JPH0448051A - Heat resistant steel - Google Patents

Heat resistant steel

Info

Publication number
JPH0448051A
JPH0448051A JP15406290A JP15406290A JPH0448051A JP H0448051 A JPH0448051 A JP H0448051A JP 15406290 A JP15406290 A JP 15406290A JP 15406290 A JP15406290 A JP 15406290A JP H0448051 A JPH0448051 A JP H0448051A
Authority
JP
Japan
Prior art keywords
resistant steel
heat resistant
less
heat
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15406290A
Other languages
Japanese (ja)
Inventor
Seikichi Yamada
山田 誠吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15406290A priority Critical patent/JPH0448051A/en
Publication of JPH0448051A publication Critical patent/JPH0448051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain a heat resistant steel excellent in high temp. properties, particularly in thermal fatigue properties by incorporating Ni, Cr or the like in a specified compsn. into a steel and regulating the Ti/Al ratio. CONSTITUTION:A heat resistant steel contg., by weight, 0.03 to 0.30% C, <=2.5% Si, <=2.5% Mn, 20 to 30% Ni, 10 to 25% Cr, 1.5 to 2.5% Ti, 0.05 to 0.20% Al, 0.5 to 3.0% Mo, 0.1 to 3.0% V and 0.001 to 0.01% B, satisfying 10 to 40 Ti/Al ratio and the balance substantial iron is prepd. If required, one or more kinds among <=3.0% W, <=4.0% Nb+Ta, <=2.0% Hf, 0.001 to 0.05% rare earth metals, 0.001 to 0.03% Mg and 0.001 to 0.03% Ca are furthermore added to the above compsn. In this way, the heat resistant steel high in thermal fatigue properties, particularly in 0.02% proof stress and having a long creep rupture life can be obtd. and is suitable for gas turbine parts, aircraft engine parts or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービン部品、航空機のエンジン部品等
に適した高温特性、特に熱疲労性に優れた耐熱鋼に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant steel that is suitable for gas turbine parts, aircraft engine parts, etc. and has excellent high-temperature properties, particularly thermal fatigue properties.

〔従来の技術〕[Conventional technology]

例えば、ガスタービンのブレードを植えるディスクや、
ジェットエンジンの耐熱性を要求する部品には、従来、
主としてニッケル基合金が使用されている。しかしなが
ら、これらのニッケル基合金は、極めて高価な高合金材
料を使用するため、製造コストが高いものとなるという
問題があった。
For example, disks for planting gas turbine blades,
Conventionally, parts of jet engines that require heat resistance are
Nickel-based alloys are mainly used. However, since these nickel-based alloys use extremely expensive high-alloy materials, there is a problem in that the manufacturing cost is high.

この問題を解決するために、ニッケル含量の低い低合金
に関して種々の提案がなされている。
In order to solve this problem, various proposals have been made regarding low alloys with low nickel content.

析出硬化型のニッケル基合金においては、微細な金属間
化合物を生成させて熱疲労性を向、トさせているが、一
般にN i 50%以下のFe基合金においては、η相
(Ni、Ti)を析出させることは有害であると考えら
れていた。この通念を破るものとして、Ti/Al比を
高めてη相を析出させ、高温特性を高めることが提案さ
れている。例えば、特公平1−38848号には、N 
i 25〜50%を含有する耐熱金属材料について、T
 i / A 1比が6.6までのものが例示されてお
り、また、特開昭60−46353号公報にはN i 
15〜25%を含有する耐熱金属材料について、Ti/
Al比が6.6までのものが例示されている。
In precipitation hardening type nickel-based alloys, fine intermetallic compounds are generated to improve thermal fatigue resistance, but in general, in Fe-based alloys with Ni 50% or less, η phase (Ni, Ti ) was thought to be harmful. In order to break this conventional wisdom, it has been proposed to increase the Ti/Al ratio to precipitate the η phase to improve high-temperature properties. For example, in Japanese Patent Publication No. 1-38848, N
For heat-resistant metal materials containing 25-50% of i, T
Ni/A1 ratios of up to 6.6 are exemplified, and JP-A-60-46353 discloses Ni
For heat-resistant metal materials containing 15-25% Ti/
Examples include those with an Al ratio of up to 6.6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、従来提案されているニッケル含有量の低い耐
熱金属材量は、未だニッケル基合金と同等の高温特性を
持つものではなく、【7たがって、ニッケル基合金と同
等の性能を有する耐熱金属材料を得ることの要求が強い
。特に航空機部品等に要求されるような高い0.02%
耐力については、未だ満足のいく耐熱鋼は得られていな
かった。
By the way, the heat-resistant metal materials with low nickel content that have been proposed in the past do not yet have high-temperature properties equivalent to those of nickel-based alloys. There is a strong desire to obtain Especially high 0.02% required for aircraft parts etc.
As for yield strength, a heat-resistant steel with satisfactory yield strength has not yet been obtained.

本発明は、従来の上記のような要求に鑑みてなされたも
のである。
The present invention has been made in view of the above-mentioned conventional demands.

したがって、本発明の目的は、優れた熱疲労性をもつ安
価な耐熱鋼を提供することにある。
Therefore, an object of the present invention is to provide an inexpensive heat-resistant steel with excellent thermal fatigue properties.

〔課題を解決するための手段及び作用〕本発明者は、η
相を積極的に利用することについてさらに研究を重ねた
結果、Ni含有m20〜30%の特定の合金組成を有す
る耐熱鋼について、上記公報に記載のTi/Al比より
もはるかに高い特定の範囲のTi/Al比を選択してη
相を多量に析出させた場合、熱疲労性が著しく改善され
たものが得られることを見出だし、本発明を完成するに
至った。
[Means and effects for solving the problem] The present inventor has
As a result of further research on the active use of phases, we found that for heat-resistant steels with specific alloy compositions containing Ni of 20 to 30%, a specific range of Ti/Al ratios that is much higher than the Ti/Al ratio described in the above publication was found. By selecting the Ti/Al ratio of η
It has been discovered that when a large amount of the phase is precipitated, a product with significantly improved thermal fatigue properties can be obtained, and the present invention has been completed.

本発明の第1の耐熱鋼は、重量で、C: 0.03〜0
.30%、S f : 2.5%以下、Mn:2.5%
以下、Ni:20〜30%、Cr:10〜25%、Ti
:1.5〜2.5%、A 1 : 0.05〜0.20
%、M o : 0.5〜3.0%、V : 0.1〜
3.0%、B : 0.001〜0旧%を含有し、かつ
Ti/Alが10〜40であり、残余が実質的にFeか
らなることを特徴とする。
The first heat-resistant steel of the present invention has a C: 0.03 to 0 by weight.
.. 30%, S f: 2.5% or less, Mn: 2.5%
Below, Ni: 20-30%, Cr: 10-25%, Ti
: 1.5~2.5%, A1: 0.05~0.20
%, Mo: 0.5-3.0%, V: 0.1-
3.0%, B: 0.001 to 0%, and Ti/Al is 10 to 40, with the remainder substantially consisting of Fe.

また、第2の耐熱鋼は、重量で、C: 0.03〜0.
30%、S i : 2.5%以下、Mn:2.5%以
下、Ni:20〜30%、Cr:10〜25%、Ti:
1.5〜2.5%、A I : 0.05〜0.20%
、M o : 0.5〜3.0%、V:0.1〜31口
%、B : 0.001〜0.01%を含有し、かっT
i/AlがlO〜40であり、さらに、W:3.0%以
下、Nb+Ta:4.0%以下、Hf:2.0%以下、
RE M : 0.001〜0.05%、Mg:0.0
01〜0.03%、及びCa : 0.001〜0.0
3%から選択された1種またはそれ以上を含有し、残余
が実質的にFeからなることを特徴とする。
Moreover, the second heat-resistant steel has a C: 0.03 to 0.03 by weight.
30%, Si: 2.5% or less, Mn: 2.5% or less, Ni: 20-30%, Cr: 10-25%, Ti:
1.5-2.5%, AI: 0.05-0.20%
, Mo: 0.5-3.0%, V: 0.1-31%, B: 0.001-0.01%, and T
i/Al is lO ~ 40, furthermore, W: 3.0% or less, Nb + Ta: 4.0% or less, Hf: 2.0% or less,
REM: 0.001-0.05%, Mg: 0.0
01-0.03%, and Ca: 0.001-0.0
It is characterized in that it contains one or more selected from 3%, with the remainder consisting essentially of Fe.

以下、本発明の耐熱鋼の合金組成及び限定理由について
説明する。
Hereinafter, the alloy composition of the heat-resistant steel of the present invention and reasons for limitation will be explained.

C: 0.03〜0.30% Cは、Cr及びTiと結合して炭化物を形成し、高温強
度を高めるために必要な元素である。ただし、多量に存
在すると、熱間側]−性、靭延性を損なうので、上記の
範囲で選択する必要がある。
C: 0.03 to 0.30% C is an element necessary to combine with Cr and Ti to form carbide and increase high-temperature strength. However, if it exists in a large amount, it will impair the hot side properties and toughness and ductility, so it is necessary to select it within the above range.

Si:2.5%以下 脱酸剤として添加されるが、靭延性の観点から少い方が
よいので、2.5%以下に限定する。
Si: 2.5% or less It is added as a deoxidizing agent, but from the viewpoint of toughness and ductility, less is better, so it is limited to 2.5% or less.

Mn:2.5%以下 Siと同様に脱酸剤として添加されるが、その量が多量
になると高温での耐酸化性を低下させるので、2.5%
以下に限定する。
Mn: 2.5% or less It is added as a deoxidizing agent like Si, but if the amount is too large, it will reduce the oxidation resistance at high temperatures, so 2.5%
Limited to the following.

Ni:20〜30% Niは、オーステナイト相の安定とγ′相〔N i 3
  (A I T s ) 〕を形成するのに必要な元
素である。下限の20%は、高温で使用中にσ相のよう
な脆化相が生しるのを避ける為に設定されたものである
。一方、Niを必要以上に添加しても、高温性能の向上
は期待できなくなり、低価格のキイ料を提供するという
1−1的にも反するので、上限を50%に設定する。
Ni: 20-30% Ni stabilizes the austenite phase and stabilizes the γ' phase [N i 3
(AITs) ]. The lower limit of 20% was set to avoid the formation of brittle phases such as σ phase during use at high temperatures. On the other hand, even if more Ni is added than necessary, no improvement in high-temperature performance can be expected, and this goes against the 1-1 objective of providing a low-cost key material, so the upper limit is set at 50%.

Cr:10〜25% 耐蝕性及び耐酸化性を維持するために添加されるが、そ
の量が多すぎるとσ相の形成を招き、靭延性が低下する
ので、10〜25%の範囲に設定する。
Cr: 10-25% Added to maintain corrosion resistance and oxidation resistance, but too much Cr causes the formation of σ phase and reduces toughness and ductility, so it is set in the range of 10-25%. do.

T i : 1.5〜2.5% Tiは、η相(N 13 T r )を析出させるため
、および、高温強度の向上に有効なγ′相を形成させる
ために必要な元素であり、適切な範囲として1.5〜2
.5%を設定する。
Ti: 1.5 to 2.5% Ti is an element necessary for precipitating the η phase (N 13 T r ) and forming the γ' phase that is effective in improving high temperature strength, A suitable range is 1.5-2
.. Set 5%.

A I : 0.05〜0.20% Tiと同様にγ′相を生成させるために重要な元素であ
るが、過大な量の添加はη相の析出を減らし、一方、熱
間加工性を劣化させるので、上限を0.20%に設定す
る。
A I: 0.05-0.20% Like Ti, it is an important element for generating the γ' phase, but adding an excessive amount reduces the precipitation of the η phase, while decreasing hot workability. Since it causes deterioration, the upper limit is set to 0.20%.

M o : 0.5〜3.0% Moは、粒子内に固溶し強化する作用を示すが、その量
が多すぎると、高温強度が低下し、σ相の析出による脆
化を招くので、上限を3.0%に設定する。
Mo: 0.5 to 3.0% Mo exhibits the effect of solid solution in particles and strengthening, but if the amount is too large, high temperature strength decreases and embrittlement due to precipitation of σ phase is caused. , set the upper limit to 3.0%.

V : 0.1〜3.0% ■は、Moと同様に粒子内に固溶し強化する作用、及び
炭化物を形成して粒界強化をする作用を示すので、適切
な範囲として0.1〜3.0%を設定するが、好ましく
は、0.5〜1.0%である。
V: 0.1 to 3.0% (2) exhibits the effect of solid solution in particles to strengthen them, as well as the effect of forming carbides to strengthen grain boundaries, similar to Mo, so 0.1 is an appropriate range. The content is set to 3.0%, preferably 0.5 to 1.0%.

B : 0.001〜0.01 粒界に偏析して、粒界を強化する作用を示すが、多量の
添加は、熱間加工性をそこなうので、上限を0.01%
に設定する。
B: 0.001 to 0.01 It segregates at grain boundaries and shows the effect of strengthening the grain boundaries, but adding a large amount impairs hot workability, so the upper limit should be set at 0.01%.
Set to .

Ti/Al:10〜40 T i / A l比が高まると、η相の析出量が増大
する。そして、Ti/AlがlO〜40の範囲、特に1
2〜36の範囲においては、0.02%耐力が著しく高
まり、高い弾性係数の材料が得られ、また、クリープラ
ブチャー寿命も改善される。
Ti/Al: 10 to 40 As the Ti/Al ratio increases, the amount of η phase precipitated increases. And Ti/Al is in the range of 1O~40, especially 1
In the range of 2 to 36, the 0.02% yield strength is significantly increased, a material with a high elastic modulus is obtained, and the creep rupture life is also improved.

本発明の耐熱鋼においては、さらにW、Nb+Ta、H
f、REM、Mg及びCaがら選択された1種またはそ
れ以上の元素が含有されていてもよい。以下、それらの
元素が含有される場合の組成範囲について説明する。
In the heat-resistant steel of the present invention, W, Nb+Ta, H
One or more elements selected from f, REM, Mg, and Ca may be contained. The composition range when these elements are contained will be explained below.

W:3.0%以下 Wは、固溶強化と炭化物の粒界偏析による強化作用を示
すが、好ましい範囲として上限を3.0%に設定する。
W: 3.0% or less W exhibits a strengthening effect through solid solution strengthening and grain boundary segregation of carbides, but the upper limit is set to 3.0% as a preferable range.

Nb+Ta:4.0%以下、Hf : 2.0%以下N
b、Ta、Hfの各元素は、炭化物を形成して粒界を強
化する作用を示す。なお、これらの元素は、Mo及びW
と同様に、固溶強化作用を示す。
Nb+Ta: 4.0% or less, Hf: 2.0% or lessN
The elements b, Ta, and Hf form carbides to strengthen grain boundaries. Note that these elements include Mo and W.
Similarly, it shows solid solution strengthening effect.

また、金属間化合物を形成して析出強度の向上に寄与す
る。しかしながら、過大な量の添加は、耐酸化性の劣化
を招くので、上限をN))+Taは4.0%に、Hfは
2.0%に設定する。
It also forms intermetallic compounds and contributes to improving precipitation strength. However, addition of an excessive amount causes deterioration of oxidation resistance, so the upper limits are set to 4.0% for N))+Ta and 2.0% for Hf.

REM・0.001〜0.05%、M g : 0.0
01〜0.03%、及びCa : 0.001〜0.0
3%これらの元素はいずれも脱酸、脱硫作用があり、鋼
の清浄度を高める。また、Mg及びCaは、粒界に偏析
して鋼を強化する作用を示す。しかしながら過剰に添加
すると熱間加工性、靭延性を損なうので、上限をREM
:0.05%、Mg:0.03%、Ca:0.03%に
設定する。
REM・0.001-0.05%, Mg: 0.0
01-0.03%, and Ca: 0.001-0.0
3% All of these elements have deoxidizing and desulfurizing effects, increasing the cleanliness of steel. Furthermore, Mg and Ca segregate at grain boundaries and have the effect of strengthening steel. However, if added in excess, hot workability and toughness and ductility will be impaired, so the upper limit is set at REM.
:0.05%, Mg:0.03%, Ca:0.03%.

〔実施例〕〔Example〕

以下、本発明耐熱鋼をを実施例によって説明する。 Hereinafter, the heat-resistant steel of the present invention will be explained with reference to Examples.

第1表に示す合金成分(残余はFe)を、50kg高周
波誘導炉で溶製して鋼塊を製造し、次いで鍛造により2
0mm X 85+++*のサイズの板状供試材を得た
The alloy components shown in Table 1 (the remainder is Fe) are melted in a 50 kg high-frequency induction furnace to produce a steel ingot, and then forged to produce a steel ingot.
A plate-shaped test material with a size of 0 mm x 85+++* was obtained.

尚、供試材の採取は、鍛造方向に対して直角方向に行っ
た。これらの供試材を、900℃で1時間溶体化処理し
空冷した後、705℃で16時間時効処理を行い、次い
て650℃で16時間時効処理を行って試験に供した。
Note that the sample materials were collected in a direction perpendicular to the forging direction. These test materials were subjected to solution treatment at 900°C for 1 hour, cooled in air, then aged at 705°C for 16 hours, and then aged at 650°C for 16 hours before being subjected to testing.

得られた供試材について0.02%耐力、及び、650
℃、45 、7 kg r / nu+t O)下チッ
クリープラブチャー寿命(破断時間)を測定した。苓の
結果を第2表及び第1図に示す。
0.02% yield strength and 650
℃、45℃、7kgr/nu+tO) Chickrea rupture life (time to rupture) was measured. The results for Rei are shown in Table 2 and Figure 1.

以下余白 第2表 〔発明の効果〕 本発明の耐熱鋼は、上記した特定の組成範囲の合金組成
よりなるため、熱疲労性、特に、0.02%耐力が著し
く高く、また、クリープラブチャー寿命が長いという効
果を生じる。しかも安価であり、かつ軽量であるため、
ガスタービン部品、航空機エンジン部品等、高い熱疲労
性が要求される部品に有用である。
Table 2 with blank space below [Effects of the Invention] Since the heat-resistant steel of the present invention is composed of an alloy composition within the above-mentioned specific composition range, it has extremely high thermal fatigue resistance, especially 0.02% yield strength, and also has creep resistance. This results in a long lifespan. Moreover, it is cheap and lightweight, so
It is useful for parts that require high thermal fatigue resistance, such as gas turbine parts and aircraft engine parts.

第2表及び第1図から、Ti/Alが10〜40(7)
範囲にある本発明の耐熱鋼は、0.02%耐力が著しく
高く、また、クリープラブチャー寿命も長いことが分か
る。
From Table 2 and Figure 1, Ti/Al is 10-40 (7)
It can be seen that the heat-resistant steel of the present invention within the range has a significantly high 0.02% yield strength and a long creep-loveture life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の耐熱鋼の0.02耐力及びクリープ
ラブチャー寿命とT i/A I比との関係を示すグラ
フである。 特許出願人 大同特殊鋼株式会社
FIG. 1 is a graph showing the relationship between the 0.02 proof stress and creep rupture life of the heat-resistant steel of the present invention and the T i /A I ratio. Patent applicant: Daido Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)重量で、C:0.03〜0.30%、Si:2.
5%以下、Mn:2.5%以下、Ni:20〜30%、
Cr:10〜25%、Ti:1.5〜2.5%、Al:
0.05〜0.20%、Mo:0.5〜3.0%、V:
0.1〜3.0%、B:0.001〜0.01%を含有
し、かつTi/Alが10〜40であり、残余が実質的
にFeからなる耐熱鋼。
(1) By weight, C: 0.03-0.30%, Si: 2.
5% or less, Mn: 2.5% or less, Ni: 20 to 30%,
Cr: 10-25%, Ti: 1.5-2.5%, Al:
0.05-0.20%, Mo: 0.5-3.0%, V:
0.1 to 3.0%, B: 0.001 to 0.01%, Ti/Al is 10 to 40, and the remainder is substantially Fe.
(2)重量で、C:0.03〜0.30%、Si:2.
5%以下、Mn:2.5%以下、Ni:20〜30%、
Cr:10〜25%、Ti:1.5〜2.5%、Al:
0.05〜0.20%、Mo:0.5〜3.0%、V:
0.1〜3.0%、B:0.001〜0.01%を含有
し、かつTi/Alが10〜40であり、さらに、W:
3.0%以下、Nb+Ta:4.0%以下、Hf:2.
0%以下、REM:0.001〜0.05%、Mg:0
.001〜0.03%、及びCa:0.001〜0.0
3%から選択された1種またはそれ以上を含有し、残余
が実質的にFeからなる耐熱鋼。
(2) By weight, C: 0.03-0.30%, Si: 2.
5% or less, Mn: 2.5% or less, Ni: 20 to 30%,
Cr: 10-25%, Ti: 1.5-2.5%, Al:
0.05-0.20%, Mo: 0.5-3.0%, V:
0.1 to 3.0%, B: 0.001 to 0.01%, Ti/Al is 10 to 40, and W:
3.0% or less, Nb+Ta: 4.0% or less, Hf: 2.
0% or less, REM: 0.001-0.05%, Mg: 0
.. 001-0.03%, and Ca: 0.001-0.0
A heat-resistant steel containing one or more selected from 3% and the remainder substantially consisting of Fe.
JP15406290A 1990-06-14 1990-06-14 Heat resistant steel Pending JPH0448051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15406290A JPH0448051A (en) 1990-06-14 1990-06-14 Heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15406290A JPH0448051A (en) 1990-06-14 1990-06-14 Heat resistant steel

Publications (1)

Publication Number Publication Date
JPH0448051A true JPH0448051A (en) 1992-02-18

Family

ID=15576071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15406290A Pending JPH0448051A (en) 1990-06-14 1990-06-14 Heat resistant steel

Country Status (1)

Country Link
JP (1) JPH0448051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142963A1 (en) * 2015-03-06 2016-09-15 株式会社 東芝 Austenitic heat-resistant steel and turbine component
KR20170059458A (en) 2014-09-19 2017-05-30 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel sheet
WO2022089814A1 (en) * 2020-10-28 2022-05-05 Siemens Energy Global GmbH & Co. KG Alloy, raw workpiece, component consisting of austenite, and method for heat-treating an austenite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170059458A (en) 2014-09-19 2017-05-30 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel sheet
US11198930B2 (en) 2014-09-19 2021-12-14 Nippon Steel Corporation Austenitic stainless steel plate
WO2016142963A1 (en) * 2015-03-06 2016-09-15 株式会社 東芝 Austenitic heat-resistant steel and turbine component
JPWO2016142963A1 (en) * 2015-03-06 2018-01-11 株式会社東芝 Austenitic heat resistant steel and turbine parts
WO2022089814A1 (en) * 2020-10-28 2022-05-05 Siemens Energy Global GmbH & Co. KG Alloy, raw workpiece, component consisting of austenite, and method for heat-treating an austenite

Similar Documents

Publication Publication Date Title
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
JP3354832B2 (en) High toughness ferritic heat-resistant steel
JP2011219864A (en) Heat resistant steel for exhaust valve
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP5788360B2 (en) Heat-resistant steel for exhaust valves
JP2947913B2 (en) Rotor shaft for high temperature steam turbine and method of manufacturing the same
US4871512A (en) Alloys for exhaust valve
JP3073754B2 (en) Heat resistant steel for engine valves
EP0359085B1 (en) Heat-resistant cast steels
JPS6123749A (en) Austenitic stainless steel having high strength at high temperature
JP3388998B2 (en) High strength austenitic heat-resistant steel with excellent weldability
JPH0448051A (en) Heat resistant steel
JP3424314B2 (en) Heat resistant steel
JP3281685B2 (en) Hot bolt material for steam turbine
JPS6070166A (en) Creep and oxidation resistant low-alloy steel
JPH1036944A (en) Martensitic heat resistant steel
JP2000192205A (en) Heat resistant alloy excellent in oxidation resistance
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability
JPH06256908A (en) Heat resistant cast steel and exhaust system parts using the same
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JP3137426B2 (en) High temperature bolt material
JPH04193932A (en) Heat resistant alloy for engine valve
JP6745050B2 (en) Ni-based alloy and heat-resistant plate material using the same
JPS6147900B2 (en)