JPS59230175A - Spotting method of short-circuited point of three-phase high-voltage distribution line - Google Patents

Spotting method of short-circuited point of three-phase high-voltage distribution line

Info

Publication number
JPS59230175A
JPS59230175A JP10624283A JP10624283A JPS59230175A JP S59230175 A JPS59230175 A JP S59230175A JP 10624283 A JP10624283 A JP 10624283A JP 10624283 A JP10624283 A JP 10624283A JP S59230175 A JPS59230175 A JP S59230175A
Authority
JP
Japan
Prior art keywords
line
short
phase
voltage
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10624283A
Other languages
Japanese (ja)
Other versions
JPH0552469B2 (en
Inventor
Jiro Mizuno
水野 次郎
Tetsuo Orimoto
織本 哲夫
Kyukichi Uchida
内田 久吉
Hideaki Tanaka
秀昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
TSUDA DENKI KEIKI KK
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
TSUDA DENKI KEIKI KK
Japan National Railways
Nippon Kokuyu Tetsudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, TSUDA DENKI KEIKI KK, Japan National Railways, Nippon Kokuyu Tetsudo filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP10624283A priority Critical patent/JPS59230175A/en
Publication of JPS59230175A publication Critical patent/JPS59230175A/en
Publication of JPH0552469B2 publication Critical patent/JPH0552469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To spot a short-circuit with high precision even in case of the short-circuiting of the whole line regardless whether in a balanced or an unbalanced state by deciding on a positive-phase voltage and a positive-phase current from three line voltages and line currents based upon measured values and arithmetic values, and further calculating a specific virtual phase voltage and calculating reactance from the result. CONSTITUTION:Two line voltages and line currents of three-phase high-voltage distribution lines R, S, and T are measured through transformers CT1-CT4 and current transformers PT1-PT4 and applied to a CPU through an A/D converter ADC to determine three line voltages and line currents. Then, the positive-phase voltage and positive-phase current are calculated by a symmetric coordinate method from those voltages and currents, and the reactance is calculated from the positive-phase current and the virtual phase voltage obtained by dividing the positive-phase voltage by three and delaying the phase by pi/6 (Rad). This reactance is divided by the reactance of the line per unit length to perform spotting from a power transmission side to the short-circuited point P with high precision even in case of the short-circuiting of the whole line regardless of whether in the balanced and unbalanced states.

Description

【発明の詳細な説明】 本発明は、三相高圧配電線において、平衡、不平衡短絡
を問わず、三相全部が短絡した場合にその短絡点を標定
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for locating a short-circuit point in a three-phase high-voltage power distribution line when all three phases are short-circuited, regardless of whether it is a balanced or unbalanced short-circuit.

一般に単相線路において、短絡事故が起った場合には送
電側から短絡点をみたインピーダンスのうちリアクタン
ス分を測定することによって短絡点までの距離を知るこ
とができる。これは、送電側から短絡事故点までの線路
長をl(m)、線路の一相の単位長当りのインピーダン
スをZo=R−1−jwL1事故点の短絡抵抗をRgと
すると、送電側から短絡点をみたインピーダンスZが、
Z −ZO・ l+Rg −R@l+Rg 十 jwL
IIlで表わされるから、Rgの大きさに関与しないリ
アクタンス分jwL @l:を測定ずれば単位員当りの
りアクタンス分(既知量)を際すことによって短絡点ま
での距m1ffl lがRgの大きさの如何に拘らず求
められるという理由による。
Generally, in a single-phase line, when a short-circuit accident occurs, the distance to the short-circuit point can be determined by measuring the reactance portion of the impedance viewed from the power transmission side to the short-circuit point. This is calculated from the power transmission side by assuming that the line length from the power transmission side to the short-circuit fault point is l (m), the impedance per unit length of one phase of the line is Zo=R-1-jwL1, and the short-circuit resistance at the fault point is Rg. The impedance Z when looking at the short circuit point is
Z −ZO・ l+Rg −R@l+Rg 10 jwL
Since it is expressed as IIl, if we measure the reactance jwL @l: which is not related to the size of Rg, then by determining the reactance per unit member (known quantity), the distance to the short circuit point m1ffl l is the size of Rg. This is because it is required regardless of the circumstances.

ところで三相高圧配電線の短絡点を標定する場合にも原
理的には上記単相短絡点標定法の考え方を用いればよい
が、三相の二線が金属接触し、この二線と他の一線間が
アーク放電によって短絡するというような不平衡唖絡を
起した場合には、上記単相短絡点標定法の考え方では正
確な短絡点の標定を行なえないという欠点がある。とい
うのは、三相高1F配電線において、不平衡短絡した場
合に、正確な標定を行なおうとすれば、短絡点の中性点
電位を求める芯体があるが、故障状況(不平衡短絡の状
態)がわからねば正(1(gな中性点電、位を求めるこ
とができないからである。
By the way, when locating the short-circuit point of a three-phase high-voltage distribution line, the above-mentioned single-phase short-circuit point locating method can be used in principle, but if two three-phase wires are in metal contact and this two wires are in contact with other wires, When an unbalanced short circuit occurs, such as a short circuit between two lines due to arc discharge, the single-phase short circuit point locating method described above has the disadvantage that the short circuit point cannot be accurately located. This is because in the case of an unbalanced short circuit in a three-phase high 1F distribution line, if you want to accurately locate it, there is a core that determines the neutral point potential of the short circuit point, but if there is a failure situation (unbalanced short circuit This is because it is impossible to find the positive (1 (g) neutral point voltage) unless you know the state of

一方、現在三相高圧配電線の短絡点標定装置として持分
J(53−4:z3”J公報に示された技術がある。こ
の技jlUrは三相の各相の電流が零になった瞬時にお
ける各相の線同電月三を検出し、その3る。しかるに、
この方法はく相のうち二相が短絡しまた場合、及び平衡
短絡した場合しか適用できないものである。
On the other hand, there is currently a technology as a short-circuit point locating device for three-phase high-voltage distribution lines, which is shown in the Publication J (53-4:z3"J). Detect the wires of each phase at 3 and 3. However,
This method is applicable only when two phases of the foil are short-circuited or when there is a balanced short-circuit.

木発q1はこのような点にあって、三相高圧配電線の全
線が短絡した場合、それが平衡、不平衡短絡であるかど
うかを問わず、極めて高精度に短絡点の標定か行なえる
標定方法を提供するものである。
Kibatsu Q1 has this advantage, and when all lines of a three-phase high-voltage distribution line are short-circuited, it is possible to locate the short-circuit point with extremely high accuracy, regardless of whether it is a balanced or unbalanced short-circuit. It provides a location method.

而して、本発明の方法は、三相高圧配電線の送電側に少
なくとも二つの線間電圧を分11三して収出す計器用変
圧器と、少なくとも二つの線電流を分流して取出す+f
l−器用交流器とを設け、これら変圧器、変流器から直
接或いは演算することによって間接的に3つの線間電圧
、線電流を得、しかる後、この3つの線間電圧、線電流
から対称座標法によって正相電圧、正相電流を求め、か
つ1F411電圧を1/汀倍すると共にその位相をπ/
6 (rad ) 遅らぜて仮想の相電圧を算用し、こ
の仮想の相電圧七〇11古己正4目電流とからりアクタ
ンスをi宣算して短絡点標定を行なうようにしたことを
′逐旨としている。
Thus, the method of the present invention includes an instrument transformer that divides and extracts at least two line voltages on the power transmission side of a three-phase high-voltage distribution line, and a voltage transformer that divides and extracts at least two line currents.
3 line voltages and line currents are obtained directly or indirectly by calculation from these transformers and current transformers, and then from these three line voltages and line currents. Find the positive sequence voltage and positive sequence current using the symmetric coordinate method, and multiply the 1F411 voltage by 1/ and change the phase by π/
6 (rad) The virtual phase voltage is calculated with a delay, and the short circuit point is determined by calculating the actance i from this virtual phase voltage and current. is taken to be 'verbatim'.

この本発明方法によれば、乎jφテ不平衡短絡を問わず
槓めて高精度に短絡点の標定が行なえるのであるが、現
在のところ何故高精度に短絡点標定か行なえるかを理論
r1(Jに明4ii(:にh7.I’lJすることは困
&nBである。しかし、実施例の後に記した種々の実験
により本発明方法の正7ifliさが確認されている。
According to the method of the present invention, it is possible to locate the short circuit point with high accuracy by squeezing regardless of the unbalanced short circuit. It is difficult to add h7.

次に本発明方法の実施例を図面に基づき説1−J’lす
る。第1図は本発明方法を実施する装置Nを示し、R,
S、  Tは三相高圧配電線、Pは短絡点、PTI。
Next, an embodiment of the method of the present invention will be explained based on the drawings. FIG. 1 shows an apparatus N for carrying out the method of the invention, R,
S, T are three-phase high voltage distribution lines, P is short circuit point, PTI.

PT2はこの配電線の送電側に設けられた計器用変圧器
、CT ]、CT2は計器用変流器である。
PT2 is a potential transformer provided on the power transmission side of the distribution line, CT2 is a potential current transformer.

変圧器PTI、PT2は三相高圧配電線路の線間電圧を
分圧して出力する。変流器CTI、CT2は線電流を分
流して出力する。図示例においては賀圧器、変流器とも
2個づつ用い、2つの線間型している。短絡点Pを標定
するための演算には全線間電圧、全線電流が必鼎である
が、このように2つの線間電圧、線電流しか収り出さな
いのは、残りの線間電圧、線電流はベクトル的な演算に
よって求めることができるからである。しかし、変圧器
、変流器を3台用いることによって直接全線間電圧、全
線電流を取出すようにしてもよいことは勿l命である。
The transformers PTI and PT2 divide the line voltage of the three-phase high voltage distribution line and output the divided voltage. The current transformers CTI and CT2 divide the line current and output it. In the illustrated example, two pressure transformers and two current transformers are used, and the system is of a two-line type. The calculation for locating the short-circuit point P requires the total line voltage and the total line current, but the reason why only two line voltages and line currents are obtained is that the remaining line voltage and line current are calculated. This is because the current can be determined by vectorial calculation. However, it is of course possible to directly extract the entire line voltage and current by using three transformers and current transformers.

PT3.PT4.CT3.CT4は上古己P T 1 
PT3. PT4. CT3. CT4 is Kamikoki P T 1
.

PS2.CTt、CT2によって取出した線間型1f三
、線電流を更に分圧、分流する変圧器、変流器である。
PS2. The line type 1f3 taken out by CTt and CT2 is a transformer and current transformer that further divides and divides the line current.

IFはインターフェイス同Fk’r、A I−) Cは
このインターフェイス回yx、Fを通って加えられる線
間電圧の分圧値、線電流の分離端をディジタル変換する
A/D変換器、CPUは、A/l)変換器からのディジ
タル信号に基づき線路のリアクタンスを演算によって求
めるコンピュータである。このコンピュータの演算は!
′S2図に示すフローチャートに従ってなされる。即ち
、先ず、A/D変換器器から線間電圧VR8、vs’r
  、線電流IR+ISに相当する信号が加えられると
、それらのデータを整理すると共に、それらのデータか
ら残りの線間型というベクトル計算によってなされる。
IF is the interface circuit Fk'r, A I-) C is this interface circuit yx, the divided voltage value of the line voltage applied through F is an A/D converter that converts the separated end of the line current into digital, and the CPU is , A/l) This is a computer that calculates the reactance of the line based on the digital signal from the converter. This computer's calculations!
' This is done according to the flowchart shown in Figure S2. That is, first, the line voltage VR8, vs'r from the A/D converter
, when signals corresponding to the line currents IR+IS are added, these data are organized and the remaining line-to-line type vector calculations are performed from these data.

次に七よって正相電圧■、を求め、続いて全線電流IR
+IS+ITから同様にして正相電流■、を求める。こ
;I= ’ (IB +alB + a21T)   
−(2)次いで、前記正相電圧V、から仮想の相電圧E
、を求める。この演算は次式に基いてなされる。
Next, find the positive sequence voltage ■, and then the total line current IR
Similarly, find the positive sequence current ■ from +IS+IT. I=' (IB + alB + a21T)
-(2) Next, from the positive phase voltage V, the virtual phase voltage E
, find. This calculation is performed based on the following equation.

ここでElを仮想の相電圧といったのは、正相型1「V
lを線間電圧とみなしてその電圧を相電圧を求ぐ。
Here, El is referred to as a virtual phase voltage because the positive phase type 1 "V
Regard l as the line voltage and use that voltage to find the phase voltage.

める式である(3)式に代入しているかである。第3図
に、ElとV、とのベクトル関係、及び既述した線間電
圧、線電流のベクトル関係を示す。
The question is whether it is substituted into equation (3), which is the equation that FIG. 3 shows the vector relationship between El and V, and the vector relationship between the line voltage and line current described above.

によってリアクタンスXが次式によって算出される ここでθは第3図に示すようにElと1.との相差角で
ある。かくして演算されたりアクタンスXはデータとし
て格納されると共に、表示回路りてディジタル表示され
、また表示信号として外部に送出される。この表示され
たリアクタンスを単位長当りの線路のリアクタンスで除
せば、送電側から短絡地点Pまでの距離lがわかる即ち
、短絡点の標定か行なえる。
The reactance X is calculated by the following equation, where θ is the relationship between El and 1. as shown in FIG. is the phase difference angle with The actance X calculated in this manner is stored as data, is digitally displayed by a display circuit, and is sent to the outside as a display signal. By dividing this displayed reactance by the reactance of the line per unit length, the distance l from the power transmission side to the short circuit point P can be determined, that is, the short circuit point can be located.

ところで、既述したように北記演算によって高精度に短
絡点標定を行なえるという理論的証明は十分になされて
いない。ただ、いえることは、線間電圧、線電流から正
相電圧v1、正相電流I、を求めることによって不平衡
短絡を起した場合であっても平衡短絡の場合と等価な線
間電圧、線電流に変換している。そして正相電圧V1か
ら仮想の相電圧E1ヲ求めることによって一相の4目電
圧に変換しているので、以後のりアクタンスを求める計
算は単相回路と等価な回路によって行なわれている。
By the way, as mentioned above, there has not been sufficient theoretical proof that short-circuit point location can be performed with high precision by the Hokki calculation. However, what can be said is that even if an unbalanced short circuit occurs, by calculating the positive sequence voltage v1 and positive sequence current I from the line voltage and line current, the line voltage and line voltage equivalent to those in a balanced short circuit can be obtained. It is converted into electric current. Since the virtual phase voltage E1 is obtained from the positive phase voltage V1 and converted to the fourth voltage of one phase, the subsequent calculations for obtaining the actance are performed by a circuit equivalent to a single-phase circuit.

このため、簡単な演算手法で、不平衡短絡か平衡短絡か
を問わず高精度に短絡点標定が行なえると考えられる。
Therefore, it is considered that a simple calculation method can be used to locate the short circuit point with high accuracy regardless of whether it is an unbalanced short circuit or a balanced short circuit.

次に本発明方法の1高晴度さを裏付ける各種の実ng’
f、例を記す。
Next, various kinds of fruit ng' that support the high brightness of the method of the present invention.
f. Give an example.

<(1)平衡短絡試験〉 三相高圧配電線そのものを用いて試験することは実1奈
上欅めて困難なため、第4図に示すような模擬回路を構
成した。この模擬回路においては、線路単位長当りの抵
抗、インダクタンスに相当する集中抵抗R1集中インダ
クタンスLを用いた。
<(1) Balanced short-circuit test> Since it is extremely difficult to test using the three-phase high-voltage distribution line itself, a simulated circuit as shown in Figure 4 was constructed. In this simulated circuit, a lumped resistance R1 and a lumped inductance L are used, which correspond to the resistance and inductance per unit length of the line.

それらの値及び線間電圧、周波′#:等は下表の通りで
ある。尚、下表において標l(ζ指示欄のカッコの数字
内はR,S、 T相に押入した標14’ IJアクタン
スの平均値で、標Zl−指示の値はこの平均値を表示乗
率で?(すっだ幀である。標定値の榴は本発明方法によ
って標定した値を示す。従ってこの標定値が標準指示と
近い程精度が高いこととなる。
Their values, line voltage, frequency '#:, etc. are shown in the table below. In addition, in the table below, the number in parentheses in the mark 1 (ζ instruction column) is the average value of the mark 14' IJ actance pushed into the R, S, and T phases, and the value of mark Zl- indicates this average value. So? (This is Sudda-bori.) The location value indicates the value determined by the method of the present invention. Therefore, the closer this location value is to the standard indication, the higher the accuracy.

乗率設定5xll+−2Ω設定 <(2)不平衡短絡試験l〉 試験回路は第4図と同じであるが、配電線の線路定数及
び短絡抵抗を第5図に示すように設定した場合において
試験した。短絡抵抗2Ωは、線間電圧6fi(IOV、
電源の%インピーダンス10%(1o ++ oKVA
)を想定した場合、約600Vのアークドロップに相当
する。
Multiplier setting 5xll+-2Ω setting <(2) Unbalanced short circuit test l> The test circuit is the same as in Figure 4, but the test was performed when the line constant and short circuit resistance of the distribution line were set as shown in Figure 5. did. A short circuit resistance of 2Ω is a line voltage of 6fi (IOV,
Power supply % impedance 10% (1o ++ oKVA
), this corresponds to an arc drop of approximately 600V.

乗率設定5X10−2設定 <(3)不平衡短絡試験2〉 4XIJ5図に示す回路にかえて、第6図に示す回路を
用いて行なった。第5図の場合と同じ条件の下でγ=2
2は約120QVのアークドロップに4(1当する。
Multiplier setting 5X10-2 setting <(3) Unbalanced short circuit test 2> The test was conducted using the circuit shown in FIG. 6 instead of the circuit shown in FIG. 4XIJ5. γ=2 under the same conditions as in Figure 5
2 corresponds to 4 (1 hit) for an arc drop of about 120 QV.

乗率設定5×10 設定 <(4)短絡点aJfのシュミレーション〉@7図に示
す回路において、LR,EB+ ET+Za+  Zl
) + ZC+ Zl +  Z2+  Z3  の各
値をコンピュータに入力して、該コンピュータニーcv
RB 、  VST  。
Multiplier setting 5×10 Setting <(4) Simulation of short circuit point aJf> @7 In the circuit shown in figure, LR, EB+ ET+Za+ Zl
) + ZC + Zl + Z2 + Z3 are input into the computer, and the computer knee cv
RB, VST.

VTR+  ’R1’S+  ITを算出さぜると共に
、これらの値に基づき本発明方法による演算を行わぜて
リアクタンスXを求めた。ここで、Za、Zt)lZo
 は送電側の変王器のインピーダンス、ZI+  Z2
、Z3は各線路のインピーダンスと短絡抵抗Rgとの合
成インピーダンスである。平衡短絡の場合はZl”” 
Z2 ”’ Z3である。尚、入力データとして、ER
’:3Fl 10 Vl 01Es=3f11 (lV
1240°、Hr=38111Vt120°、za= 
Zb = zo= o −4−j4.4Ωは全てのシュ
ミレーションとも共通した。
VTR+'R1'S+IT was calculated, and based on these values, calculations were performed according to the method of the present invention to obtain reactance X. Here, Za, Zt)lZo
is the impedance of the transformer on the power transmission side, ZI + Z2
, Z3 is a composite impedance of the impedance of each line and the short-circuit resistance Rg. In case of balanced short circuit, Zl""
Z2 "' Z3. Furthermore, as input data, ER
':3Fl 10 Vl 01Es=3f11 (lV
1240°, Hr=38111Vt120°, za=
Zb = zo = o -4-j4.4Ω was common to all simulations.

又、丁表のリアクタンスX欄は本発明方法をコンピュー
タによって演算させて求めた値を記載している。
In addition, the reactance X column of the table lists the value obtained by calculating the method of the present invention using a computer.

(以ド余白、次頁につづく) 上1妃表中の結果から、本発し!14方法は、標定誤差
が0.5%以内という極めて高精度な三相高圧配電線の
短絡点標定か行なえるこきがa(dけられた。
(Continued on next page, blank space) Based on the results in the top 1 queen table, this is the official release! Method 14 was developed to be able to locate short-circuit points on three-phase high-voltage distribution lines with extremely high precision, with a location error within 0.5%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するーc第1としての装置a
を示す図、第2図は第1図中のコンピュータのフローチ
ャートレ1、第3図は本発明方法の演算過程を示すベク
トル図、第4図は本発明方法の性能試i’i’i′tに
用いた模擬回路を示す図、@5図、第6図は第4図の回
路中の配電線を異なった条件にした回路を示す図、第7
図は短絡点は定のシュミレーノヨンに用いた回路図であ
る。
FIG. 1 shows a first apparatus for carrying out the method of the invention;
2 is a flowchart of the computer shown in FIG. 1, FIG. 3 is a vector diagram showing the calculation process of the method of the present invention, and FIG. Fig. 6 is a diagram showing the simulated circuit used for t, @Fig. 6 is a diagram showing a circuit with different conditions for the distribution line in the circuit of Fig. 4,
The figure is a circuit diagram used for a simulation in which the short-circuit point is constant.

Claims (1)

【特許請求の範囲】[Claims] 三相高圧配電線の送電側に少なくとも二つの線間電圧を
分圧して取出す計器用変圧器−1少なくとも二つの線電
流を分流してIry、出す計器用変流器とを設け、これ
ら変圧器、変流器から直接或いは演算することによって
間接的に3つの線間電圧、線電流を得、しかる後、この
3つの線間電圧、線電流から対称座標法によって正相電
圧、正相電流を求め、かつ正相電圧を1Δ丁倍すると共
にその位相をπ/6(rad)遅らせて仮想の相電圧を
算出し、この仮想の相電圧と前記正相電流とからりアク
ダンスを演算して短絡点標定を行なうようにしたことを
特徴とする三相高圧配電線の短絡点標定方法。
An instrument transformer that divides and takes out at least two line voltages on the transmission side of a three-phase high-voltage distribution line - 1 An instrument current transformer that divides and outputs at least two line currents, and these transformers , obtain the three line voltages and line currents directly or indirectly by calculation from the current transformer, and then calculate the positive sequence voltage and positive sequence current from these three line voltages and line currents using the symmetric coordinate method. Then, calculate the virtual phase voltage by multiplying the positive sequence voltage by 1Δ and delaying its phase by π/6 (rad), calculate the accurance between this virtual phase voltage and the positive sequence current, and detect the short circuit. A method for locating short-circuit points in a three-phase high-voltage distribution line, characterized in that point locating is performed.
JP10624283A 1983-06-11 1983-06-11 Spotting method of short-circuited point of three-phase high-voltage distribution line Granted JPS59230175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10624283A JPS59230175A (en) 1983-06-11 1983-06-11 Spotting method of short-circuited point of three-phase high-voltage distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10624283A JPS59230175A (en) 1983-06-11 1983-06-11 Spotting method of short-circuited point of three-phase high-voltage distribution line

Publications (2)

Publication Number Publication Date
JPS59230175A true JPS59230175A (en) 1984-12-24
JPH0552469B2 JPH0552469B2 (en) 1993-08-05

Family

ID=14428643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10624283A Granted JPS59230175A (en) 1983-06-11 1983-06-11 Spotting method of short-circuited point of three-phase high-voltage distribution line

Country Status (1)

Country Link
JP (1) JPS59230175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198773A (en) * 1986-02-27 1987-09-02 Toshiba Corp Locating method for fault point on power-transmission line
CN103217631A (en) * 2013-04-16 2013-07-24 航天科工深圳(集团)有限公司 Power supply control cabinet and implementation method thereof
JP2015033306A (en) * 2013-08-07 2015-02-16 株式会社日立製作所 Three-phase open-phase protection device, and three-phase open-phase protection method
JP2015115997A (en) * 2013-12-10 2015-06-22 株式会社東芝 Short circuit directional relay

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946175A (en) * 1972-08-31 1974-05-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946175A (en) * 1972-08-31 1974-05-02

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198773A (en) * 1986-02-27 1987-09-02 Toshiba Corp Locating method for fault point on power-transmission line
CN103217631A (en) * 2013-04-16 2013-07-24 航天科工深圳(集团)有限公司 Power supply control cabinet and implementation method thereof
JP2015033306A (en) * 2013-08-07 2015-02-16 株式会社日立製作所 Three-phase open-phase protection device, and three-phase open-phase protection method
JP2015115997A (en) * 2013-12-10 2015-06-22 株式会社東芝 Short circuit directional relay

Also Published As

Publication number Publication date
JPH0552469B2 (en) 1993-08-05

Similar Documents

Publication Publication Date Title
CA2489178A1 (en) Fault location using measurements of current and voltage from one end of a line
JPS59230175A (en) Spotting method of short-circuited point of three-phase high-voltage distribution line
JPH06347503A (en) Ground fault position locating apparatus
JP2531988B2 (en) Transformer protection relay device test equipment and test method
US3408564A (en) Electrical apparatus including a pair of replica impedances for measuring distances along a loaded electrical line
JPH01207674A (en) Fault locating system
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JPH0729477U (en) Insulation leakage current measuring device
EP0517147A2 (en) Zero phase voltage measuring device
JPH0758308B2 (en) Fault location method for 3-terminal transmission system
JPH11142465A (en) Ground-fault point detecting method
JPH0373825B2 (en)
JPS606761Y2 (en) Circuit constant measurement device
JP2008145155A (en) Apparatus for detecting resistance component current of zero-phase current and leakage monitoring apparats
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPS62207972A (en) Searching system for fault of distribution line
JPH034940Y2 (en)
CN111948593A (en) Current transformer exciting current measuring method
JPH03130669A (en) Method for measuring insulating resistance of isolated neutral electric path
US1535624A (en) Electrical system
JP2006054965A (en) Accident determining device for transmission system
JPH06347505A (en) Ground fault position locating apparatus
JPS617477A (en) Higher harmonic analysis type leaked current detection apparatus
JPS59230176A (en) Spotting method of short-circuit point of high-voltage distribution line
JPH0711546B2 (en) Cable dielectric loss measurement method