JPS592935B2 - multiplication circuit - Google Patents
multiplication circuitInfo
- Publication number
- JPS592935B2 JPS592935B2 JP51120614A JP12061476A JPS592935B2 JP S592935 B2 JPS592935 B2 JP S592935B2 JP 51120614 A JP51120614 A JP 51120614A JP 12061476 A JP12061476 A JP 12061476A JP S592935 B2 JPS592935 B2 JP S592935B2
- Authority
- JP
- Japan
- Prior art keywords
- multiplier
- product
- line
- multiplication
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
本発明は、乗算回路、特にテーブル索引により積を求め
るに当つてテーブル容量の減少をはかるようにした乗算
回路に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multiplication circuit, and more particularly to a multiplication circuit designed to reduce table capacity when calculating products by table indexing.
被乗数ならびに乗数が例えば8ビット幅をもつ乗算器を
構成する場合、第1図に示すように被乗数ならびに乗数
を4ビット幅に分割し4ビット幅の九九表と加算器によ
り構成すると高速で金物量の少ない乗算器が構成できる
。When constructing a multiplier in which the multiplicand and the multiplier have a width of, for example, 8 bits, it is possible to divide the multiplicand and the multiplier into 4-bit widths as shown in Fig. 1, and configure them using a 4-bit wide multiplication table and an adder. A small multiplier can be constructed.
即ち第1図において、1は乗算回路、100、101は
被乗数人力(X7ないしX。)、102、103は乗数
人力(X7ないしYo)、104ないし108はブロッ
ク間接続ライン、110ないし112は被乗数および乗
数が4ビット幅をもつ場合の九九表テーブル、114お
よび115は加算器、109は積の出力ラインを表わし
ている。図において九九表テーブル110は(X3ない
しX。That is, in FIG. 1, 1 is a multiplication circuit, 100 and 101 are multiplicands (X7 to X), 102 and 103 are multipliers (X7 to Yo), 104 to 108 are inter-block connection lines, and 110 to 112 are multiplicands. and a multiplication table when the multiplier has a width of 4 bits, 114 and 115 represent adders, and 109 represents a product output line. In the figure, the multiplication table 110 is (X3 to X).
)と(Y7ないしY4)との部分積(al0ないしa4
)を、111は(X7ないしX4)と(Y3ないしY。
)との部分積(bllないしb4)を、112は(X3
ないしX。)と(Y。ないしY。)との部分積(c7な
いしco)を、113は(X7ないしX4)と(Y7な
いしY4)との部分積(C15ないLf、8)を夫々発
生し、加算器114では部分積(allないしa4)ど
(、b41ないしb4)との加算を、115では部分積
(C15ないしc。)と加算器114の出力との加算を
行ない積(M15ないしMo)を求める。ここで九九表
テーブル110ないし113をROMで構成した場合、
その容量は(デコーダ+8×28=2048ビット)を
必要とし、一方これをAND−ORマトリクス(J’L
A)で構成した場合その容量は{(入力一8×2)+(
出力ニ8)}×(項数二225)=5400ビツトを必
要とする。また加算器をPLAで構成した場合総容量は
672ビツトを必要とする。以上をまとめると第1図に
示す8ビツト幅の乗算器をすべてPLAにより実現し1
チツプに収容した場合総容量は5,400×4+672
=22,272ビツトとなり、これを゛バイポーラIC
で構成することは現状の製造技術では不可能と考えてよ
い。本発明は、前記欠点を除去するため、被乗数ならび
に乗数のビツト幅が4ビツトの九九表テーブルの容量を
減少させ、これを組み合せて構成する8ビツト幅の乗算
器を1チツプで構成するようにしたものであり、以下図
面について詳細に説明する。被乗数ならびに乗数のビツ
ト幅が4ビツトの九九表テーブルをPLAで構成し、そ
の容量を減少させる方法としては以下の2つが考えられ
る。) and (Y7 to Y4) (al0 to a4
), 111 is (X7 to X4) and (Y3 to Y.
), 112 is (X3
Or X. ) and (Y. to Y.), 113 generates partial products (C15 not Lf, 8) of (X7 to X4) and (Y7 to Y4), and add them. The adder 114 adds the partial products (all to a4) (, b41 to b4), and the adder 115 adds the partial products (C15 to c.) and the output of the adder 114 to obtain the product (M15 to Mo). demand. Here, if the multiplication table tables 110 to 113 are configured with ROM,
Its capacity requires (decoder + 8 x 28 = 2048 bits), while it is divided into AND-OR matrix (J'L
When configured as A), its capacity is {(input-8×2)+(
Output 28)}×(number of terms 2225)=5400 bits are required. Furthermore, if the adder is constructed of PLA, a total capacity of 672 bits is required. To summarize the above, the 8-bit wide multiplier shown in Figure 1 can be realized entirely by PLA.
When stored in a chip, the total capacity is 5,400 x 4 + 672
= 22,272 bits, which is used as a bipolar IC.
It can be considered that it is impossible with the current manufacturing technology. In order to eliminate the above-mentioned drawbacks, the present invention reduces the capacity of a multiplication table whose multiplicands and multipliers are 4 bits wide, and constructs an 8-bit wide multiplier in one chip by combining the multiplicands and multipliers. The drawings will be described in detail below. The following two methods are conceivable for constructing a multiplicity table in which the bit width of the multiplicand and multiplier is 4 bits using PLA and reducing its capacity.
即ち第1の方法は九九表テーブルにおいてXiXXjな
る積とXjXXiなる積とは同一であることを利一
1用する方法であり、九九表テーブルを一にす
るこ) 2とができる。In other words, the first method takes advantage of the fact that the product XiXXj and the product XjXXi are the same in the multiplication table.
This is a method that uses 1) and 2) to make the multiplication table one.
しかしXiXXjなる積しか記憶していないため、Xj
XXiなる積を求めるときはXlXXjなる積の形に変
換するアドレス変換回路が必要となる。第2の方法はテ
ーブルを分割し外部にテーブルを選択するデコーダ回路
を設ける方法である。分割数を増すとテーブル容量は小
さくなり一方デコーダ回路に必要なPLA容量は大きく
なり、総容量が最小となる分割数が存在する。一般にこ
の最適分割数は被乗数および乗数のビツト幅をnとした
とき2nとなり、例えばn=4とした場合16分割が最
適となる。第2図は本発明の実施例であつて上記2つの
方法を夫々とり入れて乗算回路を構成している。However, since I only remember the product XiXXj, Xj
When obtaining the product XXi, an address conversion circuit is required to convert the product into the product XlXXj. The second method is to divide the table and provide an external decoder circuit for selecting the table. As the number of divisions increases, the table capacity becomes smaller, while the PLA capacity required for the decoder circuit increases, and there is a number of divisions that minimizes the total capacity. Generally, the optimum number of divisions is 2n, where n is the bit width of the multiplicand and the multiplier. For example, when n=4, 16 divisions is optimal. FIG. 2 shows an embodiment of the present invention, in which a multiplication circuit is constructed by incorporating each of the above two methods.
図中の符号100は被乗数人力(X3ないしX。)、1
03は乗数人力(Y,ないしY4)、104は部分積出
力(AllないしA4)、200はXl,XOとY5,
Y4との大きさを比較する比較回路、213はXl,X
O>Y,,Y4であるとり2となるライン、201はX
l,XO,Y5,Y4の値をもとに203ないし212
の10個の積マトリクスのうち1個を選択する選択回路
、202はアドレス変換回路であつてライン213が″
1″のときはX3,X2,Y7,Y6をライン215へ
そのまま送出し一方ライン213が″1″のときはY7
,Y6,X3,X2をライン215へ送出するもの、2
03ないし212は部分積を記憶している積マトリクス
を表わす。なおマトリクス203は(X3X2OO)と
(Y7Y6OO)との積を、マトリクス204は(X3
X2OO)と(Y7Y6Ol)との積を、マトリクス2
05は(X3X2Ol)と(X7X6Ol)との積を、
マトリクス206は(X3X2OO)と(Y7Y6lO
)との積を、マトリクス207は(X3X2Ol)と(
Y7Y6lO)との積を、マトリクス208は(X3X
2lO)と(Y7Y6lO)との積を、マトリクス20
9は(X3X2OO)と(Y7Y6ll)との積を、マ
トリクス210は(X3X2Ol)と(Y7Y6ll)
との積を、マトリクス211は(X3X2lO)と(Y
7Y5ll)との積を、マトリクス212は(X3X2
ll)と(Y7Y6ll)との積を夫々発生する。更に
積マトリクス203,205,208,212は前記第
1の方法を適用し容量を減少している。また216ない
し225は選択回路201の出力であり、(XlXOY
5Y4)が(0000)のときライン216を、(01
00)と(0001)とのときライン217を、(01
01)のときライン218を、(1000)と(001
0)とのときライン219を、(1001)と(011
0)とのときライン220を、(1010)のときライ
ン221を、(1100)と(0011)とのときライ
ン222を、(1101)と(0111)とのときライ
ン223を、(1110)と(1011)とのときライ
ン224を、(1111)のときライン225を夫々選
択する。The code 100 in the figure is the multiplicand human power (X3 to X.), 1
03 is multiplier manual power (Y, to Y4), 104 is partial product output (All to A4), 200 is Xl, XO and Y5,
Comparison circuit for comparing the size with Y4, 213 is Xl,
Line 2 is O>Y,, Y4, 201 is X
203 to 212 based on the values of l, XO, Y5, Y4
202 is an address conversion circuit, and the line 213 is "
1", X3, X2, Y7, Y6 are sent as they are to line 215, while when line 213 is "1", Y7 is sent out.
, Y6, X3, X2 to line 215, 2
03 to 212 represent product matrices storing partial products. The matrix 203 is the product of (X3X2OO) and (Y7Y6OO), and the matrix 204 is the product of (X3X2OO)
The product of (X2OO) and (Y7Y6Ol) is expressed as matrix 2
05 is the product of (X3X2Ol) and (X7X6Ol),
The matrix 206 is (X3X2OO) and (Y7Y6lO
), the matrix 207 calculates the product of (X3X2Ol) and (
The matrix 208 is the product of (X3X
2lO) and (Y7Y6lO) in matrix 20
9 is the product of (X3X2OO) and (Y7Y6ll), and matrix 210 is (X3X2Ol) and (Y7Y6ll)
The matrix 211 is (X3X2lO) and (Y
7Y5ll), the matrix 212 is (X3X2
ll) and (Y7Y6ll), respectively. Further, the capacity of the product matrices 203, 205, 208, and 212 is reduced by applying the first method. Further, 216 to 225 are outputs of the selection circuit 201, (XlXOY
5Y4) is (0000), line 216 is (01
00) and (0001), the line 217 is changed to (01
01), the line 218 is changed to (1000) and (001
0), the line 219 is changed to (1001) and (011
0), line 220, (1010), line 221, (1100) and (0011), line 222, (1101) and (0111), line 223, (1110). When (1011), line 224 is selected, and when (1111), line 225 is selected.
例えば第2図において入力100に(X3X2XlXO
)として(0101)が入力103に(Y7Y6Y5Y
4)として(1110)が印加されたとすると、比較回
路200はX,XO<Y5Y4即ち01く10なためラ
イン213は″0″となり、選択回路201には(Xl
XOY5Y4)即ち(0110)が印加されることから
ライン220が″1″となり、アドレス変換回路202
ではライン213が″0″であるため(X3,X2,Y
7,Y6)として(0111)をライン215へ送出す
る。この結集積マトリクス207が選択され部分積とし
て出力104へ(01000110)を出力する。゛以
上では第1図に示す110の九九表テーブルについて説
明したが、九九表テーブル111ないし113にも同様
な構成がとられる。第2図の構成をPLAで構成した場
合、2,614ビツト以下で構成できるため、第1図で
示す8ビツト幅の乗算器の総容量は2,614×4+6
7211,128ビツト以下で構成でき、現バイポーラ
の製造技術から1チツプで構成することが可能となる。For example, in Fig. 2, input 100 (X3X2XlXO
) as (0101) to input 103 (Y7Y6Y5Y
4), if (1110) is applied, the line 213 becomes "0" because X,
Since XOY5Y4), that is, (0110) is applied, the line 220 becomes "1", and the address conversion circuit 202
Then, since line 213 is "0" (X3, X2, Y
7, Y6) and sends (0111) to line 215. This integrated product matrix 207 is selected and outputs (01000110) to the output 104 as a partial product. Although the above description has been made regarding the multiplication table 110 shown in FIG. 1, the multiplication table tables 111 to 113 also have a similar configuration. If the configuration shown in Figure 2 is constructed using PLA, it can be configured with 2,614 bits or less, so the total capacity of the 8-bit wide multiplier shown in Figure 1 is 2,614 x 4 + 6.
It can be configured with 7211,128 bits or less, and can be configured with one chip using the current bipolar manufacturing technology.
なお第1図で示した乗算器1を用い被乗数ならびに乗数
が夫々16ビツト幅の乗算器を構成する場合、乗算器1
を4個と16ビツト幅カロ算器1個と24ビツト幅加算
器1個を接続することにより実現できる。Note that when the multiplier 1 shown in FIG.
This can be realized by connecting four digits, one 16-bit width digitizer, and one 24-bit width adder.
すなわち第1図で示す乗算器1に加算器を付加しておけ
ば拡張性に富んだ乗算器が構成できる。第3図は8ビツ
ト幅の乗算器の本発明による実施例であつて、図中1は
第1図に示すと同じ乗算器、300は他の乗算器からの
部分積を入力するライン、301は16ビツト幅加算器
、302は積出力である。例えば16ビツト輻の乗算器
は第3図に示す乗算器を4個設置し、4個の乗算器の3
00と302とを適宜接続することにより実現できる。
第3図の構成をPLAで実現した場合に容量的にみて1
チツプに収容することは可能である。以上8ビツト幅の
乗算器の実施例について説明したが、ビツト幅が変化し
ても同様に適用できることはいうまでもない。That is, by adding an adder to the multiplier 1 shown in FIG. 1, a highly expandable multiplier can be constructed. FIG. 3 shows an embodiment of an 8-bit wide multiplier according to the present invention, in which 1 is the same multiplier as shown in FIG. 1, 300 is a line for inputting partial products from other multipliers, 301 is a 16-bit wide adder, and 302 is a product output. For example, for a 16-bit multiplier, four multipliers shown in Figure 3 are installed, and three of the four multipliers are
This can be realized by appropriately connecting 00 and 302.
If the configuration shown in Figure 3 is realized with PLA, the capacity will be 1
It is possible to accommodate it on a chip. Although the embodiment of the multiplier with an 8-bit width has been described above, it goes without saying that the same can be applied even if the bit width changes.
以上説明したように本発明は演算時間を大幅に増加させ
ることなく、PLA化した場合の総容量が少ない乗算器
を構成できる。As explained above, the present invention can configure a multiplier with a small total capacity when implemented as a PLA without significantly increasing the calculation time.
そして、(1) 8ビツト幅の乗算器をも1チツプ上で
構成できる、(2)さらに拡張性をもたせるため上記(
1)の構成に16ビツト幅の加算器を付加したとしても
これらを1チツプ上で構成できる、という大きい利点を
もつている。(1) An 8-bit wide multiplier can also be configured on one chip, (2) In order to provide further expandability, the above (
Even if a 16-bit width adder is added to the configuration of 1), it has the great advantage of being able to be configured on one chip.
第1図は従来の8ビツト幅乗算器の一例、第2図は本発
明に用いる4ビツト幅の九九表テーブルの一実施例構成
、第3図は8ビツト幅乗算器を構成した本発明の一実施
例を示す。
図中100,101は被乗数人力、102,103は乗
数人力、104ないし108はプロツク間接続ライン、
110ないし112は九九表テーブル、114,115
は加算器、109は積出力、1は8ビツト幅乗算器、2
00は比較回路、213は比較回路出力、201は選択
回路、216ないし225は選択回路出力、202はア
ドレス変換回路、203ないし212は積マトリクス、
300は部分積人力、301は加算器、302は積出力
を表わす。FIG. 1 shows an example of a conventional 8-bit wide multiplier, FIG. 2 shows an example configuration of a 4-bit wide multiplication table used in the present invention, and FIG. 3 shows an 8-bit wide multiplier according to the present invention. An example is shown below. In the figure, 100 and 101 are multiplicand human power, 102 and 103 are multiplier human power, 104 to 108 are inter-block connection lines,
110 to 112 are multiplication tables, 114, 115
is an adder, 109 is a product output, 1 is an 8-bit wide multiplier, 2
00 is a comparison circuit, 213 is a comparison circuit output, 201 is a selection circuit, 216 to 225 are selection circuit outputs, 202 is an address conversion circuit, 203 to 212 are product matrices,
300 represents a partial product, 301 represents an adder, and 302 represents a product output.
Claims (1)
をそなえ、与えられた乗数と被乗数とにより上記部分積
テーブルを索引して積を得る乗算器において、被乗数と
乗数との大きさを比較する比較手段と、被乗数と乗数と
によりアクセスすべき上記部分積テーブルを選択する選
択手段と、上記比較手段により被乗数と乗数とからなる
情報を被乗数・乗数あるいは乗数・被乗数の順序に変換
するアドレス変換手段と、上記選択手段とアドレス変換
手段とからの情報により上記複数個の部分積テーブルを
索引して積を求めることを特徴とする乗積回路。 2 上記乗算回路をNビット幅の出力をもつよう構成す
ると共に該乗算回路を複数個配置し、該複数個の乗算回
路からの部分積を加算する加算回路をそなえたことを特
徴とする特許請求の範囲第1項記載の乗算回路。[Scope of Claims] 1. A multiplier that is provided with a partial product table that divides a partial product into a plurality of parts and stores them, and that indexes the partial product table using a given multiplier and multiplicand to obtain a product. a selection means for selecting the partial product table to be accessed based on the multiplicand and the multiplier; and a selection means for selecting the partial product table to be accessed based on the multiplicand and the multiplier; 1. A multiplication circuit comprising: address conversion means for converting in order; and a product obtained by indexing said plurality of partial product tables using information from said selection means and said address conversion means. 2. A patent claim characterized in that the multiplication circuit is configured to have an N-bit width output, a plurality of the multiplication circuits are arranged, and an addition circuit is provided for adding partial products from the plurality of multiplication circuits. The multiplier circuit according to the first term.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51120614A JPS592935B2 (en) | 1976-10-07 | 1976-10-07 | multiplication circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51120614A JPS592935B2 (en) | 1976-10-07 | 1976-10-07 | multiplication circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5345948A JPS5345948A (en) | 1978-04-25 |
JPS592935B2 true JPS592935B2 (en) | 1984-01-21 |
Family
ID=14790592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51120614A Expired JPS592935B2 (en) | 1976-10-07 | 1976-10-07 | multiplication circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS592935B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4484300A (en) * | 1980-12-24 | 1984-11-20 | Honeywell Information Systems Inc. | Data processor having units carry and tens carry apparatus supporting a decimal multiply operation |
JPS58142411U (en) * | 1981-12-09 | 1983-09-26 | 田中 元康 | Corrosion-resistant bolts and nuts with washer impregnated with corrosion inhibitor |
JPS63105848A (en) * | 1986-10-23 | 1988-05-11 | Nippon Telegr & Teleph Corp <Ntt> | Assembly device for optical connector |
JPS6368048U (en) * | 1987-09-30 | 1988-05-07 | ||
JP2830566B2 (en) * | 1992-01-13 | 1998-12-02 | 日本電気株式会社 | Decimal multiplier |
-
1976
- 1976-10-07 JP JP51120614A patent/JPS592935B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5345948A (en) | 1978-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sam et al. | A generalized multibit recoding of two's complement binary numbers and its proof with application in multiplier implementations | |
JPH0456339B2 (en) | ||
JPS62280930A (en) | Digital multiplier | |
JPH05134851A (en) | Multiplying circuit output system | |
JPS592935B2 (en) | multiplication circuit | |
JP3256251B2 (en) | Multiplier | |
JPH0149973B2 (en) | ||
JPH076024A (en) | Decimal number multiplier | |
Wang | A unified unsigned/signed binary multiplier | |
US4325056A (en) | BCD To binary converter | |
US3890496A (en) | Variable 8421 BCD multiplier | |
JPS6218931B2 (en) | ||
Darsana et al. | Implementation and Analysis of Single Digit BCD Multipliers Without Generating Partial Products | |
JPH11237973A (en) | Multiplier | |
JPH07141150A (en) | Multiplier | |
US5923888A (en) | Multiplier for the multiplication of at least two figures in an original format | |
US6775685B1 (en) | Method and apparatus for calculating energy in a-law or μ-law encoded speech signals | |
JP3433487B2 (en) | Binary to decimal converter | |
JPS6289135A (en) | Digital fixed point multiplier | |
JPH05224888A (en) | Multiplication circuit for decimal point position varying data | |
JPH0944340A (en) | Parallel multiplying circuit | |
JPS6158036A (en) | Multiplier | |
SU1116427A1 (en) | Multiplying device | |
JPS6155690B2 (en) | ||
JPS62214435A (en) | Digital dividing circuit |