JP3375817B2 - Welding wire for high chromium ferritic steel - Google Patents

Welding wire for high chromium ferritic steel

Info

Publication number
JP3375817B2
JP3375817B2 JP07750596A JP7750596A JP3375817B2 JP 3375817 B2 JP3375817 B2 JP 3375817B2 JP 07750596 A JP07750596 A JP 07750596A JP 7750596 A JP7750596 A JP 7750596A JP 3375817 B2 JP3375817 B2 JP 3375817B2
Authority
JP
Japan
Prior art keywords
weight
welding
comparative example
welding wire
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07750596A
Other languages
Japanese (ja)
Other versions
JPH09267190A (en
Inventor
明信 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP07750596A priority Critical patent/JP3375817B2/en
Publication of JPH09267190A publication Critical patent/JPH09267190A/en
Application granted granted Critical
Publication of JP3375817B2 publication Critical patent/JP3375817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は7重量%乃至12重量%
のCrを含有する高クロムフェライト鋼用の溶接ワイヤ
に関する。 【0002】 【従来の技術】高クロムフェライト鋼は、高温における
良好な強度特性に加えて、耐酸化性にも優れ、オーステ
ナイト系ステンレス鋼と比較すると、熱膨張係数及び応
力腐食割れの感受性が小さい等の特長を有することか
ら、高温高圧の火力発電プラント及び原子力機器等に使
用されている。近年、地球環境保護の観点から、操業条
件をより高温・高圧にすることにより効率化を図り、単
位エネルギー当たりの炭酸ガスの排出を抑制しようとし
ている。 【0003】この目的に対して、各種の新しい鋼材が開
発され、既に多くのものが実用化されており、その鋼材
を溶接する溶接材料に関しても、既に幾つかの新しい成
分系のものが提案されている。しかし、この従来の溶接
材料はいずれも特性が不十分である。 【0004】例えは、特開平1‐215489及び特開
平2‐280993では、Caと、必要に応じてLa,
Ceを添加して溶接金属の酸素を下げることによる靭性
の向上を提案している。 【0005】その他、以下に示す公報が公知である。特
開平1‐215490、特開平2‐37989.特開平
2‐268977,特開平1−174998,特開平5
‐177383,特開平5‐177384,特開平5‐
212582,特開平5‐285691,特開平6−1
42981,特開平6‐277879,特開平7−80
680,特開平7−96390,特開平7−16418
2,特開平7−204885,特開平7−26856
3,特開平7−284986。 【0006】 【発明が解決しようとする課題】しかしながら、これら
の公知の高クロムフェライト鋼用溶接ワイヤは、溶接作
業性が悪いと共に、クリープ破断強度等の高温強度特性
が十分ではないという欠点がある。 【0007】本発明はかかる問題点に鑑みてなされたも
のであって、クリープ破断強度を主体とする高温強度特
性が十分であり、また溶接作業性が優れていて、高クロ
ムフェライト鋼の特性を生かした種々の分野への適用を
可能とする高クロムフェライト鋼溶接用ワイヤを提供す
ることを目的とする。 【0008】 【課題を解決するための手段】本発明に係る高クロムフ
ェライト鋼用溶接ワイヤは、C:0.01乃至0.19
重量%、Si:0.01乃至1.50重量%、Mn:
0.01乃至2.00重量%、Cr:7.00乃至1
3.00重量%、Mo:0.01乃至1.60重量%、
Ni:0.02乃至1.50重量%、Nb+Ta:0.
002乃至0.25重量%、V:0.01乃至0.50
重量%、Ti:0.001乃至0.100重量%、A
l:0.002乃至0.10重量%、N:0.003乃
至0.100重量%、O:0.002乃至0.030重
量%、Ca:0.0002乃至0.01重量%及びM
g:0.0002乃至0.01重量%を含有し、Ti+
Al+10×(Ca+Mg)の和を0.13重量%以下
に制限すると共に、更に、W:0.10乃至3.00重
量%、Cu:0.005乃至4.00重量%、Co:
0.005乃至5.00重量%及びB:0.0005乃
至0.01重量%からなる群から選択された少なくとも
1種を含有し、残部は鉄及び不可避的不純物からなるこ
とを特徴とする。 【0009】 【発明の実施の形態】以下、本発明の溶接ワイヤの各成
分添加理由及び組成限定理由について説明する。 【0010】C:0.01乃至0.19重量% Cは溶接金属の焼き入れ性を高め、室温における強度を
確保する上で必要な成分であると共に、溶接後熱処理に
より炭化物を生成し、クリープ破断強度等の高温強度特
性の確保の観点からも重要である。Cが0.01重量%
未満では上記の強度が十分得られない。また、Cが0.
19重量%を超えると、常温での強度が高すぎるため、
水素に起因する低温割れ感受性が高くなる。更に、Cが
0.19重量%を超えるように多量であると、高温割れ
感受性も高くなり、溶接ワイヤとして不適当である。望
ましい下限及び上限は夫々0.05重量%及び0.15
重量%である。 【0011】Si:0.01乃至1.50重量% Siは脱酸元素及びビード形状の調整の点から重要な元
素であるが、過剰の添加は高温で長時間保持された場合
の脆化及び焼き戻し脆化感受性を高めるために注意する
必要がある。以上の観点から、Siの範囲は0.01乃
至1.50重量%とする。望ましいSiの下限及び限は
夫々0.10重量%及び0.80重量%である。 【0012】Mn:0.01乃至2.00重量% MnはSiと同様に脱酸元素としても作用するが、更に
溶接金属の焼き入れ性を高め、靭性の改善に有効であ
る。しかし、Mnを多量に添加すると、クリープ破断強
度を低下させることになる。そこで、Mnの添加量は
0.0l重量%乃至2.00重量%とする。望ましいM
nの下限及び上限は夫々0.20重量%及び1.20重
量%である。 【0013】Cr:7.00乃至13.00重量% Crは耐酸化性と高温強度特性を確保する上で重要な成
分である。耐酸化性と高温強度の観点からCrの下限は
7.00重量%必要である。しかしながら、Crを多量
に添加すると、マルテンサイトの組織にδフェライトが
析出しやすくなり、それに応じて靭性が低下する。靭性
の観点から上限は13.00重量%とする。なお、Cr
の望ましい下限及び上限は夫々8.00重量%及び1
2.00重量%である。 【0014】Mo:0.01乃至1.60重量% Moも炭化物を形成して高温強度を確保する上で重要な
元素である。しかし、Moの過剰の添加は室温強度を高
め、水素に起因する低温割れ感受性を高め、更に靭性を
低下させる。この観点からMoの添加量は0.0l重量
%乃至1.60重量%とする。なお、Moの望ましい下
限及び上限は夫々0.20重量%及び1.20重量%で
ある。 【0015】Ni:0.02乃至1.50重量% Niは高クロムフェライト系鋼においてδフェライトの
析出を抑え、溶接金属の靭性を向上させるためには重要
でかつ有効な元素である。しかし、Niを多量に添加す
るとクリープ破断強度を低下させるという弊害がある。
従って、Niの添加量は0.02重量%乃至1.50重
量%とする。なお、Niの望ましい下限及び上限は夫々
0.10重量%及び1.00重量%である。 【0016】NbとTa:0.002乃至0.25重量
NbとTaは共に溶接後熱処理をうけて、微細な炭化物
を形成し、クリープ破断強度を高めるのに有効な元素で
ある。しかし、これらの元素を過剰に添加すると、過剰
な析出物が生成し、靭性の低下を招く。これらのNb及
びTaは、いずれも同じ作用を有するので、いずれか一
方又はその双方を添加しても良い。従って、NbとTa
の添加量はその和で規定し、0.002重量%乃至0.
25重量%とする。なお、このNbとTaの和の望まし
い下限及び上限は夫々0.005重量%及び0.15重
量%である。 【0017】V:0.01乃至0.50重量% VもNb又はTaと共存した状態で、溶接後熱処理をう
けて、微細な炭化物を形成し、クリープ破断強度を高め
るのに有効な元素である。しかし、適切な範囲を超えて
多く添加すると、室温強度が高くなり、水素に起因する
低温割れ感受性が低下して好ましくない。Vの適切な添
加量は0.01重量%乃至0.50重量%である。な
お、Vの望ましい下限及び上限は夫々0.05重量%及
び0.30重量%である。 【0018】Ti:0.001乃至0.100重量% TiもNb、Ta又はVとの共存下において、溶接後熱
処理を受けて、微細な炭化物を形成し、クリープ破断強
度を高めるのに有効な元素である。Tiの過剰な添加は
炭化物の粒内析出による靭性の低下を招くだけでなく、
剥離性の悪いスラグが発生する原因となり、溶接作業性
を低下させる。従って、Tiの添加量は0.001重量
%乃至0.100重量%とする。なお、Tiの望ましい
下限及び上限は夫々0.005重量%及び0.050重
量%である。 【0019】Al:0.002乃至0.10重量% Alは脱酸材として働くと共に、Nとの共存下で微細な
窒化物となり、溶接金属の組織の微細化を促し、靭性の
改善に有効である。しかし、Alの過剰な添加は、融点
が高いスラグを発生させ、溶接作業性を著しく害する。
従って、Alの添加量は0.002重量%乃至0.10
重量%とした。なお、Alの望ましい下限及び上限は夫
々0.005重量%及び0.050重量%である。 【0020】N:0.003乃至0.100重量% Nは上記のようにAlと窒化物を生成し、溶接金属の靭
性の向上に寄与するのみでなく、クリープ破断強度の改
善にも有効である。しかし、Nが過剰に添加された場合
には、溶接金属中で球状欠陥として現れる。従って、N
の適切な範囲は0.003重量%乃至0.100重量%
とした。なお、Nの望ましい下限及び上限は夫々0.0
05重量%及び0.070重量%である。 【0021】O:0.002乃至0.030重量% Oは溶接金属が溶融状態における流動性を左右し、健全
な溶接部を得るためには、極めて重要な元素である。良
好な溶接金属の外観及びなじみを得るためには、Oを
0.002重量%以上添加する必要がある。しかしなが
ら、Oが多くなると、靭性の低下が著しく、0.030
重量%を超えると好ましくない。なお、Oの望ましい下
限及び上限は夫々0.003重量%及び0.020重量
%である。 【0022】Ca:0.0002乃至0.01重量% Caは強力な脱酸剤として働き、溶接金属の酸素量を低
減し、靭性の改善に有効である。しかし、Caは大量に
添加すると、スラグの発生量が多くなり、溶接作業性を
損なう。このCaの適切な添加量は0.0002重量%
乃至0.01重量%である。なお、Caの望ましい下限
及び上限は夫々0.0005重量%及び0.005重量
%である。 【0023】Mg:0.0002乃至0.01重量% MgもCaとの複合添加で強力な脱酸剤として作用し、
溶接金属の酸素量を低減し、靭性の改善に有効である。
そして、MgはCaと同様に大量に添加すると、スラグ
の発生量が多くなり、溶接作業性を損なう。このため、
Mgの添加量は0.0002重量%乃至0.01重量%
とする。なお、Mgの望ましい下限及び上限は夫々0.
0005重量%及び0.005重量%である。 【0024】Ti+Al+10×(Ca+Mg):0.
13重量%以下 Ti+Al+10×(Ca+Mg)の和を0.13重量
%以下に規制することが重要である。前述の如く、T
i、Al、Ca、Mgの元素は複合添加することにより
少量で有効な作用を有するが、各元素の単独の添加量の
みではなく、各元素の添加量合計での規制が必要であ
る。即ち、スラグの発生による作業性の低下を検討した
結果、本発明者は上記のようにTi+Al+10×(C
a+Mg)の和を0.13重量%以下に規制することが
有効であることを見い出した。なお、これらの4元素以
外にランタノイド元素(例えば、La及びCe等)を添
加することも可能であるが、その場合にも各元素は0.
01重量%以下に抑えることが望ましい。 【0025】さらに本発明ワイヤは選択成分として以下
の作用を有する成分を添加して、さらに性能を高める事
が可能である。 【0026】W:0.10乃至3.00重量% Wは固溶強化により溶接金属の高温強度特性を改善する
効果を有する。しかしながら、Wが0.10重量%未満
ではこの効果が得られない。一方、Wが3.00重量%
を超えると、室温強度が高くなり、水素に起因する低温
割れ感受性が高くなる。なお、Wの望ましい上限は、
2.00重量%である。 【0027】Cu:0.005乃至4.00重量% Cuは析出効果により溶接金属のクリープ破断強度を高
めることができる。しかし、Cuが0.005重量%未
満では効果が認められなかった。更に、Cu含有量が
4.00重量%を超えると、室温強度が高くなり、水素
に起因する低温割れ感受性が高くなると共に、高温割れ
の感受性も増大する。なお、Cuの望ましい上限は、
2.50重量%である。 【0028】Co:0.005乃至5.00重量% Coは高クロムフェライト系鋼においてδフェライトの
析出を抑え、溶接金属の靭性を向上させるためには重要
でかつ有効な元素である。Co含有量が0.005重量
%未満では効果が認められず、5.00重量%を超える
と室温強度が高くなり、水素に起因する低温割れ感受性
が高くなる。なお、Coの望ましい上限は、3.50重
量%である。 【0029】B:0.0005乃至0.01重量% Bは溶接金属を微細化し、靭性を高めると共に、クリー
プ破断強度を高める効果がある。しかし、Bが0.00
05重量%未満では効果が認められず、0.01重量%
を超えて添加すると、室温強度が高くなり、水素に起因
する低温割れ感受性及び高温割れ感受性が高くなる。な
お、Bの望ましい上限は、0.007重量%である。その他 このワイヤはティグ溶接、マグ溶接及びサブマージアー
ク溶接に適用が可能である。また、ワイヤ表面にCuや
Niその他の金属のメッキを施すことも可能であるが、
その場合の合金成分はメッキの量を含めて考える必要が
ある。なお、ワイヤの表面にはメッキ以外に種々の表面
処理剤及び各種の残留物が存在する場合があるが、その
中に含まれる上記の元素も含めて各元素を規定する必要
があるのはいうまでもない。更に、通常不純物元素とし
て、P、S、As、Sb及びSn等も含まれるが、これ
らは夫々0.010重量%以下に抑えることが望まし
い。 【0030】 【実施例】以下、本発明の実施例について、比較例と比
較して説明して本発明の有効性について説明する。下記
表1及び2は溶接ワイヤの化学成分を示す。この溶接ワ
イヤは自動ティグ溶接に供するため、直径1.2mmに
仕上げた。なお、溶接ワイヤの表面にはCuメッキを施
さなかった。 【0031】表3には溶接金属の機械試験用の溶接条件
を示す。表3に示す以外はJISZ3316(軟鋼及び
低合金鋼用ティグ溶接棒及びワイヤ)に準拠した。試験
板はJISG3101(一般構造用圧延鋼材)のSS4
00に供試ワイヤでバタリングを行い、使用した。 【0032】表4には溶接試験結果を示す。低温割れ試
験は、JISZ3157(U形溶接割れ試験方法)に準
拠し、予熱温度を150℃とした。溶接後72時間放置
し、、割れの発生しなかったものを良好と判定した。ま
た高温割れ試験は、JISZ3155(C形ジグ拘束突
き合わせ溶接試験方法)に準拠した。ルート間隔は2m
mである。そして、クレータ以外に割れの発生しないも
のを良好と判定した。低温割れ試験及び高温割れ試験と
も使用した母材はASTMA387Gr91鋼の板厚2
5mmのものを使用した。また、溶接条件は下記表3の
条件を適用した。但し、低温割れ試験の予熱温度を除
く。 【0033】また、機械試験は740℃で4時間の溶接
後熱処理を施した後、各種試験片を加工し、試験を行っ
た。クリープ破断試験用の試験片は平行部の直径が6.
0mm、標点間距離が30mmのものを使用した。な
お、耐割れ性及び作業性が不良のものに対しては、機械
試験を実施しなかった。機械試験の判定基準として、シ
ャルピ吸収エネルギーは脆化促進熱処理(ステップクー
リング)55J以上、クリープ破断時間は1000時間
以上を良好と判定した。 【0034】実施例1乃至4は全て本発明の範囲に入っ
ているため、溶接作業性、高温、低温の耐割れ性及び機
械的性能の全てに満足できる結果が得られている。 【0035】比較例7はSiが低く、比較例21、23
は夫々Ti、Alが高く、比較例25はNが高く、比較
例26はOが低く、比較例29、31は夫々Ca、Mg
が高いため、溶接作業性が悪く、溶接ワイヤとして不適
当である。また、比較例36は個々の成分は本発明の範
囲内であるが、Ti+Al+10×(Ca+Mg)の式
で計算した値が0.13重量%を超えるため、スラグの
多量発生により、やはり溶接作業性が不良であった。 【0036】比較例6はCが、比較例11はCrが、比
較例13はMoが、比較例19はVが、比較例32はW
が、比較例33はCuが、比較例34はCoが、比較例
35はBが、本発明の範囲を超えるため、割れが発生
し、溶接ワイヤとして不適当であることが分かった。比
較例5はCが、比較例8はSiが、比較例9はMnが、
比較例14はNiが、比較例17はNb+Taが、比較
例22はAlが、比較例24はNが、比較例27はO
が、比較例28はCaが、比較例30はMgが本発明の
範囲に入らないため、靭性が良くない。 【0037】更に、比較例5はCが、比較例10はMn
が、比較例12はMoが、比較例15はNiが、比較例
16はNb+Taが、比較例18はVが、比較例20は
Tiが、比較例22はAlが、比較例24はNが本発明
の範囲に入らないため、十分なクリープ破断寿命が得ら
れなかった。 【0038】以上の結果により、本発明は良好な溶接作
業性と耐割れ性を有し、更に優れた機械的性能を得るこ
とができる溶接材料であることが明らかである。 【0039】 【表1】 【0040】 【表2】 【0041】 【表3】 【0042】 【表4】 【0043】 【発明の効果】以上説明したように、本願発明によれ
ば、クリープ破断強度を主体とする高温強度特性が極め
て優れており、良好な溶接作業性と耐割れ性が得られ、
更に、優れた機械的性能を得ることができる。このた
め、本発明の溶接ワイヤを使用すれば、高クロムフェラ
イト鋼をその特性を生かした種々の分野へ適用すること
が可能となり、本発明は優れた効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention
And a welding wire for high chromium ferrite steel containing Cr. 2. Description of the Related Art High chromium ferritic steels, in addition to good strength properties at high temperatures, also have excellent oxidation resistance, and have a lower coefficient of thermal expansion and a lower susceptibility to stress corrosion cracking than austenitic stainless steels. It is used for high temperature and high pressure thermal power plants and nuclear power equipment. In recent years, from the viewpoint of protecting the global environment, efficiency has been improved by increasing operating conditions to higher temperatures and pressures, and emission of carbon dioxide gas per unit energy has been suppressed. For this purpose, various new steel materials have been developed, and many of them have already been put into practical use. Some welding materials for welding the steel materials have already been proposed with some new components. ing. However, all of the conventional welding materials have insufficient properties. For example, in JP-A-1-215489 and JP-A-2-280993, Ca, La and, if necessary, La,
It has been proposed to improve the toughness by adding Ce to lower the oxygen of the weld metal. [0005] In addition, the following publications are known. JP-A-1-215490, JP-A-2-37989. JP-A-2-268977, JP-A-1-174998, JP-A-5
177383, JP-A-5-177384, JP-A-5-
212582, JP-A-5-285691, JP-A-6-1
42981, JP-A-6-277879, JP-A-7-80
680, JP-A-7-96390, JP-A-7-16418
2, JP-A-7-204885, JP-A-7-26856
3, JP-A-7-284986. [0006] However, these known welding wires for high chromium ferritic steel have poor welding workability and insufficient high temperature strength characteristics such as creep rupture strength. . The present invention has been made in view of the above-mentioned problems, and has a sufficient high-temperature strength characteristic mainly including creep rupture strength, excellent welding workability, and a characteristic of high chromium ferritic steel. It is an object of the present invention to provide a high chromium ferritic steel welding wire that can be applied to various fields. [0008] The welding wire for high chromium ferrite steel according to the present invention has a C: 0.01 to 0.19.
Wt%, Si: 0.01 to 1.50 wt%, Mn:
0.01 to 2.00% by weight, Cr: 7.00 to 1
3.00% by weight, Mo: 0.01 to 1.60% by weight,
Ni: 0.02 to 1.50% by weight, Nb + Ta: 0.
002 to 0.25% by weight, V: 0.01 to 0.50
% By weight, Ti: 0.001 to 0.100% by weight, A
l: 0.002 to 0.10% by weight, N: 0.003 to 0.100% by weight, O: 0.002 to 0.030% by weight, Ca: 0.0002 to 0.01% by weight and M
g: containing 0.0002 to 0.01% by weight;
The sum of Al + 10 × (Ca + Mg) is limited to 0.13% by weight or less, and further, W: 0.10 to 3.00% by weight, Cu: 0.005 to 4.00% by weight, Co:
It contains at least one selected from the group consisting of 0.005 to 5.00% by weight and B: 0.0005 to 0.01% by weight, with the balance being iron and unavoidable impurities. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for adding each component of the welding wire of the present invention and the reasons for limiting the composition will be described below. C: 0.01 to 0.19% by weight C is a component necessary for enhancing the hardenability of the weld metal and ensuring the strength at room temperature, and forms carbide by post-weld heat treatment to produce creep. It is also important from the viewpoint of securing high-temperature strength characteristics such as breaking strength. C is 0.01% by weight
If it is less than the above, the above strength cannot be sufficiently obtained. Further, when C is 0.
If it exceeds 19% by weight, the strength at room temperature is too high.
The susceptibility to cold cracking due to hydrogen increases. Further, if the amount of C is so large as to exceed 0.19% by weight, the susceptibility to hot cracking is increased, and it is not suitable as a welding wire. Desirable lower and upper limits are 0.05% by weight and 0.15%, respectively.
% By weight. Si: 0.01 to 1.50% by weight Si is a deoxidizing element and an important element from the viewpoint of adjusting the bead shape. Excessive addition causes embrittlement when kept at a high temperature for a long time. Care must be taken to increase the temper embrittlement susceptibility. From the above viewpoint, the range of Si is set to 0.01 to 1.50% by weight. Desirable lower and upper limits of Si are 0.10% by weight and 0.80% by weight, respectively. Mn: 0.01 to 2.00% by weight Mn also acts as a deoxidizing element like Si, but is effective for further improving the hardenability of the weld metal and improving the toughness. However, when Mn is added in a large amount, the creep rupture strength is reduced. Therefore, the addition amount of Mn is set to 0.01% by weight to 2.00% by weight. Desirable M
The lower and upper limits of n are 0.20% by weight and 1.20% by weight, respectively. [0013] Cr: 7.00 to 13.00% by weight Cr is an important component for securing oxidation resistance and high-temperature strength characteristics. From the viewpoints of oxidation resistance and high-temperature strength, the lower limit of Cr needs to be 7.00% by weight. However, when a large amount of Cr is added, δ ferrite tends to precipitate in the martensite structure, and accordingly, the toughness is reduced. From the viewpoint of toughness, the upper limit is set to 13.00% by weight. In addition, Cr
Are preferably 8.00% by weight and 1% by weight, respectively.
2.00% by weight. Mo: 0.01 to 1.60% by weight Mo is also an important element for forming carbides and securing high-temperature strength. However, excessive addition of Mo increases the room temperature strength, increases the susceptibility to cold cracking due to hydrogen, and further reduces the toughness. From this viewpoint, the addition amount of Mo is set to 0.01% by weight to 1.60% by weight. Desirable lower and upper limits of Mo are 0.20% by weight and 1.20% by weight, respectively. Ni: 0.02 to 1.50% by Weight Ni is an important and effective element for suppressing the precipitation of δ ferrite in a high chromium ferritic steel and improving the toughness of a weld metal. However, when a large amount of Ni is added, there is a disadvantage that the creep rupture strength is reduced.
Therefore, the addition amount of Ni is set to 0.02 to 1.50% by weight. Desirable lower and upper limits of Ni are 0.10% by weight and 1.00% by weight, respectively. Nb and Ta: 0.002 to 0.25 weight
% Nb and Ta are both effective elements that undergo heat treatment after welding to form fine carbides and increase the creep rupture strength. However, when these elements are added excessively, excessive precipitates are generated, and the toughness is reduced. Since Nb and Ta both have the same action, either one or both of them may be added. Therefore, Nb and Ta
Is defined by the sum thereof, and is 0.002% by weight to 0.1% by weight.
25% by weight. Desirable lower and upper limits of the sum of Nb and Ta are 0.005% by weight and 0.15% by weight, respectively. V: 0.01 to 0.50% by weight V is an element effective in forming fine carbides and increasing creep rupture strength by undergoing heat treatment after welding in a state where V is also present with Nb or Ta. is there. However, if it is added in excess of an appropriate range, the strength at room temperature increases, and the sensitivity to cold cracking due to hydrogen decreases, which is not preferable. A suitable amount of V is 0.01 to 0.50% by weight. Desirable lower and upper limits of V are 0.05% by weight and 0.30% by weight, respectively. Ti: 0.001 to 0.100% by weight In the presence of Ti, Nb, Ta or V, Ti is also subjected to a heat treatment after welding to form fine carbides and is effective for increasing the creep rupture strength. Element. Excessive addition of Ti not only causes a decrease in toughness due to intragranular precipitation of carbides,
It causes slag with poor removability, and reduces welding workability. Therefore, the addition amount of Ti is set to 0.001% by weight to 0.100% by weight. Desirable lower and upper limits of Ti are 0.005% by weight and 0.050% by weight, respectively. Al: 0.002 to 0.10% by weight Al acts as a deoxidizing material and becomes a fine nitride in the coexistence with N, which promotes the refinement of the structure of the weld metal and is effective in improving the toughness. It is. However, excessive addition of Al generates slag having a high melting point, and significantly impairs welding workability.
Therefore, the addition amount of Al is 0.002% by weight to 0.10% by weight.
% By weight. Desirable lower and upper limits of Al are 0.005% by weight and 0.050% by weight, respectively. N: 0.003 to 0.100% by weight N forms nitrides with Al as described above and contributes not only to the improvement of the toughness of the weld metal but also to the improvement of the creep rupture strength. is there. However, when N is added excessively, it appears as a spherical defect in the weld metal. Therefore, N
Suitable range is 0.003% to 0.100% by weight
And The desirable lower limit and upper limit of N are respectively 0.0
05% by weight and 0.070% by weight. O: 0.002 to 0.030 wt% O determines the fluidity of the weld metal in a molten state, and is an extremely important element for obtaining a sound weld. In order to obtain good appearance and familiarity of the weld metal, it is necessary to add O in an amount of 0.002% by weight or more. However, when O is increased, the toughness is significantly reduced, and 0.030
It is not preferable to exceed the weight%. Desirable lower and upper limits of O are 0.003% by weight and 0.020% by weight, respectively. Ca: 0.0002 to 0.01% by weight Ca acts as a strong deoxidizing agent, reduces the amount of oxygen in the weld metal, and is effective in improving toughness. However, when Ca is added in a large amount, the amount of slag generated increases, and welding workability is impaired. The appropriate amount of Ca added is 0.0002% by weight.
To 0.01% by weight. Desirable lower and upper limits of Ca are 0.0005% by weight and 0.005% by weight, respectively. Mg: 0.0002 to 0.01% by weight Mg also acts as a strong deoxidizer when added in combination with Ca.
It is effective in reducing the oxygen content of the weld metal and improving the toughness.
When Mg is added in a large amount like Ca, the amount of slag generated increases, and welding workability is impaired. For this reason,
Mg added in an amount of 0.0002% to 0.01% by weight
And Desirable lower and upper limits of Mg are each set to 0.1.
0005% by weight and 0.005% by weight. Ti + Al + 10 × (Ca + Mg): 0.
13% by weight or less It is important to regulate the sum of Ti + Al + 10 × (Ca + Mg) to 0.13% by weight or less. As mentioned above, T
The elements i, Al, Ca, and Mg have a small amount of effective action when added in combination. However, it is necessary to regulate not only the amount of each element added alone but also the total amount of each element added. That is, as a result of studying the reduction in workability due to the generation of slag, the present inventor found that Ti + Al + 10 × (C
It has been found that it is effective to regulate the sum of (a + Mg) to 0.13% by weight or less. In addition, lanthanoid elements (eg, La and Ce) can be added in addition to these four elements.
It is desirable to keep the content to 01% by weight or less. The wire of the present invention can be further enhanced by adding a component having the following action as a selective component. W: 0.10 to 3.00% by weight W has an effect of improving the high-temperature strength characteristics of the weld metal by solid solution strengthening. However, if W is less than 0.10% by weight, this effect cannot be obtained. On the other hand, W is 3.00% by weight.
If it exceeds 300, the room temperature strength increases, and the cold cracking susceptibility due to hydrogen increases. Note that a desirable upper limit of W is
2.00% by weight. Cu: 0.005 to 4.00% by weight Cu can increase the creep rupture strength of the weld metal due to the precipitation effect. However, no effect was observed when Cu was less than 0.005% by weight. Further, when the Cu content exceeds 4.00% by weight, the room-temperature strength increases, the susceptibility to cold cracking due to hydrogen increases, and the susceptibility to hot cracking also increases. Note that a desirable upper limit of Cu is
2.50% by weight. Co: 0.005 to 5.00% by weight Co is an important and effective element for suppressing the precipitation of δ ferrite in the high chromium ferritic steel and improving the toughness of the weld metal. If the Co content is less than 0.005% by weight, no effect is observed. If the Co content exceeds 5.00% by weight, the room temperature strength increases, and the sensitivity to cold cracking due to hydrogen increases. Note that a desirable upper limit of Co is 3.50% by weight. B: 0.0005 to 0.01% by weight B has the effect of reducing the size of the weld metal, increasing the toughness, and increasing the creep rupture strength. However, B is 0.00
No effect is observed at less than 05% by weight, and 0.01% by weight
If added in excess of, the room temperature strength increases and the sensitivity to cold cracking and hot cracking due to hydrogen increases. Note that a desirable upper limit of B is 0.007% by weight. Others This wire is applicable to TIG welding, MAG welding and submerged arc welding. It is also possible to apply Cu, Ni or other metal plating on the wire surface,
In that case, it is necessary to consider the alloy component including the amount of plating. In addition, various surface treatment agents and various residues other than plating may be present on the surface of the wire, but it is necessary to define each element including the above elements contained therein. Not even. Further, although P, S, As, Sb, Sn and the like are usually contained as impurity elements, it is desirable that each of them is suppressed to 0.010% by weight or less. The present invention will be described below in more detail with reference to Examples and Comparative Examples. Tables 1 and 2 below show the chemical composition of the welding wire. This welding wire was finished to a diameter of 1.2 mm to be used for automatic TIG welding. The surface of the welding wire was not plated with Cu. Table 3 shows welding conditions for a mechanical test of the weld metal. Except as shown in Table 3, it was based on JISZ3316 (TIG welding rod and wire for mild steel and low alloy steel). The test plate is SS4 of JIS G3101 (rolled steel for general structure)
At 00, buttering was performed with a test wire and used. Table 4 shows the results of the welding test. The low-temperature cracking test was based on JISZ3157 (U-type welding cracking test method), and the preheating temperature was set to 150 ° C. After welding, it was left for 72 hours, and one in which no crack occurred was judged to be good. The hot cracking test was based on JISZ3155 (C-type jig restraint butt welding test method). Route interval is 2m
m. Those which did not crack other than craters were determined to be good. The base material used for both the low-temperature cracking test and the high-temperature cracking test was ASTMA387Gr91 steel with a thickness of 2
The thing of 5 mm was used. In addition, the welding conditions used were those shown in Table 3 below. However, this excludes the preheating temperature in the low-temperature cracking test. Further, in the mechanical test, after performing heat treatment after welding at 740 ° C. for 4 hours, various test pieces were processed and tested. The specimen for creep rupture test has a parallel part diameter of 6.
One having a distance of 0 mm and a distance between gauge points of 30 mm was used. In addition, the mechanical test was not implemented about the thing with poor crack resistance and workability. As criteria for the mechanical test, the Charpy absorbed energy was judged to be good when the embrittlement promoting heat treatment (step cooling) was 55 J or more, and the creep rupture time was 1000 hours or more. Since Examples 1 to 4 all fall within the scope of the present invention, satisfactory results were obtained in all of the welding workability, high-temperature and low-temperature crack resistance, and mechanical performance. Comparative Example 7 had low Si, and Comparative Examples 21 and 23
Are high in Ti and Al, Comparative Example 25 is high in N, Comparative Example 26 is low in O, and Comparative Examples 29 and 31 are Ca and Mg respectively.
Therefore, the welding workability is poor and is unsuitable as a welding wire. In Comparative Example 36, although the individual components were within the range of the present invention, the value calculated by the formula of Ti + Al + 10 × (Ca + Mg) exceeded 0.13% by weight. Was bad. Comparative Example 6 was C, Comparative Example 11 was Cr, Comparative Example 13 was Mo, Comparative Example 19 was V, and Comparative Example 32 was W.
However, since Comparative Example 33 contained Cu, Comparative Example 34 contained Co, and Comparative Example 35 contained B exceeded the range of the present invention, it was found that cracks occurred and were unsuitable as welding wires. Comparative Example 5 has C, Comparative Example 8 has Si, Comparative Example 9 has Mn,
Comparative Example 14 was Ni, Comparative Example 17 was Nb + Ta, Comparative Example 22 was Al, Comparative Example 24 was N, and Comparative Example 27 was O.
However, in Comparative Example 28, Ca was not included in the range of the present invention, and in Comparative Example 30, Mg was not included in the range of the present invention. Further, Comparative Example 5 contains C, and Comparative Example 10 contains Mn.
However, Comparative Example 12 was Mo, Comparative Example 15 was Ni, Comparative Example 16 was Nb + Ta, Comparative Example 18 was V, Comparative Example 20 was Ti, Comparative Example 22 was Al, and Comparative Example 24 was N. Since it did not fall within the range of the present invention, a sufficient creep rupture life could not be obtained. From the above results, it is apparent that the present invention is a welding material having good welding workability and crack resistance and capable of obtaining further excellent mechanical performance. [Table 1] [Table 2] [Table 3] [Table 4] As described above, according to the present invention, high-temperature strength characteristics mainly including creep rupture strength are extremely excellent, and good welding workability and crack resistance can be obtained.
Further, excellent mechanical performance can be obtained. For this reason, if the welding wire of the present invention is used, high chromium ferritic steel can be applied to various fields utilizing its characteristics, and the present invention exhibits excellent effects.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 C:0.01乃至0.19重量%、S
i:0.01乃至1.50重量%、Mn:0.01乃至
2.00重量%、Cr:7.00乃至13.00重量
%、Mo:0.01乃至1.60重量%、Ni:0.0
2乃至1.50重量%、Nb+Ta:0.002乃至
0.25重量%、V:0.01乃至0.50重量%、T
i:0.001乃至0.100重量%、Al:0.00
2乃至0.10重量%、N:0.003乃至0.100
重量%、O:0.002乃至0.030重量%、Ca:
0.0002乃至0.01重量%及びMg:0.000
2乃至0.01重量%を含有し、Ti+Al+10×
(Ca+Mg)の和を0.13重量%以下に制限すると
共に、更に、W:0.10乃至3.00重量%、Cu:
0.005乃至4.00重量%、Co:0.005乃至
5.00重量%及びB:0.0005乃至0.01重量
%からなる群から選択された少なくとも1種を含有し、
残部は鉄及び不可避的不純物からなることを特徴とする
高クロムフェライト鋼用溶接ワイヤ。
(57) [Claims 1] C: 0.01 to 0.19% by weight, S
i: 0.01 to 1.50% by weight, Mn: 0.01 to 2.00% by weight, Cr: 7.00 to 13.00% by weight, Mo: 0.01 to 1.60% by weight, Ni: 0.0
2 to 1.50% by weight, Nb + Ta: 0.002 to 0.25% by weight, V: 0.01 to 0.50% by weight, T
i: 0.001 to 0.100% by weight, Al: 0.00
2 to 0.10% by weight, N: 0.003 to 0.100
% By weight, O: 0.002 to 0.030% by weight, Ca:
0.0002 to 0.01% by weight and Mg: 0.000
2 to 0.01% by weight, Ti + Al + 10 ×
The sum of (Ca + Mg) is limited to 0.13% by weight or less, and W: 0.10 to 3.00% by weight;
0.005 to 4.00% by weight, Co: 0.005 to 5.00% by weight, and B: at least one selected from the group consisting of 0.0005 to 0.01% by weight,
Welding wire for high chromium ferritic steel characterized by the balance consisting of iron and unavoidable impurities.
JP07750596A 1996-03-29 1996-03-29 Welding wire for high chromium ferritic steel Expired - Lifetime JP3375817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07750596A JP3375817B2 (en) 1996-03-29 1996-03-29 Welding wire for high chromium ferritic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07750596A JP3375817B2 (en) 1996-03-29 1996-03-29 Welding wire for high chromium ferritic steel

Publications (2)

Publication Number Publication Date
JPH09267190A JPH09267190A (en) 1997-10-14
JP3375817B2 true JP3375817B2 (en) 2003-02-10

Family

ID=13635833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07750596A Expired - Lifetime JP3375817B2 (en) 1996-03-29 1996-03-29 Welding wire for high chromium ferritic steel

Country Status (1)

Country Link
JP (1) JP3375817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037205A1 (en) * 2014-12-25 2016-06-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wire for gas shield arc welding

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375868B2 (en) * 1997-12-05 2003-02-10 株式会社神戸製鋼所 Low hydrogen coated arc welding rod for high Cr ferritic heat resistant steel
ES2196720T3 (en) 1998-01-20 2003-12-16 Mitsubishi Heavy Ind Ltd WELDING MATERIALS FOR STEELS WITH HIGH CHROME CONTENT.
JP2000301377A (en) * 1999-04-16 2000-10-31 Sumitomo Metal Ind Ltd Welded joint of ferritic heat resistant steel and welding material
JP3854440B2 (en) * 2000-02-07 2006-12-06 三菱重工業株式会社 Welding material, gas metal arc welding method and welded structure
JP4542239B2 (en) * 2000-07-06 2010-09-08 日本精線株式会社 Stainless steel wire for gas-encapsulated arc welding
CN100342052C (en) * 2004-01-20 2007-10-10 吉林大学 Metamorphic hot-work die steel
JP5216199B2 (en) * 2005-08-08 2013-06-19 株式会社神戸製鋼所 Marine welded joints and welded structures with excellent crevice corrosion resistance
RU2477334C1 (en) * 2011-07-12 2013-03-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Welding wire from low-carbon alloy steel
DE102012009496B4 (en) * 2012-05-14 2017-05-11 Stahlwerk Ergste Westig Gmbh chrome steel
JP6039532B2 (en) * 2013-11-08 2016-12-07 三菱重工業株式会社 Welding material for ferritic heat resistant steel
JP6483540B2 (en) * 2014-12-25 2019-03-13 株式会社神戸製鋼所 Gas shielded arc welding wire
EP3391989B1 (en) * 2015-12-18 2020-08-26 Nippon Steel Corporation Welding material for ferrite heat-resistant steel, welding joint for ferrite heat-resistant steel, and method for producing welding joint for ferrite heat-resistant steel
CN105728979B (en) * 2016-04-01 2018-07-24 华中科技大学 Strengthen the method on hot forming dies materials surface using welding wire
CN106271205B (en) * 2016-08-31 2019-10-22 北京国电富通科技发展有限责任公司 A kind of alloy welding wire
CN107097013A (en) * 2017-04-05 2017-08-29 西安亚剑石化设备有限公司 A kind of welding of chromium built-up welding, solder flux and the welding procedure of chromium built-up welding
JP7218573B2 (en) * 2018-12-27 2023-02-07 日本製鉄株式会社 Ferritic heat-resistant steel weld metal and welded joint comprising the same
CN111151919B (en) * 2019-12-27 2022-03-08 中国第一重型机械集团大连加氢反应器制造有限公司 Submerged-arc welding wire matched with steel for 3Ni-1.6Cr-0.5Mo nuclear power equipment
CN112025048B (en) * 2020-09-09 2022-07-29 四川西冶新材料股份有限公司 Submerged-arc welding wire and welding process for 9Cr-3W-3Co martensite heat-resistant steel
CN113275788A (en) * 2021-05-19 2021-08-20 中国科学院金属研究所 Alloy welding wire for welding high-wear-resistance cobalt-based composite material and preparation method and application thereof
WO2023037921A1 (en) * 2021-09-07 2023-03-16 株式会社神戸製鋼所 Bond flux for submerged arc welding, and weld metal
JP2023038836A (en) * 2021-09-07 2023-03-17 株式会社神戸製鋼所 Bond flux for submerged arc welding and weld metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037205A1 (en) * 2014-12-25 2016-06-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wire for gas shield arc welding

Also Published As

Publication number Publication date
JPH09267190A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
JP3375817B2 (en) Welding wire for high chromium ferritic steel
JP5010301B2 (en) Ferritic stainless steel for exhaust gas path member and exhaust gas path member
JP3457834B2 (en) Weld metal for low Cr ferritic heat resistant steel with excellent toughness
JPH09225679A (en) Ni base heat resistant brazing filter metal excellent in wettability and corrosion resistance
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
WO2020196431A1 (en) COVERED ELECTRODE FOR HIGH-Cr FERRITIC HEAT-RESISTANT STEELS
JP3251424B2 (en) Welding wire for high strength Cr-Mo steel
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JP6795038B2 (en) Austenitic heat-resistant alloy and welded joints using it
JP2742201B2 (en) TIG welding wire for high strength Cr-Mo steel
JP2017020054A (en) Stainless steel and stainless steel tube
JP3582463B2 (en) Welding material and metal for low alloy heat resistant steel
JP7295418B2 (en) welding material
JPH0195895A (en) Stainless steel wire for gas shielded arc welding
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP3928200B2 (en) Ferritic heat resistant steel with excellent high temperature weld crack resistance and toughness in heat affected zone
JP4424484B2 (en) Welded joints with excellent cold cracking resistance and steel for welding materials
RU2302326C2 (en) Welding wire composition for welding corrosion resistant steels and nickel base refractory alloys
JPS59159974A (en) Ferritic chromium stainless steel
JPH08294793A (en) Welding material with high strength, high corrosion resistance and superior welding performance for ferritic steel
JPH0796390A (en) Wire for welding 9cr-1mo steel
KR102658542B1 (en) Covered arc welding rod for high Cr ferritic heat-resistant steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

EXPY Cancellation because of completion of term