される特性である。これらの点よりCrは25%以上必
要である。一方、あまり多すぎると高温長時間使用によ
る組織安定性に欠け、又溶接性が低下するので、32%
以下とした。
Cr: This is a necessary element from the viewpoint of corrosion resistance and oxidation resistance. It is also a carbide-forming element, and is an element necessary to form carbides and obtain high-temperature strength. In particular, when used in land gas turbine stationary blades, corrosion resistance at high temperatures is required to be higher than that of aircraft engine stationary blades due to the diversity of fuels. Note that, since accessory parts such as inserts for cooling are welded to the stator blade, weldability is also a characteristic required of the alloy for the stator blade. From these points, Cr is required to be 25% or more. On the other hand, if the amount is too high, the structure will lack stability due to long-term use at high temperatures, and weldability will decrease, so 32%
The following was made.

Nl;基質のオーステナイ} (FCC)安定化元素で
あり、又、加工性を改善する元素である。この点より6
%以上必要である。あまり多すぎるとCo基耐熱合金の
特徴である耐熱疲労特性、耐硫化性が低下するため、1
2%以下とした。
Nl: Substrate austenite (FCC) stabilizing element, and also an element that improves processability. From this point 6
% or more is required. If the amount is too large, the thermal fatigue resistance and sulfidation resistance, which are the characteristics of Co-based heat-resistant alloys, will deteriorate;
It was set to 2% or less.

W;固溶体強化元素であり、Co基耐熱合金の高温強度
を確保するためには是非必要な元素である。又一部は炭
化物を形成し強度向上に寄与する。あまり多く添加する
と高温長時間使用による組織安定性に欠け、又延性を損
なうので6〜8%とした。
W: A solid solution strengthening element, which is absolutely necessary in order to ensure the high-temperature strength of the Co-based heat-resistant alloy. In addition, some of them form carbides and contribute to improving strength. If too much is added, the structure will lack stability due to long-term use at high temperatures, and ductility will be impaired, so the content was set at 6 to 8%.

Ta;固溶体強化元素であるとともに炭化物形成元素で
ある。高C添加Co基耐熱合金でCr及びWによる炭化
物形成のみでは耐食・耐酸化に有効にm<Crあるいは
固溶体強化に有効に働くWが少なくなるので、Taを添
加し、Cr, Wが本来の効果を発揮できるように添加
した。あまり多く添加すると延性を損なうので2〜5%
とした。
Ta; is a solid solution strengthening element and a carbide forming element. In a high C-added Co-based heat-resistant alloy, if only carbide formation by Cr and W is effective for corrosion and oxidation resistance, m<Cr or W, which is effective for solid solution strengthening, will decrease. It was added to ensure its effectiveness. Adding too much will impair ductility, so add 2 to 5%.
And so.

T1;炭化物形成元素であり微細な炭化物を形成し、高
温強度向上に有効な元素である。Taと複合添加により
、より一層の高温強度向上を狙ったものである。あまり
多く添加すると延性を損ない、又高温強度もあまり変わ
らないので0.1〜0.3%とした。
T1: A carbide-forming element that forms fine carbides and is an element effective in improving high-temperature strength. By adding Ta in combination, the aim is to further improve high-temperature strength. Adding too much will impair ductility and will not change the high-temperature strength much, so it was set at 0.1 to 0.3%.

La;Laの酸化物は緻密であり耐酸化性に富むスケー
ルを形成する。したがって、少量の添加で著しく耐酸化
性が向上するが、このためには0.02%以上必要であ
る。しかし、Laは高価な元素であるので0.2%以下
とした。
La: The oxide of La is dense and forms a scale with high oxidation resistance. Therefore, although the oxidation resistance can be significantly improved by adding a small amount, 0.02% or more is required for this purpose. However, since La is an expensive element, it was limited to 0.2% or less.

C;炭化物形成元素であり炭化物を形成し、強度に寄与
する。優れた高温強度を確保するためには、0.45%
以上必要である。しかし、多すぎると延性が著しく低下
し、溶接性が悪くなるので0.6%以下とした。
C: A carbide-forming element that forms carbides and contributes to strength. To ensure excellent high temperature strength, 0.45%
The above is necessary. However, if it is too large, ductility will drop significantly and weldability will deteriorate, so the content is set at 0.6% or less.

A1;緻密な留化皮膜を形成し耐酸化性向上に寄与する
ので、A1を少量添加(概ね0. 5%以下)してもよ
いが、しaを添加しているのでAIをあえて添加しなく
てもよい。Laを添加しない場合は0.01〜0.2%
必要である。
A1: A1 may be added in small amounts (approximately 0.5% or less) as it forms a dense distillation film and contributes to improving oxidation resistance, but since it is added with a You don't have to. 0.01-0.2% when La is not added
is necessary.

なお、LaとA1の両者を添加すれば一層の効果が発揮
される。
Further, if both La and A1 are added, further effects will be exhibited.

2r, B ;粒界デントライト境界を強化し、高温強
度向上に寄与するので、2rを少量(0.5%以下) 
Bを少量(0.02%以下)添加してもよい。
2r, B; 2r is added in a small amount (0.5% or less) because it strengthens the grain boundary dentrite boundary and contributes to improving high temperature strength.
A small amount (0.02% or less) of B may be added.

残りはCoであるが、工業的に不可避な不純物元素、例
えば、Fe, Si、MnSP, Ag等はできる限り
低いことが望ましい。
The remainder is Co, but it is desirable that industrially unavoidable impurity elements such as Fe, Si, MnSP, Ag, etc. be as low as possible.

〔実施例〕〔Example〕

第1表に示す化学成分を有する供試材(φ25×200
βmm)を高周波溶解炉にて溶製した。
Test material with chemical components shown in Table 1 (φ25×200
βmm) was melted in a high frequency melting furnace.

供試材■〜■は本発明合金であり、供試材■( FSX
414相当材)及び供試材■(Mar M509相当材
)は比較材である。供試材■以外は溶製後、そのまま試
験に供した。一方、供試材■は溶製後、1150℃×4
時間保持、その後927℃まで炉冷、この温度で10時
間保持後、空冷なる熱処理を施こし試験に供した。
Test materials ■~■ are alloys of the present invention, and test materials ■(FSX
414 equivalent material) and sample material (2) (Mar M509 equivalent material) are comparative materials. All test materials except sample (■) were subjected to the test as they were after melting. On the other hand, the sample material ■ was heated to 1150℃ x 4
The sample was held for a period of time, then cooled in a furnace to 927°C, held at this temperature for 10 hours, and then cooled in air, and then subjected to a heat treatment.

次に、溶製のまま材あるいは熱処理材より引張試験片(
平行部直径d = 6 mmφ) クリープ破断試験片
(平行部直径d = 6 mmφ)、腐食試験片( 1
 5 X 3 0 x 2 tmm)及び酸化試験片(
 1 5 X 3 0 X 2 tmm)を加工した。
Next, tensile test pieces (
Parallel part diameter d = 6 mmφ) Creep rupture test piece (parallel part diameter d = 6 mmφ), corrosion test piece (1
5 x 30 x 2 tmm) and oxidation test piece (
15 x 30 x 2 tmm) was processed.

上述の試験片を用いて以下の試験を行なった。The following tests were conducted using the above-mentioned test pieces.

引張試験は850℃で行なった。その結果を第4表に示
す。
The tensile test was conducted at 850°C. The results are shown in Table 4.

第4表に示すとおり、供試材■〜■の引張性質は比較材
である供試材■〜■のそれに比べ、0.2%酎力及び引
張強さは供試材■よりやや高く、供試材■よりやや低い
傾向にある。一方、伸び、絞りについては供試材間で大
差はない。
As shown in Table 4, the tensile properties of test materials ■ to ■ are slightly higher than those of test materials ■ to ■, which are comparative materials, and the 0.2% strength and tensile strength are slightly higher than that of test materials ■. It tends to be slightly lower than sample material ■. On the other hand, there is no significant difference in elongation and reduction of area between the sample materials.

クリープ破断試験を温度980℃、応力11.3kg/
mm2なる条件下で行なった。その結果も第4表に併せ
て示す。第4表に示すとおり、供試材■〜■(本発明合
金)の破断時間は54〜75時間であるのに対し、比較
材である供試材■のそれは1.7時間で著しく弱く、供
試材■のそれは80時間であり強かった。一方、伸び、
絞りについては、供試材■〜■及び■の間で有意差はな
く、供試材■は高い値で延性に富む合金であった。
Creep rupture test was carried out at a temperature of 980℃ and a stress of 11.3kg/
The test was carried out under the condition of mm2. The results are also shown in Table 4. As shown in Table 4, the rupture time of test materials ■ to ■ (alloys of the present invention) was 54 to 75 hours, while that of test material ■, which was a comparative material, was significantly weaker at 1.7 hours. The test material (■) was strong for 80 hours. On the other hand, elongation
Regarding the reduction of area, there was no significant difference between the sample materials (■) to (2) and (2), and the sample material (2) had a high value and was an alloy with high ductility.

このようなクリープ破断性質の差は、化学成分によるも
のと考えられる。即ち、供試材■はTaSTiが添加さ
れておらず、又、C添加量も少ないために、炭化物の析
出硬化及び固溶強化の寄与が少なく、強度が弱くなった
ものと考えられる。その反面延性が高くなっている。な
お、供試材■〜■は供試材■に比べCs Ta, T+
がやや低いために強度が低かったものと推定される。
This difference in creep rupture properties is thought to be due to chemical components. In other words, it is considered that sample material (2) had no TaSTi added and the amount of C added was small, so the contribution of carbide precipitation hardening and solid solution strengthening was small, resulting in a weak strength. On the other hand, it has high ductility. In addition, sample materials ■~■ have lower Cs Ta, T+ than sample material ■.
It is presumed that the strength was low because the

次に、腐食試験をV20S : NazSO4= 8 
5%=15%なる腐食灰を用い、20■/cm”の割合
で全面塗布し、850℃x20時間大気電気炉中で加熱
し、腐食させた。試験後、脱スケールを行ない腐食量を
測定した。その結果、腐食減量は、供試材■》供試材■
〜供試材■〉供試材■〜供試材■の順に少なかった。こ
の結果、Cr量の少ない供試材■の腐食量は他の供試材
に比べ著しく多かった。供試材■〜■及び■の間で大差
はないが、上述の順の傾向が認められた。
Next, a corrosion test was conducted with V20S: NazSO4=8
Using corrosive ash (5% = 15%), it was applied to the entire surface at a rate of 20 cm/cm and heated in an electric furnace at 850°C for 20 hours to cause corrosion. After the test, descaling was performed and the amount of corrosion was measured. As a result, the corrosion weight loss of the sample material■》Sample material■
- Sample material ■> Sample material ■ - Sample material ■ were smaller in order. As a result, the amount of corrosion of sample material (2) with a small amount of Cr was significantly greater than that of the other sample materials. Although there was no major difference between the sample materials ■ to ■ and ■, the above-mentioned tendency in the order was observed.

最後に、酸化試験を行った。大気電気炉中で、1000
℃×100時間加熱して酸化させた。
Finally, an oxidation test was performed. 1000 in an atmospheric electric furnace
It was oxidized by heating at °C for 100 hours.

試験後、重量測定を行い重量変化を求めた。いずれの供
試材も重量増加であった。重量増加量は供試材■〉供試
材■》供試材■〜供試材■〜供試材■の順に少なかった
。供試材■及び供試材■は重量増加量が少なく、耐酸化
性に優れている。これはLaあるいは又A1の効果と考
えられる。
After the test, the weight was measured to determine the weight change. All sample materials increased in weight. The amount of weight increase was smaller in the order of sample material ■> sample material ■> sample material ■ ~ sample material ■ ~ sample material ■. Sample material (1) and sample material (2) have a small weight increase and are excellent in oxidation resistance. This is considered to be the effect of La or A1.

以上のとおり、本発明合金は既存合金の長所を持ち、短
所を補なった優れた高温強度を有し、かつ、耐食性と耐
酸化性を兼備したCo基耐熱鋳造合金である。
As described above, the alloy of the present invention is a Co-based heat-resistant cast alloy that has the advantages of existing alloys, has excellent high-temperature strength that compensates for the disadvantages, and has both corrosion resistance and oxidation resistance.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、第2表に示す化学成分範囲のCo基耐熱
鋳造合金は第4表に示すとおり高温強度が高く、かつ耐
食・耐酸化性に優れたものである。
As described above, the Co-based heat-resistant cast alloys having the chemical composition range shown in Table 2 have high high temperature strength as shown in Table 4, and are excellent in corrosion resistance and oxidation resistance.

即ち、高温強度の改善は、Wの固溶体強化の他に、高C
とし、Ta, Ti、Wを添加し、炭化物の析出潰を多
くし、析出硬化により図ったことにより、一方、耐食・
耐酸化性の改善は高CrとLa, AIの添加により図
ったことによる。
In other words, the improvement of high temperature strength is achieved by not only solid solution strengthening of W but also by high C
By adding Ta, Ti, and W to increase the precipitation of carbides and achieve precipitation hardening, on the other hand, corrosion resistance and
The oxidation resistance was improved by adding high Cr, La, and AI.

Claims (1)

【特許請求の範囲】[Claims] 重量%で、Cr:25〜32%、Ni:6〜12%、W
:6〜8%、Ta:2〜5%:Ti:0.1〜0.3%
、C:0.45〜0.6%およびLa:0.02〜0.
2%、Al:0.01〜0.2%の1種又は2種、残部
Coおよび不可避的不純物よりなるガスタービン翼用耐
熱鋳造合金。
In weight%, Cr: 25-32%, Ni: 6-12%, W
: 6-8%, Ta: 2-5%: Ti: 0.1-0.3%
, C: 0.45-0.6% and La: 0.02-0.
2%, Al: 0.01 to 0.2% of one or two types, and the remainder Co and inevitable impurities.
JP844990A 1990-01-19 1990-01-19 Heat-resistant cast alloy for gas turbine blades Expired - Lifetime JP2721723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP844990A JP2721723B2 (en) 1990-01-19 1990-01-19 Heat-resistant cast alloy for gas turbine blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP844990A JP2721723B2 (en) 1990-01-19 1990-01-19 Heat-resistant cast alloy for gas turbine blades

Publications (2)

Publication Number Publication Date
JPH03215644A true JPH03215644A (en) 1991-09-20
JP2721723B2 JP2721723B2 (en) 1998-03-04

Family

ID=11693436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP844990A Expired - Lifetime JP2721723B2 (en) 1990-01-19 1990-01-19 Heat-resistant cast alloy for gas turbine blades

Country Status (1)

Country Link
JP (1) JP2721723B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694398A (en) * 1992-09-10 1994-04-05 Tech Res & Dev Inst Of Japan Def Agency Missile
WO1997005297A1 (en) * 1995-07-28 1997-02-13 Westinghouse Electric Corporation Cobalt alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694398A (en) * 1992-09-10 1994-04-05 Tech Res & Dev Inst Of Japan Def Agency Missile
WO1997005297A1 (en) * 1995-07-28 1997-02-13 Westinghouse Electric Corporation Cobalt alloy

Also Published As

Publication number Publication date
JP2721723B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US8048368B2 (en) High temperature and oxidation resistant material
JPS6128007B2 (en)
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP3424314B2 (en) Heat resistant steel
JPH03215644A (en) Heat-resistant cast alloy for gas turbine blade
JPS61163238A (en) Heat and corrosion resistant alloy for turbine
JP2001234292A (en) LOW THERMAL EXPANSION Fe-BASE HEAT RESISTANT ALLOY, EXCELLENT IN HIGH TEMPERATURE STRENGTH
JPH06287667A (en) Heat resistant cast co-base alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
US20180002784A1 (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CREEP CHARACTERISTICS, AND GAS TURBINE MEMBER USING THE SAME
JP2778818B2 (en) Heat-resistant cast alloy for gas turbine
JPS613859A (en) High-strength heat-resistant co alloy for gas turbine
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
JPH0243813B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPS61548A (en) Co-base high-strength heat-resistant alloy for gas turbine
JPS6147900B2 (en)
JPH0598397A (en) Ferrous heat resistant alloy excellent in high temperature corrosion resistance
JPH0448051A (en) Heat resistant steel
JPH0243815B2 (en) GASUTAABINYOKOKYODOC0KITAINETSUGOKIN
JPS6293353A (en) Austenitic heat resisting alloy
JPH0770683A (en) Heat resistant cast co-based alloy for gas turbine
JPH06287666A (en) Heat resistant cast co-base alloy
JPH07224337A (en) Heat resistant cast co-base alloy and gas turbine stator blade using the same
JPS63199850A (en) Low alloyed heat resisting cast steel