JPH09304468A - Method for locating fault-point of parallel two line system - Google Patents

Method for locating fault-point of parallel two line system

Info

Publication number
JPH09304468A
JPH09304468A JP11668096A JP11668096A JPH09304468A JP H09304468 A JPH09304468 A JP H09304468A JP 11668096 A JP11668096 A JP 11668096A JP 11668096 A JP11668096 A JP 11668096A JP H09304468 A JPH09304468 A JP H09304468A
Authority
JP
Japan
Prior art keywords
zero
phase
line
power source
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11668096A
Other languages
Japanese (ja)
Inventor
Tokuo Emura
徳男 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP11668096A priority Critical patent/JPH09304468A/en
Publication of JPH09304468A publication Critical patent/JPH09304468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To locate a fault point of a ground fault of one line at one point of a power feed line consisting of high resistance parallel two lines with the use of current, voltage data of a zero-phase terminal not on the side of a power source. SOLUTION: Based on a zero-phase current of each line at a zero-phase terminal T2 not on the side of a power spruce, a differential current ΔI02 of lines is calculated, a zero-phase voltage V0 is the terminal T2 is calculated, a coefficient ρ is obtained from an equation ρ=Von .|ΔI02 |/Ion .|Vo | (Von is a rated zero-phase voltage and Ion is a ground fault current at the time of one line complete ground fault), and a distance (x) to a fault point from the terminal T2 is obtained according to (x)=d(1-ρ) ((d) is length of the line).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高抵抗2端子系平
行2回線送電線及び高抵抗3端子系平行2回線送電線の
地絡故障点の標定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of locating a ground fault point of a high resistance two-terminal parallel two-line transmission line and a high resistance three-terminal parallel two-line transmission line.

【0002】[0002]

【従来の技術】変電所間の送電は、電力供給の信頼度向
上のため、一般に平行2回線方式で行われている。送電
線は、建物内で管理されている配線と比較して、外部
(例えば落雷による絶縁破壊、動物や樹木の接触)に起
因する故障が生じるので、送電線路の保守のため、故障
発生時には故障点探索作業を伴う。
2. Description of the Related Art Power transmission between substations is generally performed by a parallel two-line system in order to improve reliability of power supply. Compared with the wiring managed in the building, the power transmission line has a failure caused by the outside (for example, dielectric breakdown due to lightning strike, contact of animals and trees). It involves point search work.

【0003】そこで、故障点を標定する方法が種々提案
されている。例えば、故障点に流入する各回線の零相電
流分流比が、零相電源端から故障点までの距離に比例す
ることを利用して、故障点までの距離を求める方法があ
る(特開昭63−200077号公報参照)。これを零
相電流分流比方式という。なお、この明細書において
は、記号I,V,Zは、特に断らない限り、ベクトルを
表すものとする。また、「零相非電源端」とは、零相回
路で、零相電流の流入又は流出がない端子のことをい
う。
Therefore, various methods for locating a failure point have been proposed. For example, there is a method of obtaining the distance to the failure point by utilizing the fact that the zero-phase current shunt ratio of each line flowing into the failure point is proportional to the distance from the zero-phase power source end to the failure point (Japanese Patent Laid-Open Publication No. Sho. 63-200077). This is called the zero-phase current shunt ratio method. In this specification, symbols I, V, and Z represent vectors unless otherwise specified. Further, the "zero-phase non-power source end" refers to a terminal in the zero-phase circuit in which zero-phase current does not flow in or out.

【0004】図1は、零相電流分流比方式を説明するた
めの零相等価回路であり、2端子系平行2回線送電線の
零相電源端T1 と零相非電源端T2 との間を、長さdの
2回線1L,2Lで構成している。零相電源端T1 の回
線1L,2Lにそれぞれ零相電流I011 ,I012 が流
れ、零相非電源端T2 の回線1L,2Lにそれぞれ零相
電流I021 ,I022 が流れ、零相非電源端T2 から距離
xのところの回線1Lに地絡故障が発生し、零相故障電
流I0f1 が流出しているものとする。
FIG. 1 is a zero-phase equivalent circuit for explaining the zero-phase current shunt ratio method. It is shown that a zero-phase power source end T 1 and a zero-phase non-power source end T 2 of a two-terminal parallel two-line transmission line are connected. The space is composed of two lines 1L and 2L of length d. Zero-phase power supply terminal T 1 of the line 1L, respectively zero-phase current I 011, I 012 flows 2L, zero-phase non-power end T 2 of the line 1L, zero-phase current respectively 2L I 021, I 022 flows, zero It is assumed that a ground fault has occurred in the line 1L at a distance x from the phase non-power source terminal T 2 and the zero-phase fault current I 0f1 is flowing out.

【0005】この場合、零相電流I011 ,I012 を用い
て、下記式により、零相電源端T1から故障点までの距
離d−xを算出することができる。 d−x=2d|I012 |/(|I011 |+|I012 |) (1)
In this case, using the zero-phase currents I 011 and I 012 , the distance dx from the zero-phase power source end T 1 to the fault point can be calculated by the following equation. d−x = 2d | I 012 | / (| I 011 | + | I 012 |) (1)

【0006】[0006]

【発明が解決しようとする課題】前記零相電流分流比方
式は、故障時に重畳される負荷電流成分の影響や故障点
抵抗の影響を受けないことから、高い標定精度を有して
いるが、零相電源端である端子T1 の零相電流I011
012 が分かっている必要があり、もし零相電源端T1
の零相電流I011 ,I012 が分からず、零相非電源端T
2 での零相電流I 021 ,I022 のみ分かっているとき
は、故障点までの距離xを算出することができないとい
う問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The formula is the influence of the load current component superimposed at the time of failure and the failure point.
Since it is not affected by resistance, it has high orientation accuracy.
However, terminal T, which is the zero-phase power source end1Zero-phase current I011,
I012It is necessary to know that if the zero-phase power source end T1
Zero-phase current I011, I012Not known, zero-phase non-power source terminal T
TwoZero-phase current I at 021, I022Only when you know
Says that the distance x to the failure point cannot be calculated.
There was a problem.

【0007】仮に、零相非電源端T2 での零相電流I
021 ,I022 を使って、前記(1) 式に類似した式 x=2d|I022 |/(|I021 |+|I022 |) を想定して故障点を標定することを試みると、零相非電
源端T2 では、零相電流I021 ,I022 は符号が逆にな
るが大きさが等しいので、xは常にdとなり、故障点は
求められないことか分かる。
Assuming that the zero-phase current I at the zero-phase non-power source terminal T 2
Using 021 and I 022 , an attempt is made to locate a failure point by assuming an equation x = 2d | I 022 | / (| I 021 | + | I 022 |) similar to the above equation (1), At the zero-phase non-power source terminal T 2 , the zero-phase currents I 021 and I 022 have opposite signs but the magnitudes are equal, so x is always d, and it can be seen that the failure point cannot be obtained.

【0008】このような問題は、零相電源端T1 の零相
電流測定装置に異常があって、零相電流の測定ができな
かったり、零相電源端T1 の零相電流データを中央処理
装置に送る通信回線が故障して中央処理装置が零相電流
データに基づいて故障点標定演算ができなかったりした
場合に、零相非電源端T2 の零相電流を用いて標定を行
おうとすると発生する。
Such a problem is that the zero-phase current measuring device at the zero-phase power source terminal T 1 is abnormal and the zero-phase current cannot be measured, or the zero-phase current data at the zero-phase power source terminal T 1 is stored in the center. When the communication line sent to the processor fails and the central processing unit cannot perform fault point location calculation based on the zero-phase current data, the zero-phase current at the zero-phase non-power source terminal T 2 is used for orientation. It happens when you try.

【0009】そこで、本発明は、上述の技術的課題を解
決し、高抵抗平行2回線送電線の1回線の1地点1線地
絡故障の故障点を、零相非電源端の電流、電圧データを
用いて標定することができる故障点標定方法を実現する
ことを目的とする。
Therefore, the present invention solves the above-mentioned technical problems, and determines a fault point of a one-point one-line ground fault of one line of a high resistance parallel two-line power transmission line as a current and a voltage at a zero-phase non-power source end. The purpose is to realize a fault location method that can be located using data.

【0010】[0010]

【課題を解決するための手段】本発明の方法を解説す
る。 (a) 高抵抗2端子系平行2回線送電線の場合 図2は、高抵抗平行2回線送電線の零相差電流に基づい
た等価回路を示す。2回線送電線の零相電源端T1 と零
相非電源端T2 との間の長さをdとし、零相電源端T1
の回線間差電流I011 −I012 をΔI01、零相非電源端
2 の回線間差電流I021 −I022 をΔI02とする。
The method of the present invention will be described. (a) High-resistance 2-terminal parallel 2-line transmission line Fig. 2 shows an equivalent circuit based on the zero phase difference current of the high-resistance parallel 2-line transmission line. The length between the zero-phase power supply terminal T 1 of the 2-circuit transmission line and the zero-phase non-power terminal T 2 is d, zero-phase power supply terminal T 1
The line-to-line differential current I 011 -I 012 is ΔI 01 , and the line-to-line differential current I 021 -I 022 of the zero-phase non-power source terminal T 2 is ΔI 02 .

【0011】零相非電源端T2 から距離xのところの回
線1Lに地絡故障が発生しているものとし、故障差電流
をΔI0fとする。1回線の地絡を想定しているので、Δ
0f=I0f1 が成立することはもちろんである。以後、
ΔI0fを単にI0fと書くことにする。電圧降下則より、 (d−x)ΔI01−xΔI02=0, (2) 電流保存則より、 ΔI01+ΔI02=I0f (3) が成立する。
It is assumed that a ground fault has occurred in the line 1L at a distance x from the zero-phase non-power source terminal T 2 , and the fault difference current is ΔI 0f . Since one line ground fault is assumed, Δ
Of course, I 0f = I 0f1 holds. After that,
ΔI 0f will be simply written as I 0f . According to the voltage drop law, (d−x) ΔI 01 −xΔI 02 = 0, (2) From the current conservation law, ΔI 01 + ΔI 02 = I 0f (3) holds.

【0012】したがって、(2) (3) 式より、 ΔI01=xI0f/d, (4) ΔI02=(d−x)I0f/d (5) が導かれる。零相電源端T1 での零相電圧をV01、中性
点抵抗をRn とすると、故障電流は、電源端の中性点抵
抗Rn を通して電源に戻ってくるので、 |I0f|=|V01|/Rn (6) と書くことができる。ここで、完全1線地絡時の零相電
圧の大きさをV0nとすると、これは、定格相電圧Eに等
しい。
Therefore, from equations (2) and (3), ΔI 01 = xI 0f / d and (4) ΔI 02 = (d−x) I 0f / d (5) are derived. Assuming that the zero-phase voltage at the zero-phase power source terminal T 1 is V 01 and the neutral point resistance is R n , the fault current returns to the power source through the neutral point resistance R n of the power source terminal, so | I 0f | = | V 01 | / R n (6) can be written. Here, when the magnitude of the zero-phase voltage at the time of complete one-line ground fault is V 0n , this is equal to the rated phase voltage E.

【0013】 E=V0n (7) 前記(6) 式は(7) 式を用いると、 |I0f|=(|V01|/Rn )×(E/V0n) =(E/Rn )×(|V01|/V0n) (8) が成立する。E = V 0n (7) When the equation (6) is used in the equation (7), | I 0f | = (| V 01 | / R n ) × (E / V 0n ) = (E / R n ) × (| V 01 | / V 0n ) (8) holds.

【0014】ここで、1線地絡事故時の零相電圧は、各
端子でほとんど変わらないということを利用する。する
と、前記零相電源端T1 での零相電圧V01は、零相非電
源端T2 での零相電圧V02で置き換えることができ、
(8) 式は、 |I0f|=(E/Rn )×|V02|/V0n (9) となる。前記(9) 式右辺の(E/Rn )は、当該系統の
完全地絡時の零相電流であり、これをI0nと書く。する
と、 |I0f|=I0n・|V02|/V0n (10) となる。すなわち、故障電流I0fは、零相非電源端T2
での零相電圧V02と、当該系統の完全地絡時の零相電流
0nと、当該系統の完全地絡時の零相電圧V0nとから求
めることができる。ここで、ρを ρ=|ΔI02|/|I0f| (11) で定義すると、ρは、 ρ=V0n・|ΔI02|/I0n・|V02| (12) により求められる。
Here, it is utilized that the zero-phase voltage at the time of a one-line ground fault is almost unchanged at each terminal. Then, the zero-phase voltage V 01 at the zero-phase power supply terminal T 1 can be replaced with the zero-phase voltage V 02 at the zero-phase non-power supply terminal T 2 .
The formula (8) becomes | I 0f | = (E / R n ) × | V 02 | / V 0n (9) (E / R n ) on the right side of the equation (9) is a zero-phase current at the time of a complete ground fault of the system, and is referred to as I 0n . Then, | I 0f | = I 0n · | V 02 | / V 0n (10). That is, the fault current I 0f is the zero-phase non-power source terminal T 2
Can be obtained from the zero-phase voltage V 02 at 0, the zero-phase current I 0n at the time of a complete ground fault of the system, and the zero-phase voltage V 0n at the time of a complete ground fault of the system. Here, when ρ is defined by ρ = | ΔI 02 | / | I 0f | (11), ρ is obtained by ρ = V 0n · | ΔI 02 | / I 0n · | V 02 |

【0015】零相非電源端T2 から故障点までの距離x
は、このρと、(5) 式の関係を使って、 x=d(1−ρ) (13) で求められる。なお、零相電源端T1 から故障点までの
距離d−xは、(13)式を変形して d−x=ρd で求められる。
The distance x from the zero-phase non-power source end T 2 to the failure point x
Can be calculated by x = d (1-ρ) (13) by using the relation of this ρ and the equation (5). The distance d−x from the zero-phase power supply terminal T 1 to the failure point is obtained by d−x = ρd by modifying the equation (13).

【0016】前記(12)式におけるV0n,I0nは、系統に
固有の定数である。したがって、零相非電源端T2 で|
ΔI02|,|V02|を測定すれば、ρを求めることがで
き、これから故障点の位置xを求めることができる。
(b) 高抵抗3端子系平行2回線送電線の場合図3は、高
抵抗3端子系平行2回線送電線の零相差電流に基づいた
等価回路を示す。零相電源端T1 と分岐点Sとの間の長
さをd1 とし、分岐点Sと零相非電源端T2 ,T3 との
間の長さをそれぞれd2 ,d3 とする。零相電源端T1
の回線間差電流I011 −I012 をΔI01、零相非電源端
2 の回線間差電流I021 −I022 をΔI02、零相非電
源端T3 の回線間差電流I031 −I032 をΔI03とす
る。
V 0n and I 0n in the equation (12) are constants unique to the system. Therefore, at the zero-phase non-power source terminal T 2 ,
By measuring ΔI 02 |, | V 02 |, ρ can be obtained, and from this, the position x of the failure point can be obtained.
(b) High-resistance 3-terminal parallel 2-line transmission line Fig. 3 shows an equivalent circuit based on the zero phase difference current of the high-resistance 3-terminal parallel 2-line transmission line. The length between the zero-phase power source terminal T 1 and the branch point S is d 1, and the length between the branch point S and the zero-phase non-power source terminals T 2 and T 3 is d 2 and d 3 , respectively. . Zero-phase power supply terminal T 1
Line difference current I 011 -I 012 of ΔI 01 , zero phase non-power source terminal T 2 line difference current I 021 -I 022 of ΔI 02 , zero phase non-power source terminal T 3 line difference current I 031Let I 032 be ΔI 03 .

【0017】いま、区間ST2 で1回線1線地絡事故が
起こった場合、前記(4) (5) 式に相当する式は、 ΔI01=(d3 x/D)I0f (14) ΔI02=〔1−(d3 +d1 )x/D〕I0f (15) ΔI03=(d1 x/D)I0f (16) となる。ここで、D=d2 3 +d3 1 +d1 2
用い、(a) のケースと同様、故障差電流ΔI0fは故障電
流I0fに等しいので、ΔI0fをI0fと書いた。
When a one-line / one-line ground fault occurs in the section ST 2 , the equation corresponding to the above equations (4) and (5) is ΔI 01 = (d 3 x / D) I 0f (14) ΔI 02 = [1- (d 3 + d 1 ) x / D] I 0f (15) ΔI 03 = (d 1 x / D) I 0f (16). Here, with D = d 2 d 3 + d 3 d 1 + d 1 d 2, similarly to the case of (a), since the fault differential current [Delta] I 0f equals fault current I 0f, the [Delta] I 0f wrote I 0f .

【0018】ここで(a) のケースと同じように、1線地
絡事故時の零相電圧は、各端子でほとんど変わらないと
いうことを利用すると、各端の零相電圧は同じ値で近似
できる。これをV0 と書き、V0 を使って故障電流を表
現することを考えると、前記(10)式と同様の式、 |I
0f|=I0n・|V0 |/V0n(17) が成立する。すなわち、故障電流I0fは、事故時の零相
電圧V0 と、当該系統の完全地絡時の零相電流I0nと、
当該系統の完全地絡時の零相電圧V0nとから求めること
ができる。
As in the case of (a), the fact that the zero-phase voltage at the time of a one-line ground fault hardly changes at each terminal is used to approximate the zero-phase voltage at each end to the same value. it can. This written as V 0, considering that express a fault current using the V 0, the same formula as the formula (10), | I
0f | = I 0n · | V 0 | / V 0n (17) holds. That is, the fault current I 0f is the zero-phase voltage V 0 at the time of the accident, the zero-phase current I 0n at the time of a complete ground fault of the system,
It can be obtained from the zero-phase voltage V 0n at the time of a complete ground fault of the system.

【0019】零相非電源端T2 の電流電圧データを用い
て標定することを考える。ρを ρ=|ΔI02|/|I0f| (18) で定義すると、ρは、 ρ=V0n・|ΔI02|/I0n・|V0 | (19) により求められる。
It will be considered to perform the orientation using the current-voltage data of the zero-phase non-power source terminal T 2 . When ρ is defined by ρ = | ΔI 02 | / | I 0f | (18), ρ is obtained by ρ = V 0n · | ΔI 02 | / I 0n · | V 0 | (19).

【0020】故障点の零相非電源端T2 からの距離x
は、このρと(15)式から x=(1−ρ)D/(d1 +d3 ) (20) により求められる。ただし、故障点を区間ST2 と考え
ているためx≦d2 すなわちρ≧d1 3 /Dであるこ
とが必要である。以上により、零相非電源端T2 での電
流電圧データに基づいて、(19)式からρを計算し、(20)
式に当てはめることによって零相非電源端T2 からの故
障点までの距離xを求めることができる。
Distance x from the zero-phase non-power source terminal T 2 of the fault point
Is calculated from this ρ and the equation (15) by x = (1−ρ) D / (d 1 + d 3 ) (20). However, since the failure point is considered to be the section ST 2 , it is necessary that x ≦ d 2, that is, ρ ≧ d 1 d 3 / D. From the above, based on the current-voltage data at the zero-phase non-power source terminal T 2 , ρ is calculated from equation (19), and (20)
The distance x from the zero-phase non-power source terminal T 2 to the failure point can be obtained by applying the equation.

【0021】もし、ρ<d1 3 /Dとなれば、故障点
は区間ST2 の外の、区間T1 S又は区間ST3 に存在
することになる。区間T1 S又は区間ST3 のいずれで
あるかを特定しようとすれば、零相非電源端T3 の電流
電圧データを用いて、ρ′を ρ′=V0n・|ΔI03|/I0n・|V0 | (21) で求め、このρ′を用いて、零相非電源端T3 から故障
点までの距離y y=(1−ρ′)D/(d1 +d2 ) (22) を求めればよい(図4参照)。
If ρ <d 1 d 3 / D, the failure point exists in the section T 1 S or the section ST 3 outside the section ST 2 . To identify whether it is the section T 1 S or the section ST 3 , the ρ ′ is ρ ′ = V 0n · | ΔI 03 | / I using the current-voltage data of the zero-phase non-power source terminal T 3. 0n · | V 0 | (21), and using this ρ ′, the distance from the zero-phase non-power source terminal T 3 to the fault point y y = (1−ρ ′) D / (d 1 + d 2 ) ( 22) should be calculated (see Fig. 4).

【0022】求められたyが、y≦d3 であれば(すな
わちρ′≧d1 2 /Dであれば)、故障点は区間ST
3 に存在することが分かる(図4参照)。ρ′<d1
2 /Dであれば、故障点は区間T1 Sに存在する(図5
参照)。区間ST3 が特定された場合、(22)式を用いて
零相非電源端T3 から故障点までの距離yを求めればよ
いが、零相非電源端T2 の電流電圧データを用いて標定
することもできる。両標定結果を比較すればより確実な
結果が得られる。
If the obtained y is y ≦ d 3 (that is, ρ ′ ≧ d 1 d 2 / D), the failure point is the section ST.
It can be seen that it exists in 3 (see FIG. 4). ρ '<d 1 d
If 2 / D, the failure point exists in the section T 1 S (FIG. 5).
reference). When the section ST 3 is specified, the distance y from the zero-phase non-power source end T 3 to the failure point may be obtained using the formula (22), but using the current-voltage data of the zero-phase non-power source end T 2. It can also be oriented. A more reliable result can be obtained by comparing both orientation results.

【0023】零相非電源端T2 の電流電圧データを用い
て区間ST3 の故障点を標定する場合、図4の回線にお
いて、前記(4) (5) 式に相当する式は、 ΔI01=(d2 y/D)I0f (23) ΔI02=(d1 y/D)I0f (24) ΔI03=〔1−(d1 +d2 )y/D〕I0f (25) となる。ただし、yは、零相非電源端T3 からの距離で
ある。
When locating the fault point in the section ST 3 using the current-voltage data of the zero-phase non-power source terminal T 2 , the equation corresponding to the equations (4) and (5) in the line of FIG. 4 is ΔI 01 = (D 2 y / D) I 0f (23) ΔI 02 = (d 1 y / D) I 0f (24) ΔI 03 = [1- (d 1 + d 2 ) y / D] I 0f (25) Become. However, y is the distance from the zero-phase non-power source terminal T 3 .

【0024】そこで、前記(19)式のρと、この(24)式か
ら、故障点の零相非電源端T3 からの距離yを、 y=ρD/d1 (26) により求めることができる。ただしy≦d3 である。区
間T1 Sが特定された場合(図5参照)は、零相非電源
端T2 又は零相非電源端T3 のいずれの電流電圧データ
を用いて標定することもできる。対称性があるので、零
相非電源端T2 の電流電圧データを用いて標定する場合
のみを説明する。
Therefore, the distance y from the zero-phase non-power source terminal T 3 at the failure point can be obtained from ρ in the equation (19) and this equation (24) by y = ρD / d 1 (26) it can. However, y ≦ d 3 . When the section T 1 S is specified (see FIG. 5), the current / voltage data of either the zero-phase non-power source terminal T 2 or the zero-phase non-power source terminal T 3 can be used for orientation. Since there is symmetry, only the case of locating using the current-voltage data of the zero-phase non-power source terminal T 2 will be described.

【0025】図5の回線において、前記(4) (5) 式に相
当する式は、 ΔI01=〔1−(d2 +d3 )z/D〕I0f (27) ΔI02=(d3 z/D)I0f (28) ΔI03=(d2 z/D)I0f (29) となる。ただし、zは、零相電源端T1 からの距離であ
る。
In the line of FIG. 5, the equations corresponding to the equations (4) and (5) are: ΔI 01 = [1- (d 2 + d 3 ) z / D] I 0f (27) ΔI 02 = (d 3 z / D) I 0f (28) ΔI 03 = (d 2 z / D) I 0f (29). However, z is the distance from the zero-phase power source end T 1 .

【0026】そこで、前記(19)式のρと、この(28)式か
ら、故障点の零相電源端T1 からの距離zを、 z=ρD/d3 (30) により求めることができる。ただしz≦d1 である。以
上により、零相非電源端T2 又はT3 での電流電圧デー
タに基づいて、ρを計算し、式に当てはめることによっ
て各端T1 ,T2 ,T3 からの故障点までの距離z,
x,yを求めることができる。
Therefore, the distance z from the zero-phase power supply terminal T 1 at the failure point can be calculated from ρ in the equation (19) and this equation (28) by z = ρD / d 3 (30) . However, z ≦ d 1 . As described above, ρ is calculated based on the current-voltage data at the zero-phase non-power source terminal T 2 or T 3 and is applied to the formula to calculate the distance z from each terminal T 1 , T 2 , T 3 to the fault point. ,
x, y can be obtained.

【0027】[0027]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(a) 以下、2端子平行2回線送電線に適用する場合の、
本発明の実施の形態を添付図面を参照しながら詳細に説
明する。図6は、一般的な2端子平行2回線送電線1
に、本発明に係る故障点標定方法を使用する故障点算出
装置2を接続した図であり、零相非電源端T2 には、残
留回路から回線1Lの零相電流I021 を検出するために
3相に設けられた変流器CT1 と、回線2Lの零相電流
022 を検出するために3相に設けられた変流器CT2
と、母線の零相電圧V02を検出する計器用変圧器PTと
が備えられている。
(a) In the following, when applied to a 2-terminal parallel 2-line transmission line,
Embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 6 shows a general 2-terminal parallel 2-line transmission line 1
FIG. 3 is a diagram in which a fault point calculating device 2 using the fault point locating method according to the present invention is connected, in order to detect the zero phase current I 021 of the line 1L from the residual circuit at the zero phase non-power source terminal T 2. Current transformer CT 1 provided in three phases, and current transformer CT 2 provided in three phases for detecting zero-phase current I 022 of line 2L.
And a voltage transformer PT for detecting the zero-phase voltage V 02 of the busbar.

【0028】故障点算出装置2は、変流器CT1 ,CT
2 の残留回路より検出された零相電流I021 ,I
022 と、計器用変圧器PTにより検出された零相電圧V
02を入力とし、これらを所定のレベルの電圧信号に変換
する入力部3と、所定の電気角でサンプリングするサン
プルホールド部4と、サンプルホールド部4からの電圧
信号をディジタルデータに変換するA/D変換部5と、
A/D変換部5により変換されたディジタルデータを格
納するデータメモリ6と、計器用変圧器PTにより検出
された零相電圧V02に基づいて平行2回線に地絡故障が
発生したことを検出する地絡故障検出部7と、地絡故障
検出部7から地絡故障検出信号の入力があれば、データ
メモリ6に格納されている回線1L,2Lの電流デー
タ、電圧データに基づいて零相非電源端T2 から故障点
までの距離を算出する故障点標定部8と、故障点標定部
8により算出された零相非電源端T2 から故障点までの
距離等の情報を表示する表示部9とを備えている。
The fault point calculation device 2 includes current transformers CT 1 and CT.
Zero-phase currents I 021 , I detected by the residual circuit 2
022 and zero phase voltage V detected by the transformer PT
An input unit 3 that takes 02 as an input and converts them into voltage signals of a predetermined level, a sample hold unit 4 that samples at a predetermined electrical angle, and an A / A that converts the voltage signal from the sample hold unit 4 into digital data. D conversion unit 5,
It is detected that a ground fault has occurred in the two parallel lines based on the data memory 6 that stores the digital data converted by the A / D converter 5 and the zero-phase voltage V 02 detected by the instrument transformer PT. If there is an input of a ground fault detection signal from the ground fault detection unit 7 and a ground fault detection signal from the ground fault detection unit 7, zero phase is detected based on the current data and voltage data of the lines 1L and 2L stored in the data memory 6. a fault point orientation section 8 for calculating the distance from the non-power end T 2 to fault point, displays for displaying information such as the distance to the fault point from the zero-phase non-power terminal T 2 calculated by the fault point orientation section 8 And a part 9.

【0029】前記構成の故障点算出装置2の動作を、図
1、図2の故障例に基づいて説明する。図1では、故障
は片回線の1地点で発生し、その地点は零相非電源端T
2 からxの距離とする。変流器CT1 ,CT2 の残留回
路より検出された回線1L,2Lの零相電流、零相電圧
は、入力部3において、所定のレベルの電圧信号に変換
される。この所定のレベルの電圧信号は、サンプルホー
ルド部4、A/D変換部5において、所定のサンプリン
グ周期でディジタルデータに変換され、データメモリ6
に取込まれる。
The operation of the fault point calculation device 2 having the above configuration will be described based on the fault examples shown in FIGS. In FIG. 1, the failure occurs at one point on one line, and that point is the zero-phase non-power source terminal T.
The distance is 2 to x. The zero-phase currents and zero-phase voltages of the lines 1L and 2L detected by the residual circuits of the current transformers CT 1 and CT 2 are converted into voltage signals of a predetermined level at the input section 3. The voltage signal of the predetermined level is converted into digital data at a predetermined sampling period in the sample hold unit 4 and the A / D conversion unit 5, and the data memory 6
Be taken into.

【0030】一方、地絡故障検出部7は、回線1L,2
Lの零相電流データ、零相電圧データに基づいて、周知
の方法(例えば零相電圧のレベルにより地絡故障発生を
検出し、零相電圧と各回線の零相電流の位相関係で故障
回線を判別する)により地絡故障の発生を検出する。故
障点標定部8は、故障が発生したことを知ると、データ
メモリ6に格納された電流データ、電圧データを読み出
し、回線間差電流ΔI02=I021 −I022 を求め、これ
と、零相電圧V02とを使って、 ρ=V0n・|ΔI02|/I0n・|V02| を求める。ここで、I0nは、当該系統の完全地絡時の零
相電流、V0nは、当該系統の零相定格電圧であり、とも
に系統固有の定数として与えられているものである。
On the other hand, the ground fault detector 7 is connected to the lines 1L and 2
Based on the zero-phase current data and zero-phase voltage data of L, a well-known method (for example, the occurrence of a ground fault is detected by the level of the zero-phase voltage, and the failure line is detected according to the phase relationship between the zero-phase voltage and the zero-phase current of each line). The occurrence of a ground fault is detected by (determining). When the fault point locating unit 8 knows that a fault has occurred, it reads the current data and voltage data stored in the data memory 6 to obtain the line-to-line differential current ΔI 02 = I 021 -I 022 , and this and zero. Using the phase voltage V 02 , ρ = V 0n · | ΔI 02 | / I 0n · | V 02 | Here, I 0n is a zero-phase current of the system at the time of a complete ground fault, and V 0n is a zero-phase rated voltage of the system, both of which are given as system-specific constants.

【0031】故障点標定部8はさらに、このρを使っ
て、零相非電源端T2 から故障点までの距離xを、式 x=d(1−ρ) により求める。求められた標定結果は、表示部9により
表示される。 (b) 次に、3端子平行2回線送電線に適用する場合の、
本発明の実施の形態を添付図面を参照しながら詳細に説
明する。
The fault point locating unit 8 further uses this ρ to find the distance x from the zero-phase non-power source terminal T 2 to the fault point by the equation x = d (1-ρ). The obtained orientation result is displayed on the display unit 9. (b) Next, when applied to a 3-terminal parallel 2-line transmission line,
Embodiments of the present invention will be described in detail with reference to the accompanying drawings.

【0032】図7は、3端子平行2回線送電線1aに、
本発明に係る故障点標定方法を使用する故障点算出装置
2を接続した図であり、零相非電源端T2 には、残留回
路から回線1Lの零相電流I021 を検出するため3相に
設けられた変流器CT1 と、回線2Lの零相電流I022
を検出するため3相に設けられた変流器CT2 と、母線
の零相電圧V02を検出する計器用変圧器PTとが備えら
れている。
FIG. 7 shows a three-terminal parallel two-line power transmission line 1a,
FIG. 3 is a diagram in which a fault point calculation device 2 using the fault point locating method according to the present invention is connected, and a zero phase non-power source terminal T 2 has three phases for detecting a zero phase current I 021 of a line 1L from a residual circuit. Current transformer CT 1 provided in the line and the zero-phase current I 022 of the line 2L.
A current transformer CT 2 provided in three phases for detecting the voltage and an instrument transformer PT for detecting the zero-phase voltage V 02 of the busbar are provided.

【0033】故障点算出装置2は、変流器CT1 ,CT
2 の残留回路より検出された零相電流I021 ,I
022 と、計器用変圧器PTにより検出された零相電圧V
02を入力とし、これらを所定のレベルの電圧信号に変換
する入力部3と、所定の電気角でサンプリングするサン
プルホールド部4と、サンプルホールド部4からの電圧
信号をディジタルデータに変換するA/D変換部5と、
A/D変換部5により変換されたディジタルデータを格
納するデータメモリ6と、計器用変圧器PTにより検出
された零相電圧V02に基づいて平行2回線に地絡故障が
発生したことを検出する地絡故障検出部7と、地絡故障
検出部7から地絡故障検出信号の入力があれば、データ
メモリ6に格納されている回線1L,2Lの電流デー
タ、電圧データに基づいて零相非電源端T2 から故障点
までの距離を算出する故障点標定部8と、故障点標定部
8により算出された零相非電源端T2 から故障点までの
距離等の情報を表示する表示部9とを備えている。
The fault point calculation device 2 includes current transformers CT 1 and CT.
Zero-phase currents I 021 , I detected by the residual circuit 2
022 and zero phase voltage V detected by the transformer PT
An input unit 3 that takes 02 as an input and converts them into voltage signals of a predetermined level, a sample hold unit 4 that samples at a predetermined electrical angle, and an A / A that converts the voltage signal from the sample hold unit 4 into digital data. D conversion unit 5,
It is detected that a ground fault has occurred in the two parallel lines based on the data memory 6 that stores the digital data converted by the A / D converter 5 and the zero-phase voltage V 02 detected by the instrument transformer PT. If there is an input of a ground fault detection signal from the ground fault detection unit 7 and a ground fault detection signal from the ground fault detection unit 7, zero phase is detected based on the current data and voltage data of the lines 1L and 2L stored in the data memory 6. a fault point orientation section 8 for calculating the distance from the non-power end T 2 to fault point, displays for displaying information such as the distance to the fault point from the zero-phase non-power terminal T 2 calculated by the fault point orientation section 8 And a part 9.

【0034】前記構成の故障点算出装置2の動作を、図
3、図4又は図5の故障例に基づいて説明する。図3で
は、故障は片回線の1地点で発生し、その地点は零相非
電源端T2 からxの距離とする。図4では、故障は片回
線の1地点で発生し、その地点は零相非電源端T3 から
yの距離とする。図5では、故障は片回線の1地点で発
生し、その地点は零相電源端T1 からzの距離とする。
The operation of the fault point calculation device 2 having the above configuration will be described based on the fault example of FIG. 3, FIG. 4 or FIG. In FIG. 3, the failure occurs at one point on one line, and that point is at a distance x from the zero-phase non-power source terminal T 2 . In FIG. 4, the failure occurs at one point on one line, and that point is a distance y from the zero-phase non-power source terminal T 3 . In FIG. 5, the failure occurs at one point on one line, and that point is a distance z from the zero-phase power source terminal T 1 .

【0035】変流器CT1 ,CT2 の残留回路より検出
された回線1L,2Lの零相電流、零相電圧は、入力部
3において、所定のレベルの電圧信号に変換される。こ
の所定のレベルの電圧信号は、サンプルホールド部4、
A/D変換部5において、所定のサンプリング周期でデ
ィジタルデータに変換され、データメモリ6に取込まれ
る。
The zero-phase currents and zero-phase voltages of the lines 1L and 2L detected by the residual circuits of the current transformers CT 1 and CT 2 are converted into voltage signals of a predetermined level at the input section 3. The voltage signal of the predetermined level is supplied to the sample hold unit 4,
The A / D converter 5 converts the digital data into digital data at a predetermined sampling period and stores the digital data in the data memory 6.

【0036】一方、地絡故障検出部7は、回線1L,2
Lの零相電流データ、零相電圧データに基づいて、周知
の方法により地絡故障の発生を検出する。故障点標定部
8は、故障が発生したことを知ると、データメモリ6に
格納された電流データ、電圧データを読み出し、回線間
差電流ΔI02=I021 −I022 を求め、これと、零相電
圧V02とを使って、 ρ=V0n・|ΔI02|/I0n・|V02| を求める。ここで、I0nは、当該系統の完全地絡時の零
相電流、V0nは、当該系統の零相定格電圧であり、とも
に系統固有の定数として与えられているものである。
On the other hand, the ground fault detector 7 is connected to the lines 1L and 2
The occurrence of a ground fault is detected by a known method based on the zero-phase current data and zero-phase voltage data of L. When the fault point locating unit 8 knows that a fault has occurred, it reads the current data and voltage data stored in the data memory 6 to obtain the line-to-line differential current ΔI 02 = I 021 -I 022 , and this and zero. Using the phase voltage V 02 , ρ = V 0n · | ΔI 02 | / I 0n · | V 02 | Here, I 0n is a zero-phase current of the system at the time of a complete ground fault, and V 0n is a zero-phase rated voltage of the system, both of which are given as system-specific constants.

【0037】故障点標定部8はさらに、このρを使っ
て、零相非電源端T2 から故障点までの距離xを、式 x=(1−ρ)D/(d1 +d3 ) により算出する。ただし、d2 ,d3 は零相非電源端T
2 ,T3 から分岐点までの線路長;d1 は電源端T1
ら分岐点までの線路長;D=d2 3 +d3 1+d1
2 である。
The fault point locating unit 8 further uses this ρ to calculate the distance x from the zero-phase non-power source terminal T 2 to the fault point by the formula x = (1-ρ) D / (d 1 + d 3 ). calculate. However, d 2 and d 3 are zero-phase non-power source terminals T
2 , line length from T 3 to branch point; d 1 is line length from power source end T 1 to branch point; D = d 2 d 3 + d 3 d 1 + d 1
It is d 2.

【0038】もし、x>d2 、すなわちρ<d1 3
Dであれば、零相非電源端T3 から故障点までの距離y
を、式 y=ρD/d1 により算出することができる。また、零相電源端T1
ら故障点までの距離zを、式 z=ρD/d3 により算出することができる。
If x> d 2 , that is, ρ <d 1 d 3 /
If D, the distance y from the zero-phase non-power source end T 3 to the failure point
Can be calculated by the equation y = ρD / d 1 . Further, the distance z from the zero-phase power source end T 1 to the failure point can be calculated by the formula z = ρD / d 3 .

【0039】求められた標定結果は、表示部9により表
示されるので、保守員は故障の起こった地点を知ること
ができる。
The obtained orientation result is displayed on the display unit 9, so that the maintenance staff can know the location where the failure has occurred.

【0040】[0040]

【発明の効果】以上のように請求項1記載の発明によれ
ば、高抵抗2端子系平行2回線送電線の1回線の1地点
1線地絡故障点を、零相非電源端の零相電流及び零相電
圧データに基づいて標定することができるので、零相電
源端の零相電流、零相電圧データが得られない場合に有
効である。
As described above, according to the first aspect of the present invention, one point and one line ground fault of one line of a high resistance two-terminal parallel two-line power transmission line are set as zero points at the zero-phase non-power source end. Since it can be determined based on the phase current and zero phase voltage data, it is effective when the zero phase current and zero phase voltage data at the zero phase power source end cannot be obtained.

【0041】請求項2又は3記載の発明によれば、高抵
抗3端子系平行2回線送電線の1回線の1地点1線地絡
故障点を、零相非電源端の零相電流及び零相電圧データ
に基づいて標定することができるので、零相電源端の零
相電流、零相電圧データが得られない場合に有効であ
る。特に、請求項2の発明によれば、零相非電源端の当
該分岐に生じた故障点を標定することができ、請求項3
の発明によれば、零相非電源端の当該分岐以外の分岐
(零相電源端分岐,零相非電源端分岐のいずれであって
もよい)に生じた故障点を標定することができる。
According to the second or third aspect of the present invention, one point and one line ground fault point of one line of the high resistance three-terminal parallel two-line transmission line are defined as zero-phase current and zero at the zero-phase non-power source end. Since it can be determined based on the phase voltage data, it is effective when the zero phase current and zero phase voltage data at the zero phase power source end cannot be obtained. Particularly, according to the invention of claim 2, it is possible to locate the fault point occurring in the branch at the zero-phase non-power source end.
According to the invention of (1), it is possible to locate a failure point that has occurred in a branch other than the branch of the zero-phase non-power source end (either the zero-phase power source end branch or the zero-phase non-power source end branch).

【0042】また、請求項1から3のいずれの発明にお
いても、零相電源端で零相電流、零相電圧データが得ら
れる場合の零相電源端の零相電流、零相電圧データに基
づいて従来の方法で標定された結果と比較処理すること
により、標定結果の信頼性を向上させることができる。
Also, in any of the first to third aspects of the invention, based on the zero-phase current and zero-phase voltage data at the zero-phase power source end when the zero-phase current and zero-phase voltage data are obtained at the zero-phase power source end. The reliability of the orientation result can be improved by comparing the orientation result with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】2端子系平行2回線送電線の零相等価回路図で
ある。
FIG. 1 is a zero-phase equivalent circuit diagram of a two-terminal parallel two-line power transmission line.

【図2】同2端子系平行2回線送電線の零相差電流等価
回路図である。
FIG. 2 is a zero-phase-difference current equivalent circuit diagram of the two-terminal parallel two-line power transmission line.

【図3】故障点が区間ST2 に存在する場合の3端子系
平行2回線送電線の零相差電流に基づいた等価回路図で
ある。
3 is an equivalent circuit diagram based on the zero-phase difference current of the three-terminal type parallel two-circuit transmission line when a fault point exists in the segment ST 2.

【図4】故障点が区間ST3 に存在する場合の同3端子
系平行2回線送電線の零相差電流等価回路図である。
FIG. 4 is a zero-phase-difference current equivalent circuit diagram of the parallel two-line power transmission line of the same three-terminal system when a failure point exists in the section ST 3 .

【図5】故障点が区間T1 Sに存在する場合の同3端子
系平行2回線送電線の零相差電流等価回路図である。
FIG. 5 is a zero-phase-difference current equivalent circuit diagram of the same three-terminal system parallel two-line power transmission line when a failure point exists in the section T 1 S.

【図6】2端子平行2回線送電線に、本発明に係る故障
点標定方法を使用する故障点算出装置を接続した状態を
示す回路図である。
FIG. 6 is a circuit diagram showing a state in which a fault point calculation device that uses the fault point locating method according to the present invention is connected to a two-terminal parallel two-line transmission line.

【図7】3端子平行2回線送電線に、本発明に係る故障
点標定方法を使用する故障点算出装置を接続した状態を
示す回路図である。
FIG. 7 is a circuit diagram showing a state in which a fault point calculating device using the fault point locating method according to the present invention is connected to a 3-terminal parallel 2-line transmission line.

【符号の説明】[Explanation of symbols]

1 2端子平行2回線送電線 1a 3端子平行2回線送電線 2 故障点算出装置 3 入力部 4 サンプルホールド部 5 A/D変換部 6 データメモリ 7 地絡故障検出部 8 故障点標定部 9 表示部 PT 計器用変圧器 T1 零相電源端 T2 ,T3 零相非電源端 CT1 ,CT2 変流器1 2 terminal parallel 2 line power transmission line 1a 3 terminal parallel 2 line power transmission line 2 Fault point calculation device 3 Input section 4 Sample hold section 5 A / D conversion section 6 Data memory 7 Ground fault detection section 8 Fault point location section 9 Display Part PT Instrument transformer T 1 Zero-phase power source terminal T 2 , T 3 Zero-phase non-power source terminal CT 1 , CT 2 Current transformer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高抵抗2端子(i,j)系平行2回線送電
線の1回線の1地点1線地絡故障点を、零相非電源端の
零相電流を用いて標定する方法であって、 零相非電源端jの各回線の零相電流に基づき、両回線差
電流ΔI0jを算出し、 零相非電源端jの零相電圧V0 を算出し、変数ρを、 ρ=V0n・|ΔI0j|/I0n・|V0 | (V0nは定格零相電圧、I0nは1線完全地絡時の地絡電
流)により求め、式 x=d(1−ρ) (dは線路長) により非電源端jから故障点までの距離xを求めること
を特徴とする故障点標定方法。
1. A method of locating a one-point, one-line ground fault point of one line of a high-resistance two-terminal (i, j) parallel two-line transmission line by using a zero-phase current at a zero-phase non-power source end. Then, the line difference current ΔI 0j is calculated based on the zero-phase current of each line of the zero-phase non-power source end j, the zero-phase voltage V 0 of the zero-phase non-power source end j is calculated, and the variable ρ is set to ρ. = V 0n · | ΔI 0j | / I 0n · | V 0 | (V 0n is the rated zero-phase voltage, I 0n is the ground fault current at the time of one-line complete ground fault), and the equation x = d (1-ρ ) (D is the line length) is used to determine the distance x from the non-power source end j to the failure point.
【請求項2】高抵抗3端子(i,j,k)系平行2回線
送電線の1回線の1地点1線地絡故障点を、零相非電源
端の零相電流を用いて標定する方法であって、 零相非電源端jの各回線の零相電流に基づき、両回線差
電流ΔI0jを算出し、 零相非電源端jの零相電圧V0 を算出し、変数ρを、 ρ=V0n・|ΔI0j|/I0n・|V0 | (V0nは定格零相電圧、I0nは1線完全地絡時の地絡電
流)により求め、式 x=(1−ρ)D/(di +dk ) (dj は当該零相非電源端jから分岐点までの線路長;
i ,dk は当該零相非電源端以外の端子i,kから分
岐点までの線路長;D=dj k +dk i +d
i j )により当該非電源端jから故障点までの距離x
を求めることを特徴とする故障点標定方法。
2. High resistance 3 terminal (i, j, k) system parallel 2 lines
Zero-phase non-power source for 1 point 1 line ground fault point of 1 line of transmission line
It is a method of locating by using the zero-phase current at the end, and the difference between both lines is determined based on the zero-phase current of each line at the zero-phase non-power source end
Current ΔI0jTo calculate the zero-phase voltage V of the zero-phase non-power source terminal j0And calculate the variable ρ as ρ = V0n・ | ΔI0j| / I0n・ | V0| (V0nIs the rated zero-phase voltage, I0nIs a one-line complete ground fault
Flow), and the equation x = (1−ρ) D / (di+ Dk) (DjIs the line length from the zero-phase non-power source end j to the branch point;
di, DkIs the terminal i, k other than the zero-phase non-power source terminal
Line length to the junction; D = djdk+ Dkdi+ D
idj) The distance x from the non-power source end j to the failure point
A method for locating a fault, which is characterized in that
【請求項3】高抵抗3端子(i,j,k)系平行2回線
送電線の1回線の1地点1線地絡故障点を、零相非電源
端の零相電流を用いて標定する方法であって、 零相非電源端jの各回線の零相電流に基づき、両回線差
電流ΔI0jを算出し、 零相非電源端jの零相電圧V0 を算出し、変数ρを、 ρ=V0n・|ΔI0j|/I0n・|V0 | (V0nは定格零相電圧、I0nは1線完全地絡時の地絡電
流)により求め、式 y=ρD/di (dj は当該零相非電源端jから分岐点までの線路長;
i ,dk は当該零相非電源端以外の端子i,kから分
岐点までの線路長;D=dj k +dk i +d
i j )により他端子kから故障点までの距離yを求め
ることを特徴とする故障点標定方法。
3. High resistance 3 terminal (i, j, k) system parallel 2 lines
Zero-phase non-power source for 1 point 1 line ground fault point of 1 line of transmission line
It is a method of locating by using the zero-phase current at the end, and the difference between both lines is determined based on the zero-phase current of each line at the zero-phase non-power source end
Current ΔI0jTo calculate the zero-phase voltage V of the zero-phase non-power source terminal j0And calculate the variable ρ as ρ = V0n・ | ΔI0j| / I0n・ | V0| (V0nIs the rated zero-phase voltage, I0nIs a one-line complete ground fault
Flow), and the equation y = ρD / di (DjIs the line length from the zero-phase non-power source end j to the branch point;
di, DkIs the terminal i, k other than the zero-phase non-power source terminal
Line length to the junction; D = djdk+ Dkdi+ D
idj) To find the distance y from the other terminal k to the failure point
A fault location method characterized by the following.
JP11668096A 1996-05-10 1996-05-10 Method for locating fault-point of parallel two line system Pending JPH09304468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11668096A JPH09304468A (en) 1996-05-10 1996-05-10 Method for locating fault-point of parallel two line system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11668096A JPH09304468A (en) 1996-05-10 1996-05-10 Method for locating fault-point of parallel two line system

Publications (1)

Publication Number Publication Date
JPH09304468A true JPH09304468A (en) 1997-11-28

Family

ID=14693226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11668096A Pending JPH09304468A (en) 1996-05-10 1996-05-10 Method for locating fault-point of parallel two line system

Country Status (1)

Country Link
JP (1) JPH09304468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197202A (en) * 2013-03-29 2013-07-10 昆明理工大学 Distribution network fault line selection method based on wavelet coefficient correlation analysis in three-phase breaking current component characteristic frequency band
CN103197203A (en) * 2013-03-29 2013-07-10 昆明理工大学 Fault line selection method based on time domain waveform correlation analysis of three-phase current breaking variable
RU2608889C1 (en) * 2015-09-15 2017-01-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Method of multichain overhead transmission lines fault locations determining with account of induced voltage (versions)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197202A (en) * 2013-03-29 2013-07-10 昆明理工大学 Distribution network fault line selection method based on wavelet coefficient correlation analysis in three-phase breaking current component characteristic frequency band
CN103197203A (en) * 2013-03-29 2013-07-10 昆明理工大学 Fault line selection method based on time domain waveform correlation analysis of three-phase current breaking variable
CN103197202B (en) * 2013-03-29 2015-07-22 昆明理工大学 Distribution network fault line selection method based on wavelet coefficient correlation analysis in three-phase breaking current component characteristic frequency band
RU2608889C1 (en) * 2015-09-15 2017-01-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Method of multichain overhead transmission lines fault locations determining with account of induced voltage (versions)

Similar Documents

Publication Publication Date Title
US6034592A (en) Process for producing signals identifying faulty loops in a polyphase electrical power supply network
US6173216B1 (en) Protective relay with improved, sub-window cosine filter
JPH06347503A (en) Ground fault position locating apparatus
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPH11344525A (en) Fault point plotting device
JPH07122651B2 (en) Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
JPH08101244A (en) Method for location of fault point in transmission line
JP2984294B2 (en) Method of locating short-circuit fault point of three-terminal parallel two-circuit transmission line
JP2560994B2 (en) Short-circuit fault location method
JPH10132890A (en) Method and device for locating failure point
JP3773020B2 (en) Fault location method using multi-terminal electric quantity
JPH0718906B2 (en) Fault locator for power transmission system
JP3013488B2 (en) Ground fault fault location method
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JP3277534B2 (en) Fault location method for 3-terminal parallel 2-circuit transmission line
JP2920981B2 (en) Fault location method for two-circuit transmission line
JP3013487B2 (en) Fault location method
JP3013491B2 (en) Short-circuit fault location method
JPH0436668A (en) Fault point locating method for n-terminal parallel two-line transmission line
JP2003315403A (en) Method for locating fault point
JPH09166639A (en) Accident point locating system
JPH04208868A (en) Uninterruptible insulation diagnostic apparatus
JPH116854A (en) Method for diagnosing deterioration of power cable