JPS5924445A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPS5924445A
JPS5924445A JP13344882A JP13344882A JPS5924445A JP S5924445 A JPS5924445 A JP S5924445A JP 13344882 A JP13344882 A JP 13344882A JP 13344882 A JP13344882 A JP 13344882A JP S5924445 A JPS5924445 A JP S5924445A
Authority
JP
Japan
Prior art keywords
substrate
incidence
angle
vapor
productivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13344882A
Other languages
Japanese (ja)
Other versions
JPH0551969B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13344882A priority Critical patent/JPS5924445A/en
Publication of JPS5924445A publication Critical patent/JPS5924445A/en
Publication of JPH0551969B2 publication Critical patent/JPH0551969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve performance and productivity satisfactorily when a ferromagnetic layer is formed, by setting the angle of incidence of an electron beam to the vaporizing surface of ferromagnetic material to <=45 deg. and the angle of incidence of vapor to a high polymer substrate to >=40 deg. when directing the vapor to the substrate in movement. CONSTITUTION:When the substrate 1 moves along a rotating support body 3, the ferromagnetic layer is formed on the substrate 1, but vapor flow radiated from the molten ferromagnetic material in a vapor deposition source container 5 has an angle distribution; thin-film formation starts with 90 deg. incidence and the speed of the vapor deposition increases to a maximum speed (thetamax) as the angle of incidence decreases, and then decreases to the contrary; and the vapor flow is cut off with a mask 7 and the formation is completed. When the thetamax exceeds 40 deg., a reflected electron is injected into a high polymer molding within a condition range by setting the angle thetae of incidence to <=45 deg., the effect that electrostatic attracting force with the grounded rotating support body is enhanced by an electrostatic field based upon a spatial charge distribution, cooling effect becomes more effectively to suppress thermal deterioration of the substrate, expecting the improvement of the productivity.

Description

【発明の詳細な説明】 本発明は、金属薄膜型磁気記録媒体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal thin film magnetic recording medium.

さらに具体的には、電子ビーム蒸着、イオンブレーティ
ングにより、強磁性層を形成する際の性能向上と生産性
の向上を満足せしめる方法の提供に関するものである。
More specifically, the present invention relates to a method that satisfies improvement in performance and productivity when forming a ferromagnetic layer by electron beam evaporation and ion blating.

近年、磁気記録分野での高密度記録の進歩はめざましく
、蒸着による金属薄膜型の磁気記録媒体が5部オーディ
オ用途の実用に供さfL、一方ビデオ用途に適応できる
技術的可能性の示唆もあり、各方面で開発が盛んである
In recent years, there has been remarkable progress in high-density recording in the field of magnetic recording, and metal thin-film magnetic recording media made by vapor deposition have been put to practical use in audio applications, while there are also suggestions of technological possibilities for adapting them to video applications. , development is active in various fields.

特に短波長記録において、優れた特性を発揮する媒体と
しては、保磁力が100000に近い値を要求さ几るた
め、生産性の面での大幅な向上の期待できる方法を見出
すことは重要になってきている。
Particularly in short wavelength recording, a medium that exhibits excellent characteristics requires a coercive force close to 100,000, so it is important to find a method that can be expected to significantly improve productivity. It's coming.

一般に記録媒体はハードディスクを除いて、可撓性高分
子成形物基板ケ用いている。
Generally, recording media, except for hard disks, use flexible polymer molded substrates.

最も汎用性の高いポリエステルを基板とした時、蒸着時
、主要な問題は、熱による劣化である。
When polyester, which is the most versatile material, is used as a substrate, the main problem during vapor deposition is thermal degradation.

生産性向上のために、蒸発速度を投入電力を強引に増加
させて太きくしていく方法による解決は、前記熱劣化の
面から上限がある。したがって、(ロ)軸支持体に有効
に熱を逃がすことが重要である。
In order to improve productivity, the method of increasing the evaporation rate by forcibly increasing the input power has an upper limit due to the thermal deterioration mentioned above. Therefore, (b) it is important to effectively release heat to the shaft support.

本発明はかかる点に鑑みなさ几たもので、強磁性材料の
蒸発を電子ビームにて熱することで行う方式の改良であ
り、特性の向上と生産性の向上の両面を満足せしめるの
に、最大蒸着速度で蒸着の行われる入射角成分の点を主
入射と呼ぶとその値が4σ以上であることと、加熱電子
ビームの蒸発面への入射角が45°以内であることが重
要であることを要旨とするものである。
The present invention was developed in consideration of these points, and is an improvement on the method of evaporating ferromagnetic material by heating it with an electron beam. When the point of the incident angle component at which deposition occurs at the maximum deposition rate is called the principal incidence, it is important that its value is greater than 4σ and that the angle of incidence of the heating electron beam on the evaporation surface is within 45°. The gist of this is that

ここで、蒸発面への電子ビームの入射角は、蒸発面ケ水
平と見なし一〇、幾何光学的に定義するものとする。例
え電子ビームが有する、若干の拡がりも、電子ビームの
中心軸で定義されるものとして数値化していく。
Here, the angle of incidence of the electron beam on the evaporation surface is assumed to be horizontal and defined in terms of geometrical optics. Even the slight spread of an electron beam is quantified as defined by the central axis of the electron beam.

第11図によりその定義ケ示し、第2図により本発明を
実施するために用いた装置の主要構成を示し、実施例に
ついで以下に詳述していく。
FIG. 11 shows the definition thereof, FIG. 2 shows the main structure of the apparatus used to carry out the present invention, and examples will be described in detail below.

第2図に示すように、高分子成形物基板1は、送り出し
軸2より111!転支持体3に沿って移動し、巻き取り
軸4にて巻き取らn、る。
As shown in FIG. 2, the polymer molded substrate 1 is 111! It moves along the rolling support 3 and is wound up on the winding shaft 4.

回転支持体3に清って移動する際、基板1上に強磁性層
音形成するのであるが、蒸発源容器ら内の強磁性材料の
溶湯6より放射される蒸気流は、角度分布を有しており
、9cf′入射から薄膜形がはしまり、入射角が小さく
なるにつれて、蒸着速度が大きくなり、やがて最大とな
り(θmax ) 、また小さくなっていき、マスク7
で遮断されて形成を終える。この角を遮断入射角00寸
たCま最小入射角と呼ぶ〔第1図(B)参照〕。なお、
ここで設定条件によりθCとθmaxが一致することも
ある。
When moving on the rotating support 3, a ferromagnetic layer is formed on the substrate 1, and the vapor flow emitted from the molten ferromagnetic material 6 in the evaporation source container has an angular distribution. The thin film shape becomes narrower from 9 cf' incidence, and as the angle of incidence becomes smaller, the deposition rate increases, eventually reaches a maximum (θmax), and then decreases again, until the mask 7
The formation is completed by being blocked by . This angle is called the minimum incident angle, which is the cut-off incident angle of 00 dimensions [see FIG. 1(B)]. In addition,
Here, θC and θmax may match depending on the setting conditions.

さて蒸発源の加熱に用いら几る電子ビーl、8の蒸発面
への入射角をθeとする(第1図(C)、第2図参照)
。なお第1図(C)における破線9tJ強磁性材料の飯
想蒸発面を示す。
Now, let θe be the angle of incidence of the electronic beer L, 8 used to heat the evaporation source on the evaporation surface (see Figure 1 (C) and Figure 2).
. In addition, the broken line 9tJ in FIG. 1(C) indicates a hypothetical evaporation surface of the ferromagnetic material.

θmaχが400以上に選ばれることの意義は、高入射
成分での蒸着速度が大きくなるため、いわゆる斜め入射
による強磁性薄膜の形成にみられた効果がより大きくな
るためであると考えられる。
The reason why θmax is selected to be 400 or more is considered to be that the deposition rate with a high incidence component increases, so that the effect seen in the formation of a ferromagnetic thin film by so-called oblique incidence becomes even greater.

このことは、高い保磁カケ得ることVこ連がる。This leads to obtaining a high coercive chip.

但しθmaxが40℃上に選ぶことと、θ0i45゜以
上に選ぶことを要旨とした、特公昭41−19389号
の発明とは別で、θCは援亦する例でわかるように特に
蒸着時に酸素を利用しようとすると、特公昭41−19
389号で開示された保持力と同等の保磁力を、はるか
に小芒い角度で達成でき、このことが直接生産性向上に
つながるのである。
However, apart from the invention of Japanese Patent Publication No. 19389/1989, which focuses on selecting θmax above 40°C and selecting θ0i above 45°, θC is particularly limited when oxygen is not added during vapor deposition, as shown in the attached example. When you try to use it,
A coercive force equivalent to that disclosed in No. 389 can be achieved with a much smaller awning angle, which directly leads to improved productivity.

θeに角度依存があると考える発想の根拠は、θeによ
り蒸気流の角反分布が変るであろうということと、反射
電子の角度分布が変るということの両者が挙げられる。
The basis for the idea that θe has an angular dependence is that the angular inverse distribution of the vapor flow changes depending on θe, and the angular distribution of backscattered electrons changes.

この両者は、数多くの実施例でθmaxが4σ以上とな
る条件範囲であれば、入射角θeは45°以内に選ぶこ
とで、反射電子が高分子成形物にn:人さ肛、そfLに
より形成さ几る空間電荷分布に起因する静電界により、
接地電位にある回転支持体との間で静電引力が働く効果
がより強くなり、かつそれが入熱の大きい領域に近つく
ため、冷却効果がより有効に作用し、生産性をあげても
、基板の熱劣化を抑制できるようになるとともに、蒸気
流分布の変化は、汚膜形成に寄与する成分の蒸発速度が
大きくなる方向に作用し、同じく生産性の向上が期待さ
れることになるのである。
Both of these can be achieved by selecting the incident angle θe within 45° as long as θmax is 4σ or more in many examples. Due to the electrostatic field caused by the space charge distribution that is formed,
The effect of electrostatic attraction between the rotating support at ground potential becomes stronger and it moves closer to areas with large heat input, so the cooling effect works more effectively and productivity increases. In addition to being able to suppress thermal deterioration of the substrate, changes in vapor flow distribution will act to increase the evaporation rate of components that contribute to foul film formation, and productivity is also expected to improve. It is.

さて本発明の実施例においては、lLi転支持体として
直径1100Cの円筒状キャンをI%’S 4J:Hl
、た。
Now, in the embodiment of the present invention, a cylindrical can with a diameter of 1100C is used as the lLi rolling support.
,Ta.

電子ビームの発生源はピアス式の電子銃で、直進型で、
加速電圧が30KVのものを用いた。
The source of the electron beam is a piercing type electron gun, which is a straight-travel type.
An accelerating voltage of 30 KV was used.

4板H、ポリエチレンテレフクレートフィルム(厚さ1
1.5μm9幅5Qcm)を用いた。基板の蒸着面と反
射側の面の表面粗Jは460′iであった。回転支持体
の面は、0・1Sであった。
4 plates H, polyethylene terephthalate film (thickness 1
1.5 μm 9 width 5 Q cm) was used. The surface roughness J of the vapor deposition surface and the reflection side surface of the substrate was 460'i. The surface of the rotating support was 0.1S.

回転支持体に入る時の基板の張力は5kg一定とした。The tension of the substrate when entering the rotating support was constant at 5 kg.

酸素導入条件も10・5 Torr−β/5ec一定と
した。得られる磁性層の厚みも0.1μm一定とし九こ
几らの共通条件のもとで、θmax、θeの上敷効果を
、特性、生産性の面から調べた結果C1」、次の表に示
す如くである。なおθCは30″一定とした。
The oxygen introduction conditions were also kept constant at 10·5 Torr-β/5ec. The thickness of the obtained magnetic layer was also kept constant at 0.1 μm, and the overlay effect of θmax and θe was investigated in terms of characteristics and productivity under the common conditions of Kukoro et al. The results C1 are shown in the following table. It is like that. Note that θC was kept constant at 30″.

表中従来例の米1〜叱3で熱劣化を防上できる条件でに
、それぞれ基板の移動速度が30.27:5゜21 m
/minであり、生産性、特性両面での優位性は明らか
である。
In the table, under the conditions that can prevent thermal deterioration in conventional examples 1 to 3, the board moving speed was 30.27:5゜21 m, respectively.
/min, and its superiority in terms of both productivity and properties is clear.

なおここで、θmlX’1400以上にする条件を選ぶ
方法の一例ケ以下に記す。
Here, an example of how to select the conditions for setting θmlX' to 1400 or more will be described below.

回転支持体(直径100cmのキャン)の直下より基板
フィルムの移動方向に対向する側にルツボ位置をずらし
ていく。
The crucible position is shifted from directly below the rotating support (a can with a diameter of 100 cm) to the side opposite to the moving direction of the substrate film.

蒸発源の蒸気分布が真上に放射さ几る5勿1とすると、
角度α(第1図(A)参照)に対し例えばCos”αで
表わさ几る分布を有したと゛「ると、ルツボケずらシf
t位置(Yo) Yo= 23.6cm 〜40cmの
範囲にす几ば良い。40cm〜60Cmにしても良いが
、蒸着効率がたんだん低下していき実際的でない。
Assuming that the vapor distribution of the evaporation source radiates directly above,
For example, if the angle α (see Fig. 1 (A)) has a distribution expressed by Cos α, then the crucible shift f
t position (Yo) Yo=23.6cm - 40cm should be the range. Although it may be set to 40 cm to 60 cm, it is not practical because the vapor deposition efficiency gradually decreases.

捷た蒸気分布が、真上が最大でなく、傾斜をもった場合
は傾斜に応じて調整す几ばよい。
If the vapor distribution is not maximum right above but has an inclination, it is only necessary to adjust it according to the inclination.

実験的に決める最も簡単な方法は、回転支持体を停止し
た°ままで蒸着し、膜厚分布を計測すればよい。この方
法によれば、ルツボ位置を2点選び(選択は前記した2
3・5cm〜40Cm)、’の間で例えば24cmと3
5cmの2点ケ選んで、基板を停止状態で保持し蒸着し
た結果よりθmax4o0以上に選ぶ条件は容易に導き
だせるものである。
The easiest way to determine it experimentally is to deposit the film while the rotating support is stopped and measure the film thickness distribution. According to this method, two crucible positions are selected (selections are made in the two points mentioned above).
3.5 cm to 40 cm), for example between 24 cm and 3
The conditions for selecting θmax4o0 or more can be easily derived from the results of vapor deposition by selecting two points of 5 cm and holding the substrate in a stopped state.

θmax 、θeの限定値がた捷たま前述の系固有の値
で、単に実験的に好条件ケ見出しただけでないことを確
かめるために、キャン径’fz 30 Cml 50 
cm。
In order to confirm that the limiting values of θmax and θe are values specific to the above-mentioned system and are not just experimentally found favorable conditions, the can diameter 'fz 30 Cml 50
cm.

120cmにした場合について、また回転支持体全周長
、120cm、  180CJ  215cmt  2
90cmのステンレス製エンドレスベルト (0,2t
)で構成した場合について、電子ビームの加速電圧20
 KV、’40KV、60KV’に一’)いiそれぞn
本発明の有用性を確認した。
In the case of 120cm, the total circumference of the rotating support is 120cm, 180CJ 215cmt 2
90cm stainless steel endless belt (0.2t
), the acceleration voltage of the electron beam is 20
KV, '40KV, 60KV' respectively
The usefulness of the present invention was confirmed.

また基板の材質、厚み9表面粗す、磁性体の種類に変え
ても、さらにイオングレーティングに適用しても同様の
効果を示すことが確認さnた。
It was also confirmed that the same effect was obtained even if the substrate material, thickness, surface roughening, and type of magnetic material were changed, and even when applied to an ion grating.

以上のように本発明によると、性能のすぐnた磁気記録
媒体を生産性良く製造することができ、その工業的有価
値性は大である。
As described above, according to the present invention, a magnetic recording medium with excellent performance can be manufactured with high productivity, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、 (B)t (C)は、主入射角、蒸発
面への電子ビーム入射角の定義ケ説明するための図、第
2図は本発明の詳細な説明するための図である。 1・・・・・・基板、3・・・・・回転支持体、6・・
・・・蒸発源容器、6・・・・溶湯、7・・・・・マス
ク、8 ・・電子ビーム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
Figures 1 (A), (B) and (C) are diagrams for explaining the definition of the main incident angle and the electron beam incidence angle on the evaporation surface, and Figure 2 is a diagram for explaining the details of the present invention. It is a diagram. 1...Substrate, 3...Rotating support, 6...
... Evaporation source container, 6 ... Molten metal, 7 ... Mask, 8 ... Electron beam. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 蒸発源をなす強磁性材料に電子ビームを照射して蒸発さ
せた強磁性材料の磁気を回転支持体に沿って移動中の高
分子成形物基板に差し向けることにより上記基板上に強
磁性層を形成し、かつその際、上記電子ビームの強磁性
材料の蒸発面への主入射角全45°以下としかつ上記蒸
気の基板への入射角全400以上とすることを特徴とす
る磁気記録媒体の製造方法。
A ferromagnetic layer is formed on the substrate by irradiating the ferromagnetic material that forms the evaporation source with an electron beam and directing the magnetism of the evaporated ferromagnetic material to the polymer molded substrate that is moving along the rotating support. A magnetic recording medium characterized in that the total main incident angle of the electron beam on the evaporation surface of the ferromagnetic material is 45 degrees or less, and the total incident angle of the vapor on the substrate is 400 degrees or more. Production method.
JP13344882A 1982-07-29 1982-07-29 Manufacture of magnetic recording medium Granted JPS5924445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13344882A JPS5924445A (en) 1982-07-29 1982-07-29 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13344882A JPS5924445A (en) 1982-07-29 1982-07-29 Manufacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5924445A true JPS5924445A (en) 1984-02-08
JPH0551969B2 JPH0551969B2 (en) 1993-08-04

Family

ID=15105009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13344882A Granted JPS5924445A (en) 1982-07-29 1982-07-29 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5924445A (en)

Also Published As

Publication number Publication date
JPH0551969B2 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
JPS5924445A (en) Manufacture of magnetic recording medium
JPH0916960A (en) Manufacturing device for information recording medium
JP2548232B2 (en) Method of manufacturing magnetic recording medium
JPS59175037A (en) Production of magnetic recording medium
JPH0411923B2 (en)
JPS5833620B2 (en) Method for manufacturing magnetic recording media
JPS5922234A (en) Production of vertical magnetic recording medium
JPS6018912A (en) Thin film formation by vacuum evaporation
JPS5841441A (en) Manufacture of magnetic recording medium
JPS5925975A (en) Production of thin alloy film
JPS58139338A (en) Manufacture of magnetic recording medium
JPH0121537B2 (en)
JPS5921091B2 (en) Method for manufacturing magnetic recording media
JPS62219234A (en) Production of magnetic recording medium
JPS6174142A (en) Production of magnetic recording medium
JPS5942635A (en) Manufacture of magnetic recording medium
JPS60209927A (en) Magnetic recording medium and its production
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPS6267726A (en) Production of magnetic recording medium
JPS58100231A (en) Manufacture of magnetic recording medium
JPS62185245A (en) Production of vertical magnetic recording medium
JPH0334613B2 (en)
JPH0512657A (en) Thin-film magnetic tape and method and apparatus for producing the tape
JPS59190356A (en) Vapor depositing apparatus and method
JPH01118219A (en) Production of magnetic recording medium