JPH06347505A - Ground fault position locating apparatus - Google Patents

Ground fault position locating apparatus

Info

Publication number
JPH06347505A
JPH06347505A JP13832393A JP13832393A JPH06347505A JP H06347505 A JPH06347505 A JP H06347505A JP 13832393 A JP13832393 A JP 13832393A JP 13832393 A JP13832393 A JP 13832393A JP H06347505 A JPH06347505 A JP H06347505A
Authority
JP
Japan
Prior art keywords
fault
zero
zero phase
current
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13832393A
Other languages
Japanese (ja)
Inventor
Shunei Shimono
俊英 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP13832393A priority Critical patent/JPH06347505A/en
Publication of JPH06347505A publication Critical patent/JPH06347505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To locate a ground fault position by detecting a current only at a receiving terminal by a method wherein a zero phase current value at a complete grounding is settled and a ground rate is calculated from a measured zero phase voltage at the occurrence of a fault so that a fault current is estimated based on a measured zero phase current and the ground rate and an operation of zero phase current divisional rate is subjected thereto. CONSTITUTION:A zero phase voltage V0 from a zero phase voltage transformer GPT and zero phase currents IO1', IO2' from a zero phase current transformer ZCT are inputted to a fault position locating section 1 and stored in a memory 16 via an auxiliary voltage transformer 12, an S/H 13 and an A/D convertor 14. On the other hand, a distance d from a sending terminal A to a receiving terminal B, a zero phase current NGRI on the complete grounding and a system voltage official value E are stored in a memory 17 as settlement values. A CPU 18 fetches data immediately after a fault from the memory 16 to calculate a ground rate rho=¦V0¦/E by using the zero phase voltage V0 and the system voltage official value E so that a fault current I0f is estimated in accordance with an equation of I0f=NGRIXrho. A distance X from a sending terminal A to a fault position is calculated by using an equation of X=(-IO2'$+IO1')d/ I0f for a one L line fault or an equation of X=(IO2'-IO1')d/I0f for a two L line fault.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高抵抗接地系2端子平
行2回線送電線における故障点標定方法に関し、さらに
詳細には、電流検出部を負荷端にのみ設けたときの故障
点標定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault point locating method for a high resistance grounding type two-terminal parallel two-line power transmission line, and more specifically, a fault point locating method when a current detecting section is provided only at a load end. It is about.

【0002】[0002]

【従来の技術】従来からの高抵抗接地系2端子平行2回
線送電線における地絡故障点標定方法として、平行2回
線のそれぞれの回線の零相電流I01,I02を検出して、
零相電流分流比I0i/(I01+I02)(iは1又は2を
とる。)を算出し、この零相電流分流比に基づいて送電
端から地絡故障点までの距離を算出する方法がある。
2. Description of the Related Art As a conventional ground fault fault locating method in a high resistance grounding system 2-terminal parallel 2-line transmission line, zero-phase currents I 01 and I 02 of each line of parallel 2 lines are detected.
The zero-phase current diversion ratio I 0i / (I 01 + I 02 ) (i takes 1 or 2) is calculated, and the distance from the power transmission end to the ground fault point is calculated based on the zero-phase current diversion ratio. There is a way.

【0003】図3は、零相電流分流比演算方法を説明す
るための零相等価回路図であり、2端子平行2回線送電
線1L,2Lの送電端Aと受電端Bの長さをdとし、送
電端Aでの1L回線には零相電流I01が流れ、2L回線
には零相電流I02が流れるものとしている。送電端Aか
ら距離xの1L回線に地絡故障が発生し、故障点から零
相電流I0fが流れ出している。
FIG. 3 is a zero-phase equivalent circuit diagram for explaining the zero-phase current shunt ratio calculation method. The lengths of the power transmission end A and the power reception end B of the two-terminal parallel two-line power transmission lines 1L, 2L are d. It is assumed that the zero-phase current I 01 flows through the 1L line at the power transmission end A and the zero-phase current I 02 flows through the 2L line. A ground fault occurs in the 1L line at a distance x from the power transmission end A, and the zero-phase current I 0f starts flowing from the fault point.

【0004】送電端Aから故障点までの距離xは、送電
端Aの電流情報のみに基づいて次の式により、算出でき
る。 x=2dI02/(I01+I02) (1) 上の式が導かれる根拠は、例えば、特開平2−1977
9号公報に従来技術として解説されている。
The distance x from the power transmitting end A to the failure point can be calculated by the following equation based on only the current information of the power transmitting end A. x = 2dI 02 / (I 01 + I 02 ) (1) The basis for deriving the above formula is, for example, Japanese Patent Laid-Open No. 2-1977.
This is described in Japanese Patent No. 9 as prior art.

【0005】[0005]

【発明が解決しようとする課題】ところが、電流検出部
が受電端Bにのみ設置されていると、前記の零相電流分
流比演算方法は適用できないという欠点がある。このこ
とを詳しく説明する。図1は、受電端に測定部がある零
相電流分流比演算方法を説明するための零相等価回路図
である。V0 ,V0 ′,Vofは、それぞれ送電端A、受
電端B、故障点での零相電圧を表わす。この回路の1L
回線において、 Vof=V0 −x(Z0 01+Z0m02) Vof=V0 ′−(d−x)(Z0 01′+Z0m02′) がなりたつ。ただし、Z0 は単位距離当たりの零相イン
ピーダンス、Z0mは単位距離当たりの零相相互インピー
ダンスである。両式を減算すると、 V0 −V0 ′=x(Z0 01+Z0m02)−(d−x)
(Z0 01′+Z0m02′) がなりたつ。また、2L回線についても同様に、 V0 −V0 ′=x(Z0 02+Z0m01)−(d−x)
(Z0 02′+Z0m01′) がなりたつ。上の両式からV0 ,V0 ′を消去すると、 x(Z0 −Z0m)(I01−I02)=(d−x)(Z0
0m)(I01′−I02′) となり、(Z0 −Z0m)を消去できて、 x(I01−I02)=(d−x)(I01′−I02′) となる。xについて解くと、 x=(I02+I01′)d/(I01+I01′) (2) となる。ただし、I02+I02′=0を使った。
However, if the current detecting section is installed only at the power receiving end B, the above-mentioned zero-phase current shunting ratio calculation method cannot be applied. This will be described in detail. FIG. 1 is a zero-phase equivalent circuit diagram for explaining a zero-phase current shunt ratio calculation method having a measuring unit at the power receiving end. V 0 , V 0 ′ and V of represent the zero phase voltage at the power transmitting end A, the power receiving end B and the fault point, respectively. 1L of this circuit
In line, V of = V 0 -x ( Z 0 I 01 + Z 0m I 02) V of = V 0 '- (d-x) (Z 0 I 01' + Z 0m I 02 ') holds. However, Z 0 is a zero-phase impedance per unit distance, and Z 0m is a zero-phase mutual impedance per unit distance. Subtracting both equations, V 0 −V 0 ′ = x (Z 0 I 01 + Z 0m I 02 ) − (d−x)
(Z 0 I 01 ′ + Z 0m I 02 ′) Similarly for the 2L line, V 0 −V 0 ′ = x (Z 0 I 02 + Z 0m I 01 ) − (d−x)
(Z 0 I 02 ′ + Z 0m I 01 ′) If V 0 and V 0 ′ are eliminated from the above equations, x (Z 0 −Z 0m ) (I 01 −I 02 ) = (d−x) (Z 0
Z 0m ) (I 01 ′ −I 02 ′), and (Z 0 −Z 0m ) can be erased, and x (I 01 −I 02 ) = (d−x) (I 01 ′ −I 02 ′) Become. Solving for x gives x = (I 02 + I 01 ′) d / (I 01 + I 01 ′) (2). However, I 02 + I 02 ′ = 0 was used.

【0006】I01+I01′は故障電流I0fと等しいの
で、(2) 式は次のようにも書ける。 x=(I02+I01′)d/I0f (3) 上の(2) 式には、送電端Aにおける電流I01が入ってお
り、(3) 式には故障電流I0fが入っているので、送電端
Aから故障点までの距離xは、受電端Bの電流情報のみ
に基づいて求めることはできない。
Since I 01 + I 01 ′ is equal to the fault current I 0f , equation (2) can also be written as follows. x = (I 02 + I 01 ′) d / I 0f (3) The equation (2) above contains the current I 01 at the power transmission end A, and the equation (3) contains the fault current I 0f. Therefore, the distance x from the power transmission end A to the failure point cannot be obtained based on only the current information of the power reception end B.

【0007】そこで、本発明の目的は、上述の技術的課
題を解決し、受電端Bのみで電流検出を行うときでも地
絡故障点を見出すことができる地絡故障点標定方法を提
供することである。
Therefore, an object of the present invention is to solve the above technical problems and provide a ground fault fault point locating method capable of finding a ground fault fault point even when current detection is performed only at the power receiving end B. Is.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めの請求項1記載の地絡故障点標定方法は、送電端から
受電端までの線路長dと、完全地絡時の零相電流値NG
RIを整定し、受電端での零相電圧、1L回線零相電流
及び2L回線零相電流を測定し、故障時の測定零相電圧
に基づいて地絡度ρを算出し、前記零相電流値NGRI
とこの地絡度ρに基づいて故障電流値を推定し、この推
定された故障電流値に基づいて零相電流分流比演算を行
うことによって、地絡故障点を標定する方法である。
A ground fault fault location method according to claim 1 for achieving the above object is a line length d from a transmitting end to a receiving end and a zero-phase current at a complete ground fault. Value NG
The RI is settled, the zero-phase voltage at the receiving end, the 1L line zero-phase current and the 2L line zero-phase current are measured, the ground fault ρ is calculated based on the measured zero-phase voltage at the time of failure, and the zero-phase current is calculated. Value NGRI
This is a method of locating a ground fault point by estimating a fault current value based on the ground fault degree ρ and performing a zero-phase current shunt ratio calculation based on the estimated fault current value.

【0009】[0009]

【作用】完全地絡時の零相電流NGRIを整定しておく
と、実際に地絡のあったときの零相電流(故障電流)I
0fは、 I0f=NGRI×ρ と表される。ここに、ρは地絡度であり、故障時の零相
電圧V0 と系統電圧公称値Eとを用いて、 ρ=|V0 |/E と表される。
When the zero-phase current NGRI at the time of a complete ground fault is settled, the zero-phase current (fault current) I when there is an actual ground fault
0f is expressed as I 0f = NGRI × ρ. Here, ρ is the ground fault degree, and is expressed as ρ = | V 0 | / E by using the zero-phase voltage V 0 at the time of failure and the system voltage nominal value E.

【0010】零相電圧V0 は、地絡電流による送電線の
電圧降下を無視すると(地絡電流の絶対値は小さいか
ら、この近似はなりたつ)、受電端Bで測定したもの
も、送電端Aで測定したものも同じとみなすことができ
る。したがって、受電端での零相電圧V0 に基づいて地
絡度ρを算出し、前記零相電流値NGRIとこの地絡度
ρに基づいて故障電流値I0fを推定し、この推定された
故障電流値I0fに基づいて(3) 式で示した零相電流分流
比演算 x=(I02+I01′)d/I0f =(−I02′+I01′)d/I0f を行うことによって、地絡故障点を標定することができ
る。
When the voltage drop of the transmission line due to the ground fault current is ignored (the absolute value of the ground fault current is small, this approximation does not hold true), the zero-phase voltage V 0 is the same as that measured at the power receiving end B. What is measured in A can be regarded as the same. Therefore, the ground fault degree ρ is calculated based on the zero phase voltage V 0 at the power receiving end, and the fault current value I 0f is estimated based on the zero phase current value NGRI and the ground fault degree ρ, and this is estimated. Based on the fault current value I 0f , the zero-phase current diversion ratio calculation x = (I 02 + I 01 ′) d / I 0f = (− I 02 ′ + I 01 ′) d / I 0f shown in equation (3) is performed. Thus, the ground fault point can be located.

【0011】[0011]

【実施例】以下実施例を示す添付図面によって詳細に説
明する。図2は、それぞれの送電線1L,2Lの受電端
Bに設けられた零相変流器ZCT、受電端Bの母線に設
けられた零相変圧器GPT、故障点標定装置1等を示す
ブロック図である。
Embodiments will be described in detail below with reference to the accompanying drawings showing embodiments. FIG. 2 is a block diagram showing a zero-phase current transformer ZCT provided at a power receiving end B of each of the power transmission lines 1L and 2L, a zero-phase transformer GPT provided at a bus of the power receiving end B, a fault locator 1 and the like. It is a figure.

【0012】故障点標定装置1には、零相変圧器GPT
の検出電圧である零相電圧V0 と、零相変流器ZCTの
検出電流である零相電流I01′,I02′とが入力されて
いる。零相電圧V0 と零相電流I01′,I02′とは、補
助変圧器12、サンプルホールド回路13、A/D変換
回路14を通してディジタル化されてバスライン15に
供給され、データメモリ16に蓄えられる。
The fault location device 1 includes a zero-phase transformer GPT.
The zero-phase voltage V 0 , which is the detection voltage of 0, and the zero-phase currents I 01 ′ and I 02 ′, which are the detection currents of the zero-phase current transformer ZCT, are input. The zero-phase voltage V 0 and the zero-phase currents I 01 ′ and I 02 ′ are digitized through the auxiliary transformer 12, the sample hold circuit 13, and the A / D conversion circuit 14 and supplied to the bus line 15, and the data memory 16 is provided. Stored in.

【0013】一方、送電端Aから受電端Bまでの線路長
d、完全地絡時の零相電流NGRI、系統電圧公称値E
(例えば6.6kVの系統であれば、E=6.6kV/
√3である)が、整定値として、整定値メモリ17に記
憶されている。この記憶は、例えばI/O装置20を通
してキーボードによってさせることができる。CPU1
8は、故障点標定装置1とは別に設けられた故障検出回
路(図示せず)が地絡故障を検出した時点で、メモリ1
6から故障直後のデータを取り出し、故障時の零相電圧
0 と系統電圧公称値Eとを用いて、地絡度ρを式、 ρ=|V0 |/E に基づいて算出し、故障電流I0fを、式 I0f=NGRI×ρ によって推定する。
On the other hand, the line length d from the power transmitting end A to the power receiving end B, the zero-phase current NGRI at the time of a complete ground fault, and the system voltage nominal value E
(For example, if the system is 6.6 kV, E = 6.6 kV /
√3) is stored in the settling value memory 17 as a settling value. This storage can be done by a keyboard through the I / O device 20, for example. CPU1
Reference numeral 8 denotes the memory 1 when a failure detection circuit (not shown) provided separately from the failure point locating device 1 detects a ground fault.
The data immediately after the failure is taken out from 6, and the ground fault degree ρ is calculated based on the equation, ρ = | V 0 | / E, using the zero-phase voltage V 0 at the time of the failure and the system voltage nominal value E The current I 0f is estimated by the formula I 0f = NGRI × ρ.

【0014】そして、データメモリ16に蓄えられてい
る零相電流値I01′,I02′を用いて、式 x=(−I02′+I01′)d/I0f の演算を行い、1L回線が故障した場合の送電端Aから
故障点までの距離を求める。同様に x=(I02′−I01′)d/I0f の演算を行い、2L回線が故障した場合の送電端Aから
故障点までの距離を求める。
Then, using the zero-phase current values I 01 ′ and I 02 ′ stored in the data memory 16, the calculation of the equation x = (− I 02 ′ + I 01 ′) d / I 0f is performed and 1 L When the line breaks down, the distance from the power transmission end A to the failure point is calculated. Similarly, x = (I 02 ′ −I 01 ′) d / I 0f is calculated to find the distance from the power transmission end A to the failure point when the 2L line fails.

【0015】CPU18の標定出力は、I/O装置19
を通して表示装置に出力され、表示装置において故障回
線と、故障点までの距離が表示される。
The orientation output of the CPU 18 is the I / O device 19
Is output to the display device through the display device, and the failure line and the distance to the failure point are displayed on the display device.

【0016】[0016]

【発明の効果】以上のように本発明の地絡故障点標定方
法によれば、受電端での零相電圧に基づいて地絡度ρを
算出し、前記零相電流値NGRIとこの地絡度ρに基づ
いて故障電流値I0fを推定することができる。したがっ
て、従来零相電流分流比演算方法は適用できないとされ
ていた受電端でのみ電流を検出する場合であっても、こ
の推定された故障電流値I0fに基づいて零相電流分流比
演算を行い、地絡故障点を標定することができる。
As described above, according to the ground fault fault location method of the present invention, the ground fault degree ρ is calculated based on the zero phase voltage at the power receiving end, and the zero phase current value NGRI and this ground fault are calculated. The fault current value I 0f can be estimated based on the degree ρ. Therefore, even in the case where the current is detected only at the power receiving end, which was conventionally considered to be inapplicable to the zero-phase current shunt ratio calculation method, the zero-phase current shunt ratio calculation is performed based on the estimated fault current value I 0f. It is possible to locate the ground fault point.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の零相電流分流比演算方法を説明する
ための零相等価回路図である。
FIG. 1 is a zero-phase equivalent circuit diagram for explaining a zero-phase current shunt ratio calculation method of the present invention.

【図2】それぞれの送電線1L,2Lの受電端Bに設け
られた零相変流器ZCT、受電端Bの母線に設けられた
零相変圧器GPT、故障点標定装置1等を示すブロック
図である。
FIG. 2 is a block diagram showing a zero-phase current transformer ZCT provided at a power receiving end B of each of the power transmission lines 1L and 2L, a zero-phase transformer GPT provided at a bus of the power receiving end B, a fault locator 1 and the like. It is a figure.

【図3】零相電流分流比演算方法を説明するための零相
等価回路図である。
FIG. 3 is a zero-phase equivalent circuit diagram for explaining a zero-phase current diversion ratio calculation method.

【符号の説明】[Explanation of symbols]

1L,2L 高抵抗接地系2端子平行2回線送電線 A 送電端 B 受電端 1L, 2L High resistance grounding system 2 terminals Parallel 2 lines Transmission line A Transmission end B Receiving end

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高抵抗接地系2端子平行2回線送電線の送
電端から地絡故障点までの距離xを標定する方法におい
て、 送電端から受電端までの線路長dを整定し、 完全地絡時の零相電流値NGRIを整定し、 受電端での零相電圧、1L回線零相電流及び2L回線零
相電流を測定し、 故障時の受電端での零相電圧に基づいて地絡度ρを算出
し、 前記零相電流値NGRIとこの地絡度ρに基づいて故障
電流値を推定し、 この推定された故障電流値に基づいて零相電流分流比演
算を行うことによって地絡故障点を標定することを特徴
とする地絡故障点標定方法。
Claim: What is claimed is: 1. A method of locating a distance x from a power transmission end to a ground fault point of a high resistance grounding two-terminal parallel two-circuit power transmission line, wherein a line length d from the power transmission end to the power reception end is set to complete earth ground. Set the zero-phase current value NGRI at the time of the fault, measure the zero-phase voltage at the receiving end, the 1L line zero-phase current and the 2L line zero-phase current, and ground fault based on the zero-phase voltage at the receiving end at the time of failure. Degree ρ is calculated, the fault current value is estimated based on the zero-phase current value NGRI and the ground fault degree ρ, and the zero-phase current shunt ratio calculation is performed based on the estimated fault current value. A ground fault fault point locating method characterized by locating fault points.
JP13832393A 1993-06-10 1993-06-10 Ground fault position locating apparatus Pending JPH06347505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13832393A JPH06347505A (en) 1993-06-10 1993-06-10 Ground fault position locating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13832393A JPH06347505A (en) 1993-06-10 1993-06-10 Ground fault position locating apparatus

Publications (1)

Publication Number Publication Date
JPH06347505A true JPH06347505A (en) 1994-12-22

Family

ID=15219224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13832393A Pending JPH06347505A (en) 1993-06-10 1993-06-10 Ground fault position locating apparatus

Country Status (1)

Country Link
JP (1) JPH06347505A (en)

Similar Documents

Publication Publication Date Title
US20080150544A1 (en) Multi-ended fault location system
JPH06347503A (en) Ground fault position locating apparatus
EP0721686B1 (en) Method and device for measuring and recreating the load current in a power network in connection with the occurrence of faults
US5764064A (en) Method and device for identifying single ground faults
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JP2531988B2 (en) Transformer protection relay device test equipment and test method
JPH06347505A (en) Ground fault position locating apparatus
JPH11344525A (en) Fault point plotting device
JPH08101244A (en) Method for location of fault point in transmission line
JPH07122651B2 (en) Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPH08122395A (en) Method for locating fault on multiterminal transmission line
JP2560994B2 (en) Short-circuit fault location method
JPH06289089A (en) Fault-state specifying apparatus for power system
JPH0758308B2 (en) Fault location method for 3-terminal transmission system
JPH11142465A (en) Ground-fault point detecting method
JPH10132890A (en) Method and device for locating failure point
JPH063402A (en) Fault locator
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPH06347504A (en) Ground fault position locating apparatus
JP3503491B2 (en) Ground fault fault locating device for two parallel transmission lines
JPH06249911A (en) Orientation method of ground-fault point
JP2003315403A (en) Method for locating fault point
JPS6152431B2 (en)
JPH04319673A (en) Method for locating earth fault point