JPH0551969B2 - - Google Patents

Info

Publication number
JPH0551969B2
JPH0551969B2 JP13344882A JP13344882A JPH0551969B2 JP H0551969 B2 JPH0551969 B2 JP H0551969B2 JP 13344882 A JP13344882 A JP 13344882A JP 13344882 A JP13344882 A JP 13344882A JP H0551969 B2 JPH0551969 B2 JP H0551969B2
Authority
JP
Japan
Prior art keywords
electron beam
evaporation
incident angle
angle
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13344882A
Other languages
Japanese (ja)
Other versions
JPS5924445A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13344882A priority Critical patent/JPS5924445A/en
Publication of JPS5924445A publication Critical patent/JPS5924445A/en
Publication of JPH0551969B2 publication Critical patent/JPH0551969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、金属簿膜型磁気記録媒体の製造方法
に関する。 さらに具体的には、電子ビーム蒸着、イオンブ
レーテイングにより、強磁性層を形成する際の性
能向上と生産性の向上を満足せしめる方法の提供
に関するものである。 近年、磁気記録分野での高密度記録の進歩はめ
ざましく、蒸着による金属簿膜型の磁気記録媒体
が一部オーデイオ用途の実用に供され、一方ビデ
オ用途に適応できる技術的可能性の示唆もあり、
各方面で開発が盛んである。 特に短波長記録において、優れた特性を発揮す
る媒体としては、保磁力が1000Oeに近い値を要
求されるため、生産性の面での大幅な向上の期待
できる方法を見出すことは重要になつてきてい
る。 一般に記録媒体はハードデイスクを除いて、可
撓性高分子成形物基板を用いている。 最も汎用性の高いポリエステルを基板とした
時、蒸着時、主要な問題は、熱による劣化であ
る。 生産性向上のために、蒸発速度を投入電力を強
引に増加させて大きくしていく方法による解決
は、前記熱劣化の面から上限がある。したがつ
て、回転支持体に有効に熱を逃がすことが重要で
ある。 本発明はかかる点に鑑みなされたもので、強磁
性材料の蒸発を電子ビームにて熱することで行う
方式の改良であり、特性の向上と生産性の向上の
両面を満足せしめるのに、最大蒸着速度で蒸着の
行われる入射角成分の点を主入射と呼ぶとその値
が40゜以上であることと、加熱電子ビームの蒸発
材料への照射角が45゜以内であることが重要であ
ることを要旨とするものである。 ここで、蒸着材料への電子ビームの照射角は、
蒸着材料を水平と見なして、幾何光学的に定義す
るものとする。例え電子ビームが有する、若干の
拡がりも、電子ビームの中心軸で定義されるもの
として数値化していく。 第1図Aは、主入射角、蒸発材料への電子ビー
ム照射角を示したものである。第1図Aにおいて
θは、溶湯6が蒸発した蒸発源の蒸気が高分子成
形基板へ入射する角度である。 また、第2図により本発明を実施するために用
いた装置の主要構成を示し、実施例について以下
に詳述していく。 第2図に示すように、高分子成形物基板1は、
送り出し軸2より回転支持体3に沿つて移動し、
巻き取り軸4にて巻き取られる。 回転支持体3に沿つて移動する際、基板1上に
強磁性層を形成するのであるが、蒸発源容器5内
の強磁性材料の溶湯6より放射される蒸気流は、
電子ビームのしぼりの程度や照射角に関係して、
放射の角度分布が傾く等の変化した状態で、蒸着
に用いられる。第1図B及びCは、蒸気の入射角
と蒸着速度の関係を示したものである。第1図C
において10は、蒸気の分布を示している。これ
らの図に示すように、蒸気の入射角と、蒸着速度
の変化する蒸着は、例えば、蒸気の入射角90゜側
から簿膜の該形成が始まり、蒸気の入射角が次第
に小さくなるにつれて、蒸着速度は大きくなつて
いき、やがて、ある角度で最大になり(この蒸気
の入射角を主入射角:θmaxと呼ぶ)、また小さ
くなつていき、得たい保磁力の大きさ等を考慮
し、必要であればマスク7で蒸気を遮断すれば、
その遮断入射角θcで蒸着が終わる。なお、ここで
設定条件によりθcともmaxが一致することもあ
る。 さて蒸発源の加熱に用いられる電子ビーム8の
蒸発材料への照射角をβ(第1図C、第2図参照)
とする。なお第1図Cにおける破線9は強磁性材
料の仮想蒸発面を示す。 θmaxを40゜以上とする理由は、蒸気の入射角が
大きい程、斜め蒸着により該形成過程で起こる自
己陰影効果が大きく作用し、それによつて保磁力
が増大するためである。すなわち蒸着は、自己陰
影効果の大きい蒸気の入射角が90゜側から始まり、
徐々に入射角が小さくなつていく過程で膜厚部分
が増大し、高保磁力が得やすくなることにつなが
るものと推定できる。 特公昭41−19389号公報に開示されている斜め
蒸着は、固定の入射角でその角度が45゜以上に設
定することで高い保磁力を得る技術であるが、本
発明は入射角として高入射部分を(考え方として
は接線に近いところから蒸着が始まると見なせ
る)常に含むことに加えて、特に蒸着時に酸素を
利用することで遮断角θcを小さく(例えば30゜)
して、かつ、蒸気分布の指向性(分布がcosαよ
りcos2αの方が指向性が強い)と回転支持体の円
筒面の関係でθmaxを40゜以上に設定して斜め蒸着
効果を強めて高い保磁力を、生産性の良い条件で
得ることができるものである。 また、電子ビームの照射角βが変わることで蒸
発源が変化する。特に電子ビームがよく絞られた
状態になると、電子ビームの圧力で溶けた蒸着材
料が作る溶湯面がほれこんだようになり、蒸気流
の放射方向が傾き、蒸発流の空間分布が変化し、
かつ、入射電子の一部が反射し、蒸発源の外に放
射された反射電子の分布が変化する。 この時、溶湯面が凹むため、反射電子の放射方
向の空間分布を厳密に議論するのは困難である
が、電子ビームの照射角βが小さくなる程真上に
放射される割合が増えることが推定されるが、こ
の一部はエネルギーが高いことから容易に高分子
成形物基板に入り込み、静電界を形成し、接地電
位にある回転支持体との間に静電気による引力を
生じ、高分子成形物基板が、回転支持体に押しつ
けられることで接触が改善され、生産時の基板冷
却が効果的に行なわれて、高分子成形物の熱ダメ
ージを防ぐことになる。放射される蒸気流の空間
分布も回転支持体に向かつていく割合が増加し、
生産性の向上もはかることができる。 さて本発明の実施例においては、回転支持体と
して直径100cmの円筒状キヤンを準備した。 電子ビームの発生源はピアス式の電子銃で、直
進型で、加速電圧が30KVのものを用いた。 基板は、ポリエチレンテレフタレートフイルム
(暑さ11.5μm、幅50cm)を用いた。基板の蒸着面
と反射側の面の表面粗さは450Åであつた。回転
支持体の面は、0.1Sであつた。 回転支持体に入る時の基板の張力は5Kg一定と
した。 酸素導入条件も10.5Torr・/sec一定とした。
得られる磁性層の厚みも0.1μm一定とした。これ
らの共通条件のもとで、主入射角θmax、電子ビ
ームの照射角βの主要効果を、特性、生産性の面
から調べた結果は次の表に示すように、高保磁力
化、高角型性確保、生産性向上、基板の熱劣化の
防止に有効で、それらの効果は主入射角θmaxと
電子ビームの照射角βの複合効果であるが、磁気
特性は主として主入射角θmaxに関係し、電子ビ
ームの照射角βは主入射角θmaxを大きく設定し
たときの基板の温度上昇に主として関係してい
る。(表中、基板の熱劣化なしの状態を区別して
表示していないが、温度上昇に差異がある)。
The present invention relates to a method for manufacturing a metal film type magnetic recording medium. More specifically, the present invention relates to a method that satisfies improvement in performance and productivity when forming a ferromagnetic layer by electron beam evaporation and ion blating. In recent years, there has been remarkable progress in high-density recording in the field of magnetic recording, and some vapor-deposited metal film-type magnetic recording media have been put into practical use in audio applications, while there are also indications that the technology may be applicable to video applications. ,
Development is active in all areas. Especially in short wavelength recording, a medium that exhibits excellent properties requires a coercive force close to 1000 Oe, so it has become important to find a method that can be expected to significantly improve productivity. ing. Generally, recording media, except for hard disks, use flexible polymer molded substrates. When polyester, which is the most versatile material, is used as a substrate, the main problem during vapor deposition is thermal degradation. The solution of increasing the evaporation rate by forcibly increasing the input power in order to improve productivity has an upper limit due to the thermal deterioration mentioned above. Therefore, it is important to effectively dissipate heat to the rotating support. The present invention was developed in view of the above, and is an improvement on the method of heating ferromagnetic materials by heating them with an electron beam. The point of the incident angle component where deposition occurs at the deposition rate is called the principal incidence, and it is important that the value is 40° or more, and that the irradiation angle of the heating electron beam to the evaporation material is within 45°. The gist of this is that Here, the irradiation angle of the electron beam to the evaporation material is
The vapor deposition material is assumed to be horizontal and defined geometrically and optically. Even the slight spread of an electron beam is quantified as defined by the central axis of the electron beam. FIG. 1A shows the main incident angle and the electron beam irradiation angle to the evaporation material. In FIG. 1A, θ is the angle at which the vapor from the evaporation source from which the molten metal 6 has evaporated is incident on the polymer molded substrate. Further, FIG. 2 shows the main structure of the apparatus used to carry out the present invention, and the embodiment will be described in detail below. As shown in FIG. 2, the polymer molded substrate 1 is
It moves from the delivery shaft 2 along the rotating support 3,
It is wound up on a winding shaft 4. When moving along the rotating support 3, a ferromagnetic layer is formed on the substrate 1, and the vapor flow radiated from the molten ferromagnetic material 6 in the evaporation source container 5 is
In relation to the degree of narrowing of the electron beam and the irradiation angle,
It is used for vapor deposition in a changed state, such as a tilted angular distribution of radiation. FIGS. 1B and 1C show the relationship between the incident angle of vapor and the vapor deposition rate. Figure 1C
10 indicates the distribution of steam. As shown in these figures, in the case of vapor deposition in which the incident angle of vapor and the vapor deposition rate change, for example, the formation of a film starts from the side where the incident angle of vapor is 90°, and as the incident angle of vapor gradually decreases, The vapor deposition rate increases, and eventually reaches a maximum at a certain angle (this angle of incidence of vapor is called the main incident angle: θmax), then decreases again, taking into consideration the magnitude of the coercive force that you want to obtain, If necessary, block out the steam with mask 7.
Vapor deposition ends at that cut-off incident angle θc. Note that max may match both θc and θc depending on the setting conditions. Now, the irradiation angle of the electron beam 8 to the evaporation material used for heating the evaporation source is β (see Figure 1C and Figure 2).
shall be. Note that the broken line 9 in FIG. 1C indicates the virtual evaporation surface of the ferromagnetic material. The reason why θmax is set to 40° or more is that the larger the incident angle of the vapor, the greater the self-shading effect that occurs during the formation process due to oblique vapor deposition, thereby increasing the coercive force. In other words, vapor deposition starts from the side where the incident angle of the vapor, which has a large self-shading effect, is 90°.
It can be assumed that as the incident angle gradually decreases, the film thickness increases, which makes it easier to obtain a high coercive force. The oblique evaporation disclosed in Japanese Patent Publication No. 19389/1989 is a technique for obtaining a high coercive force by setting a fixed incident angle to 45° or more. In addition to always including a portion (in terms of thinking, evaporation can be considered to start from a point close to the tangent), especially by using oxygen during evaporation, the cutoff angle θc can be made small (for example, 30°).
In addition, due to the relationship between the directivity of the vapor distribution (the distribution is more directional for cos 2 α than for cos α) and the cylindrical surface of the rotating support, θmax is set to 40° or more to enhance the oblique evaporation effect. It is possible to obtain high coercive force under conditions of good productivity. Further, the evaporation source changes by changing the irradiation angle β of the electron beam. In particular, when the electron beam is well focused, the molten metal surface created by the evaporation material melted by the pressure of the electron beam becomes sloppy, the radiation direction of the vapor flow is tilted, and the spatial distribution of the evaporation flow changes.
In addition, part of the incident electrons is reflected, and the distribution of reflected electrons emitted outside the evaporation source changes. At this time, since the molten metal surface is concave, it is difficult to strictly discuss the spatial distribution of the reflected electrons in the radiation direction, but it can be seen that as the electron beam irradiation angle β becomes smaller, the proportion of the electrons emitted directly upward increases. It is estimated that some of this energy is high, so it easily enters the polymer molded substrate, forms an electrostatic field, and generates an electrostatic attraction between the rotating support at ground potential and the polymer molding. By pressing the object substrate against the rotating support, contact is improved and the substrate is effectively cooled during production to prevent thermal damage to the polymer molded article. The spatial distribution of the radiated vapor flow also increases as the proportion of it moves toward the rotating support.
Productivity can also be improved. In the example of the present invention, a cylindrical can with a diameter of 100 cm was prepared as a rotating support. The source of the electron beam was a piercing type electron gun, which was a straight type and had an accelerating voltage of 30 KV. A polyethylene terephthalate film (height: 11.5 μm, width: 50 cm) was used as the substrate. The surface roughness of the vapor deposition surface and the reflective side of the substrate was 450 Å. The surface of the rotating support was 0.1S. The tension of the substrate when entering the rotating support was constant at 5 kg. The oxygen introduction conditions were also constant at 10.5 Torr/sec.
The thickness of the resulting magnetic layer was also constant at 0.1 μm. Under these common conditions, the main effects of the main incident angle θmax and electron beam irradiation angle β were investigated from the aspects of characteristics and productivity. It is effective in ensuring performance, improving productivity, and preventing thermal deterioration of the substrate, and these effects are a combined effect of the main incident angle θmax and the electron beam irradiation angle β, but the magnetic properties are mainly related to the main incident angle θmax. , the irradiation angle β of the electron beam is mainly related to the temperature rise of the substrate when the main incident angle θmax is set large. (Although the table does not distinguish between states with no thermal deterioration of the board, there is a difference in temperature rise.)

【表】 表中従来例の*1〜*3で熱劣化を防止できる
条件では、それぞれ基板の移動速度が30、27.5、
21m/minであり、生産性、特性両面での優位性
は明らかである。 なおここで、θmaxを40゜以上にする条件を選ぶ
方法の一例を以下に記す。 第1図D及びEに示すように回転支持体(直径
100cmのキヤン)の直下より基板フイルムの移動
方向と反対側に蒸発源容器5の位置をずらす
(YODをYOEとする)ことにより、電子ビームの蒸
発面への照射角βを変化させ、(βDをβEとする)、
θmaxが40゜以上になるようにする。 また、この時、照射される電子ビーム8と最大
の蒸着速度を有する蒸気11とのなす角度は、αD
からαEへと小さくなる。具体的には、表中にも示
すように、電子ビームの照射角βを小さくする方
向に蒸発源容器5を動かすとθmaxの角度が大き
くなる。 一方、蒸発面への照射角βを小さくすることに
より、真上に放射される反射電子の割合が多くな
る。従つて、蒸気の入射角の90゜側に近い部分で
効率よく静電界が形成され、高分子成形物基板は
回転支持体上を回転する間に十分に冷却される。 実験的に決める最も簡単な方法は、回転支持体
を停止したままで蒸着し、膜厚分布を計測すれば
よい。この方法は、基盤上の基盤移動方向に簿膜
を計測して、最大膜厚になる位置を回転支持体上
の周側面位置に換算すれば、最大膜厚となる入射
角θmaxが幾何学的に導きだされるものであるか
ら、このような実験を2、3回行えばよく、
θmaxを40゜以上に容易に設定出来る。 主入射角、電子ビームの照射角の限定値がたま
たま前述の系固有の値で、単に実験的に好条件を
見出しただけでないことを確かめるために、キヤ
ン径を30cm、50cm、120cmにした場合について、
また回転支持体を周長、120cm、180cm、215cm、
290cmのステンレス製エンドレスベルト(0.2t)
で構成した場合について、電子ビームの加速電圧
20KV、40KV、60KVについてそれぞれ本発明の
有用性を確認した。 また基板の材質、厚み、表面粗さ、磁性体の種
類を変えても、さらにイオンブレーテイングに適
用しても同様の効果を示すことが確認された。 以上のように本発明によると、性能のすぐれた
磁気記録媒体を生産性良く製造することができ、
その工業的有価値性は大である。
[Table] In the conventional examples *1 to *3 in the table, under the conditions where thermal deterioration can be prevented, the moving speed of the board is 30, 27.5, 27.5,
21m/min, and its superiority in terms of both productivity and characteristics is clear. Here, an example of how to select conditions for making θmax 40° or more will be described below. As shown in Figure 1 D and E, the rotating support (diameter
By shifting the position of the evaporation source container 5 from directly below the 100 cm can (100 cm) to the opposite side to the moving direction of the substrate film (Y OD is Y OE ), the irradiation angle β of the electron beam to the evaporation surface is changed, (Let β D be β E ),
Make sure that θmax is 40° or more. Also, at this time, the angle between the irradiated electron beam 8 and the vapor 11 having the maximum deposition rate is α D
decreases from to α E. Specifically, as shown in the table, when the evaporation source container 5 is moved in a direction that reduces the irradiation angle β of the electron beam, the angle θmax increases. On the other hand, by reducing the irradiation angle β to the evaporation surface, the proportion of reflected electrons emitted directly above increases. Therefore, an electrostatic field is efficiently formed near the 90° side of the incident angle of the vapor, and the polymer molded substrate is sufficiently cooled while rotating on the rotating support. The simplest method to determine experimentally is to perform deposition with the rotating support stopped and measure the film thickness distribution. In this method, by measuring the film in the direction of movement of the substrate on the substrate and converting the position at which the maximum film thickness occurs to the circumferential side position on the rotating support, the incident angle θmax at which the maximum film thickness is obtained can be determined geometrically. Therefore, it is sufficient to conduct such an experiment two or three times.
θmax can be easily set to 40° or more. In order to confirm that the limiting values of the main incident angle and the electron beam irradiation angle are values specific to the above-mentioned system and are not simply experimentally found favorable conditions, the can diameters are set to 30 cm, 50 cm, and 120 cm. about,
Also, the circumference of the rotating support is 120cm, 180cm, 215cm,
290cm stainless steel endless belt (0.2t)
For the case where the acceleration voltage of the electron beam is
The usefulness of the present invention was confirmed for 20KV, 40KV, and 60KV. It was also confirmed that the same effect was obtained even when the material, thickness, surface roughness, and type of magnetic material of the substrate were changed, and even when applied to ion brating. As described above, according to the present invention, magnetic recording media with excellent performance can be manufactured with high productivity.
Its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,B,Cは、主入射角、蒸発材料への
電子ビーム照射角の定義を説明するための図、第
1図D,Eは、主入射角を40゜以上にする条件を
選ぶ際の蒸発材料への電子ビーム照射角と主入射
角の関係を説明するための図、第2図は本発明の
実施例を説明するための図である。 1……基板、3……回転支持体、5……蒸発源
容器、6……溶湯、7……マスク、8……電子ビ
ーム、10……蒸発源の蒸気分布、11……最大
の蒸着速度を有する蒸気の方向。
Figure 1 A, B, and C are diagrams for explaining the definition of the main incident angle and the electron beam irradiation angle on the evaporation material, and Figure 1 D and E are diagrams for explaining the conditions for making the main incidence angle 40° or more. FIG. 2 is a diagram for explaining the relationship between the electron beam irradiation angle and the main incident angle on the evaporation material when selecting an evaporation material, and FIG. 2 is a diagram for explaining an embodiment of the present invention. 1... Substrate, 3... Rotating support, 5... Evaporation source container, 6... Molten metal, 7... Mask, 8... Electron beam, 10... Vapor distribution of evaporation source, 11... Maximum evaporation Direction of steam with velocity.

Claims (1)

【特許請求の範囲】[Claims] 1 回転支持体に沿つて移動する高分子成形基板
に、酸素雰囲気でCo系合金を電子ビーム蒸着す
る際、前記電子ビームの照射角を45゜以下とし、
かつ前記Co系合金の蒸気流の前記基板への蒸着
速度が最大となる入射角を40゜以上とすることを
特徴とする磁気記録媒体の製造方法。
1. When electron beam evaporating a Co-based alloy in an oxygen atmosphere onto a polymer molded substrate moving along a rotating support, the irradiation angle of the electron beam is 45° or less,
A method for manufacturing a magnetic recording medium, characterized in that the incident angle at which the vapor flow of the Co-based alloy reaches a maximum deposition rate on the substrate is 40° or more.
JP13344882A 1982-07-29 1982-07-29 Manufacture of magnetic recording medium Granted JPS5924445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13344882A JPS5924445A (en) 1982-07-29 1982-07-29 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13344882A JPS5924445A (en) 1982-07-29 1982-07-29 Manufacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5924445A JPS5924445A (en) 1984-02-08
JPH0551969B2 true JPH0551969B2 (en) 1993-08-04

Family

ID=15105009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13344882A Granted JPS5924445A (en) 1982-07-29 1982-07-29 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5924445A (en)

Also Published As

Publication number Publication date
JPS5924445A (en) 1984-02-08

Similar Documents

Publication Publication Date Title
JPH0551969B2 (en)
JPH0916960A (en) Manufacturing device for information recording medium
JPH0319618B2 (en)
JP2548232B2 (en) Method of manufacturing magnetic recording medium
JPH0330213B2 (en)
JP3365207B2 (en) Vacuum deposition equipment
US5378496A (en) Method of manufacturing magnetic recording medium
JPS59175037A (en) Production of magnetic recording medium
JPH0411923B2 (en)
JPH0550046B2 (en)
JPH0334611B2 (en)
JPH0334613B2 (en)
JPH01118219A (en) Production of magnetic recording medium
JPH0319621B2 (en)
JPH0798868A (en) Production of magnetic recording medium
JPH0121537B2 (en)
JPS58139338A (en) Manufacture of magnetic recording medium
JPS58118034A (en) Production of magnetic recording medium
JPS62185245A (en) Production of vertical magnetic recording medium
JPS6320910B2 (en)
JPH0512657A (en) Thin-film magnetic tape and method and apparatus for producing the tape
JPS644254B2 (en)
JPS6018912A (en) Thin film formation by vacuum evaporation
JPS5916143A (en) Production for magnetic recording medium
JPH0334130B2 (en)