JPH01118219A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH01118219A
JPH01118219A JP27613387A JP27613387A JPH01118219A JP H01118219 A JPH01118219 A JP H01118219A JP 27613387 A JP27613387 A JP 27613387A JP 27613387 A JP27613387 A JP 27613387A JP H01118219 A JPH01118219 A JP H01118219A
Authority
JP
Japan
Prior art keywords
magnetic recording
ferromagnetic metallic
electron beam
recording medium
metallic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27613387A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27613387A priority Critical patent/JPH01118219A/en
Publication of JPH01118219A publication Critical patent/JPH01118219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve short-wavelength recording performance and uniformity by setting the incident angle of an electron beam to be used for heating of a ferromagnetic metallic material in a refractory vessel at >=45 deg. and forming a thin ferromagnetic metallic film by a part of the vapor flow formed by evaporation of the ferromagnetic metallic material. CONSTITUTION:The incident angle of the electron beam 8 to be used for heating of the ferromagnetic metallic material 6 in the refractory vessel 5 is set at >=45 deg.. The thin ferromagnetic metallic film is formed of a part of the vapor flow obtd. by evaporation of the ferromagnetic metallic material 6 on a substrate 1 constituted by coating the fine particles of SiO2 on a polyethylene terephthalate film. The magnetic recording medium having the excellent short- wavelength performance and the good uniformity is thus produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に適する強磁性金属薄膜を磁気
記録層とする磁気記録媒体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a magnetic recording medium having a magnetic recording layer made of a ferromagnetic metal thin film suitable for high-density magnetic recording.

従来の技術 近年、磁気記録の高密度化技術の進歩には目覚しいもの
があシ、磁気記録媒体にとっても、蒸着テープ等のよう
な強磁性金属薄膜を磁気記録層とする媒体への転換が望
まれている〔アイイーイーイー トランザクシコンズ 
オン マグネティクス(I EEE Transact
ions on Magnetics)vowoMAG
−21、No−3,p、p、1217〜1220(1s
ss))。
Conventional technology In recent years, there has been remarkable progress in high-density magnetic recording technology, and it is desirable for magnetic recording media to switch to media with ferromagnetic metal thin films as the magnetic recording layer, such as vapor-deposited tapes. It is rare [iiii transaxcons
On Magnetics (I EEE Transact
ions on Magnetics)vowoMAG
-21, No-3, p, p, 1217-1220 (1s
ss)).

蒸着テープは、円筒キャン等の回転支持体に沿わせて高
分子フィルム等の基板を巻き取りながら、酸化性の雰囲
気内で連続的に入射角の変化する斜め蒸着を電子ビーム
蒸着により行うことで得るのが一般的である〔特開昭5
3−42010号公報。
Vapor deposition tape is produced by electron beam evaporation, which is an oblique evaporation process in which the incident angle continuously changes in an oxidizing atmosphere while winding a substrate such as a polymer film along a rotating support such as a cylindrical can. It is common to obtain
Publication No. 3-42010.

特公昭5了−19493号公報、電子通信学会磁気記録
研究会資料MR8l−2(1981)等〕。斜め蒸着は
蒸着効率の面で課題があり、広い入射角範囲で成膜して
も所望の特性を得られるように、酸素中蒸着の応用や、
蒸気分布をシャープにするために電子ビームの集束を改
善する等の検討が進められている。
Special Publication No. 19493, Institute of Electronics and Communication Engineers Magnetic Recording Study Group Material MR8l-2 (1981), etc.]. Oblique evaporation has issues in terms of evaporation efficiency, so in order to obtain the desired characteristics even when depositing a film over a wide range of incident angles, we have applied evaporation in oxygen,
Studies are underway to improve the focusing of the electron beam in order to sharpen the vapor distribution.

発明が解決しようとする問題点 しかしながら電子ビームの高集束化と走査方法の改善で
は、より短波長化する磁気記録の要求性能を均一に満足
せしめる磁気テープを製造できないことから、改善が望
まれていた。
Problems to be Solved by the Invention However, it is not possible to manufacture a magnetic tape that uniformly satisfies the performance requirements of magnetic recording, which is becoming shorter in wavelength, by increasing the focus of the electron beam and improving the scanning method, so improvements are desired. Ta.

本発明は上記した事情に濫みなされたもので、磁気特性
や薄膜微細構造の均一性を確保し、短波長記録性能の良
好な磁気記録媒体を製造する方法を提供することを目的
とするものである。
The present invention was made in consideration of the above-mentioned circumstances, and an object of the present invention is to provide a method for manufacturing a magnetic recording medium that ensures uniformity of magnetic properties and thin film microstructure and has good short wavelength recording performance. It is.

問題点を解決するだめの手段 上記した問題点を解決するため、本発明の磁気記録媒体
の製造方法は耐火物容器内の強磁性金属材料の加熱を行
う電子ビームの入射角を45度以上とし、蒸発させて得
た蒸気流の一部で強磁性金属薄膜を形成するようにしだ
ものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a magnetic recording medium of the present invention includes setting the incident angle of the electron beam for heating the ferromagnetic metal material in the refractory container to 45 degrees or more. , a ferromagnetic metal thin film is formed using a portion of the vapor flow obtained by evaporation.

作用 上記製造方法により、蒸気流に含まれるイオンの量やエ
ネルギーが安定することから、磁気特性や薄膜微細構造
が均一になり、磁気記録性能のすぐれた磁気記録層が形
成されることになる。
Effect: The above manufacturing method stabilizes the amount and energy of ions contained in the vapor flow, resulting in uniform magnetic properties and thin film microstructure, resulting in the formation of a magnetic recording layer with excellent magnetic recording performance.

実施例 以下、図面を参照しながら本発明の一実施例について詳
しく説明する。第1図は本発明を実施するのに用いた蒸
着装置の要部構成図である。第1図で、1はポリエチレ
ンテレフタレート、ポリフ二二しンサルファイド等の高
分子フィルムないしは微粒子塗布層を配した基板、2は
巻出し軸、3は巻取り軸、4は円筒キャン等の回転支持
体である。5は耐火物容器で、基板の移動方向と直交す
る方向に伸びた横長の容器が用いられ、MgO。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of main parts of a vapor deposition apparatus used to carry out the present invention. In Figure 1, 1 is a substrate on which a polymer film or fine particle coating layer such as polyethylene terephthalate or polyphenylene sulfide is arranged, 2 is an unwinding shaft, 3 is a winding shaft, and 4 is a rotation support such as a cylindrical can. It is the body. 5 is a refractory container, which is a horizontally long container extending in a direction perpendicular to the moving direction of the substrate, and is made of MgO.

’120s 、 ZrO2等の容器が用いられる。6は
Go。
'120s, ZrO2, etc. containers are used. 6 is Go.

Go−Ni、Go−ムg 、 Go −Or 、 Co
−B等の強磁性金属材料、アは電子ビーム発生器、8は
電子ビーム19は最小入射角を決めるマスク、1oは真
空槽、11は真空排気系である。図においてθeが電子
ビームの入射角である。すなわち強磁性金属材料の表面
に対して鉛直方向を基準とした入射角度である。この角
度が45度以上であることが本発明の要件であるが、実
質は80度以上で構成するのは、その構造上むずかしい
ので45度から70度の範囲で構成される。45度の臨
界的意義は、必ずしも明確ではないが、後述する実施例
での短波長C/Hの変化率が゛長手1oOmのテープに
於て、平均値に対して何チであるかを表わした第2図か
られかるように、45度から80度の範囲では極めて安
定しているのに、45度未満では変化率が大きくなるこ
とによるものである。46度未満で変化率が大きいのは
、通常用いられる回転支持体の大きさや、蒸発源の大き
さ、両者の位置関係によって、46度を境にして、蒸気
流にイオンが含まれる割合が増え、かつ薄膜の結晶成長
にそれが重大な影響を及ぼすため、不安定現象が起るこ
と(/′C原因があると推定されるものである。
Go-Ni, Go-Mug, Go-Or, Co
-B is a ferromagnetic metal material, A is an electron beam generator, 8 is an electron beam 19 is a mask that determines the minimum incident angle, 1o is a vacuum chamber, and 11 is an evacuation system. In the figure, θe is the incident angle of the electron beam. That is, it is the incident angle with respect to the perpendicular direction to the surface of the ferromagnetic metal material. Although it is a requirement of the present invention that this angle be 45 degrees or more, it is actually difficult to configure the angle to be 80 degrees or more due to its structure, so it is configured within the range of 45 degrees to 70 degrees. The critical significance of 45 degrees is not necessarily clear, but it represents how many degrees the change rate of short wavelength C/H in the examples described below is with respect to the average value in a tape with a length of 100m. As can be seen from FIG. 2, although it is extremely stable in the range of 45 degrees to 80 degrees, the rate of change increases below 45 degrees. The reason why the rate of change is large below 46 degrees is due to the size of the rotating support normally used, the size of the evaporation source, and the positional relationship between the two, and the proportion of ions included in the vapor flow increases beyond 46 degrees. , and since it has a significant effect on the crystal growth of the thin film, it is presumed that an unstable phenomenon occurs (/'C).

以下、更に具体的に本実施例により製造した磁気記録媒
体の記録性能について比較例との対比で詳しく説明する
In the following, the recording performance of the magnetic recording medium manufactured according to this example will be explained in more detail in comparison with a comparative example.

厚み10μmの、t” IJエチレンテレフタレートフ
ーイルムに直径1oo人のSi02微粒子を10妙掌m
)−2の密度で配した基板を用い、直径1mの円筒キャ
ンの直下40αにMgO,IJの耐火物容器を置いて、
Co −Ni (Co : 8o wt%)を溶解、蒸
発させ、最小入射角43度で0.1μm蒸着した。蒸着
の際、酸素分圧を3X10  ’(Torr)から8X
10−5(Torr)まで調整し、θeに応じて、保磁
力が1000 (Oe 3となるように制御した。フィ
ルム@40α、長さ2000mから任意の8ミリテープ
を20本抽出し、(1巻のテープ長は6077! ) 
、改造した8ミリビデオデツキで長手方向のC/N  
の平均値(X)と偏移(R)を測定した。尚、テープは
夫々、潤滑剤としてパーフルオロミソスチン酸を60人
真空蒸着したものを用いた。8ミリビデオの改造点はギ
ヤツーj長o、24μmのアモルファス合金、!ニスバ
ッタ型のフェライトとの複合ヘッドを用い、キャリア周
波数を5(M服)から7.5(M±)にして広帯域化を
図った点で、より短波長記録性能が重要になる系である
。製造条件でθeと、0/NのXとRについて下表にま
とめて示した。
SiO2 fine particles of 10 m in diameter were placed on a 10 μm thick T'' IJ ethylene terephthalate film.
)-2 density, place a refractory container of MgO, IJ at 40α directly below a cylindrical can with a diameter of 1 m,
Co-Ni (Co: 80 wt%) was melted and evaporated, and deposited to a thickness of 0.1 μm at a minimum incident angle of 43 degrees. During vapor deposition, the oxygen partial pressure was changed from 3X10' (Torr) to 8X
The coercive force was adjusted to 10-5 (Torr) and controlled according to θe so that the coercive force was 1000 (Oe 3). Twenty arbitrary 8 mm tapes were extracted from a film @40α, length 2000 m, and (1 roll The tape length is 6077!)
, Longitudinal C/N using a modified 8mm video deck
The average value (X) and deviation (R) of were measured. The tapes used were each made of perfluoromysostic acid, which was vacuum-deposited by 60 people as a lubricant. The modification points of the 8mm video are the gear tooth j length o, 24μm amorphous alloy,! This is a system in which shorter wavelength recording performance is important because a composite head with a varnish-type ferrite is used and the carrier frequency is changed from 5 (M) to 7.5 (M±) to achieve a wider band. The manufacturing conditions θe, 0/N X and R are summarized in the table below.

(以下余白) 傘1 偏向磁界により、耐火物容器近くでビームを偏向
して入射させた。
(Left below) Umbrella 1 The beam was deflected near the refractory container by a deflection magnetic field and made incident.

上記した実施例は斜め蒸着の場合であったが、Go−O
r 、 Co−Ti 、 Co−Ta 、 Go −W
 、 Go−Mo 。
The above example was a case of oblique vapor deposition, but Go-O
r, Co-Ti, Co-Ta, Go-W
, Go-Mo.

Go−Or−Nb等の垂直磁化膜を電子ビーム蒸着法に
て形成する場合でも、配向性の改善、均一性の確保によ
シ、同じく短波長ディジタル記録でのC/N 改善がは
かれることが確認された。
Even when a perpendicularly magnetized film such as Go-Or-Nb is formed by electron beam evaporation, the C/N can be improved in short wavelength digital recording by improving orientation and ensuring uniformity. confirmed.

発明の効果 以上のように本発明によれば、短波長記録性能に漫れ、
且つ均一性も良好な磁気記録媒体が製造できるといっだ
すぐれた効果がある。
Effects of the Invention As described above, the present invention focuses on short wavelength recording performance,
It would be even more effective if a magnetic recording medium with good uniformity could be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するのに用いた蒸着装置の要部構
成図、第2図は電子ビーム入射角とC/Nの関係を示す
特性図である。 1・・・・・高分子フィルム、4゛・・・・円筒キャン
、5・・・・・耐火物容器、6・・・・・・蒸着材料、
8・・・・・電子ビーム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名派
FIG. 1 is a block diagram of the main parts of a vapor deposition apparatus used to carry out the present invention, and FIG. 2 is a characteristic diagram showing the relationship between the electron beam incident angle and C/N. 1... Polymer film, 4... Cylindrical can, 5... Refractory container, 6... Vapor deposition material,
8...Electron beam. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (1)

【特許請求の範囲】[Claims] 耐火物容器内の強磁性金属材料の加熱を行う電子ビーム
の入射角を45度以上とし、前記強磁性金属材料を蒸発
させて得た蒸気流の一部で強磁性金属薄膜を形成するこ
とを特徴とする磁気記録媒体の製造方法。
The incident angle of the electron beam that heats the ferromagnetic metal material in the refractory container is set to 45 degrees or more, and a ferromagnetic metal thin film is formed with a part of the vapor flow obtained by evaporating the ferromagnetic metal material. A method for manufacturing a magnetic recording medium.
JP27613387A 1987-10-30 1987-10-30 Production of magnetic recording medium Pending JPH01118219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27613387A JPH01118219A (en) 1987-10-30 1987-10-30 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27613387A JPH01118219A (en) 1987-10-30 1987-10-30 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01118219A true JPH01118219A (en) 1989-05-10

Family

ID=17565245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27613387A Pending JPH01118219A (en) 1987-10-30 1987-10-30 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01118219A (en)

Similar Documents

Publication Publication Date Title
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPH01118219A (en) Production of magnetic recording medium
JPS6297133A (en) Production of magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
US5378496A (en) Method of manufacturing magnetic recording medium
JPS62185246A (en) Production of magnetic recording medium
JP2548232B2 (en) Method of manufacturing magnetic recording medium
JPH01211240A (en) Manufacture of thin film type magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS60209927A (en) Magnetic recording medium and its production
JPH01287822A (en) Apparatus for producing magnetic recording medium
JPS63282925A (en) Production of magnetic recording medium
JPH10162359A (en) Device for manufacturing magnetic recording medium
JPH06195672A (en) Magnetic recording medium and its production
JPS63251925A (en) Production of magnetic recording medium
JPH04147433A (en) Production of magnetic recording medium
JPH0550046B2 (en)
JPS6378336A (en) Production of magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
JPS62185247A (en) Production of magnetic recording medium
JPS63251928A (en) Production of magnetic recording medium
JPS58141444A (en) Production of magnetic recording medium
JPH01227222A (en) Production of magnetic recording medium
JPH02116026A (en) Production of magnetic recording medium
JPH02141927A (en) Production of magnetic recording medium