JP3013491B2 - Short-circuit fault location method - Google Patents

Short-circuit fault location method

Info

Publication number
JP3013491B2
JP3013491B2 JP3095214A JP9521491A JP3013491B2 JP 3013491 B2 JP3013491 B2 JP 3013491B2 JP 3095214 A JP3095214 A JP 3095214A JP 9521491 A JP9521491 A JP 9521491A JP 3013491 B2 JP3013491 B2 JP 3013491B2
Authority
JP
Japan
Prior art keywords
δin
fault
current
circuit
σin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3095214A
Other languages
Japanese (ja)
Other versions
JPH04324376A (en
Inventor
雅靖 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP3095214A priority Critical patent/JP3013491B2/en
Publication of JPH04324376A publication Critical patent/JPH04324376A/en
Application granted granted Critical
Publication of JP3013491B2 publication Critical patent/JP3013491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、3端子平行2回線送電
線における1回線での短絡故障点の標定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for locating a short-circuit fault point in one line of a three-terminal parallel two-line transmission line.

【0002】[0002]

【従来の技術】変電所間の送電線は、電力供給の信頼度
向上のため、一般的に平行2回線方式で行われている。
この送電線は、建造物内で保守管理されている変電所等
と比較して、外部に起因する故障(雷撃による絶縁破
壊、あるいは鳥や樹木の接触等)が不可避である。した
がって、故障発生時には故障点探索作業が伴い、特に山
間部における故障点探索は非常に困難な場合がある。
2. Description of the Related Art Transmission lines between substations are generally provided in a parallel two-circuit system in order to improve the reliability of power supply.
As compared with a substation or the like that is maintained and managed in a building, an external failure (dielectric breakdown due to a lightning strike, contact with a bird or a tree, etc.) is inevitable for this transmission line. Therefore, when a fault occurs, a fault point search operation is involved, and searching for a fault point, particularly in a mountainous area, may be very difficult.

【0003】そこで、故障点の位置、範囲を予め計算で
特定(標定)しておけば、その範囲内で故障点を探索す
ればよく、作業の効率化につながる。従来から方式の3
端子平行2回線送電線における1回線1地点での短絡故
障点標定方式として、各端子における2回線の差電流を
用いて分流比を算出する方式(特開平2−154168号公報
参照)が採用されている。
[0003] Therefore, if the position and range of a fault point are specified (orientated) by calculation in advance, it is sufficient to search for the fault point within that range, which leads to more efficient work. Conventional method 3
As a method of locating a short-circuit fault at one point and one point in a two-terminal parallel transmission line, a method of calculating a shunt ratio by using a difference current between two lines at each terminal (see Japanese Patent Application Laid-Open No. 2-154168) is adopted. ing.

【0004】この方式を、図5に示すような3端子平行
2回線送電線について説明する。各送電線を1L,2L
と表示し、3端子をそれぞれA端,B端,C端とし、分
岐点をTで表わす。AT,BT,CT間の距離をそれぞ
れd1 ,d2 ,d3 とする。A端には電源(変圧器でも
よい)TRが接続されている。B端、C端には一般の負
荷(図示せず)が接続されている。A端,B端,C端で
は、各回線の故障相電流I1n,I2n,I1n′,I2n′,
I1n″,I2n″(ここでnは故障相を表し、故障相と
は、a相、b相、c相、正相、逆相のうちから選択され
る1つであるとする。ただし零相は含まないものとす
る。)を測定し、差電流 ΔI=|I1n−I2n|, ΔI′=|I1n′−I2n′|, ΔI″=|I1n″−I2n″|, を算出する。なお、この明細書において、表記”I”
は、ベクトル
[0004] This system will be described for a three-terminal parallel two-circuit transmission line as shown in FIG. Each transmission line is 1L, 2L
And the three terminals are designated as A end, B end and C end, respectively, and the branch point is represented by T. The distances between AT, BT, and CT are d1, d2, and d3, respectively. A power supply (may be a transformer) TR is connected to the terminal A. A general load (not shown) is connected to the terminals B and C. At the A end, the B end, and the C end, the fault phase currents I1n, I2n, I1n ', I2n',
I1n ", I2n" (where n represents a failure phase, and the failure phase is one selected from the a phase, the b phase, the c phase, the positive phase, and the negative phase. However, the zero phase Is not included.), And a difference current ΔI = | I1n−I2n |, ΔI ′ = | I1n′−I2n ′ |, ΔI ″ = | I1n ″ −I2n ″ |, is calculated. In this specification, the notation "I"
Is a vector

【0005】[0005]

【外1】 [Outside 1]

【0006】を表わすものとする。この方式によれば、
[0006] According to this method,
formula

【0007】[0007]

【数1】 (Equation 1)

【0008】[0008]

【数2】 (Equation 2)

【0009】[0009]

【数3】 (Equation 3)

【0010】によってx,x′,x″を算出し、xがd
1 よりも小さい場合にはxをA端から故障点までの距離
とし、xがd1 よりも大きな場合には、x′とd2 とを
比較し、x′がd2 よりも小さい場合には、x′をB端
から故障点までの距離とし、x′がd2 よりも大きな場
合にはx″をC端から故障点までの距離とする。以上の
ようにして、各端での電流を検出することにより、故障
点を標定することができる。
X, x ', x "are calculated by
If x is smaller than 1, x is the distance from the A end to the fault point. If x is larger than d1, x 'is compared with d2. If x' is smaller than d2, x is x. Is the distance from the end B to the fault point, and if x 'is greater than d2, x is the distance from the end C to the fault point. As described above, the current at each end is detected. Thus, the failure point can be located.

【0011】[0011]

【発明が解決しようとする課題】前記の方式ではA端、
B端、C端からのデータを全て収集する必要があるが、
負荷端のデータが、検出手段の不良、データ伝送回線の
不良等により欠けた場合、演算ができなくなることにな
る。そこで、本発明は、送電端を1つ又は2つ有し、他
の端には負荷を接続した3端子平行2回線送電線におけ
る1回線短絡故障点を標定する場合において、欠落した
負荷端のデータを他の2つの端のデータによって補うこ
とにより、完全なデータを復元し、もって故障点の標定
ができる短絡故障点標定方法を提供することを目的とす
る。
In the above-mentioned method, the A-end,
It is necessary to collect all data from B-end and C-end,
If the data at the load end is lost due to a failure in the detection means, a failure in the data transmission line, or the like, the calculation cannot be performed. Accordingly, the present invention provides a method for locating a single-circuit short-circuit fault point in a three-terminal parallel two-line power transmission line having one or two power transmission ends and a load connected to the other end. It is an object of the present invention to provide a short-circuit fault locating method which can restore complete data by supplementing data with data at the other two ends and thereby locate a fault point.

【0012】[0012]

【課題を解決するための手段】請求項1記載の方法は、
送電端を1つ有し、他の2端には負荷を接続した3端子
平行2回線送電線における1回線短絡故障点を標定する
方法において、負荷を接続した1端での電流データが欠
けた場合に、他の負荷を接続した端での故障相差電流Δ
In ′、並びに送電端での故障相和電流ΣIn 及び故障
相差電流ΔIn を検出し、式 ΔIn ″=|ΣIn |−(ΔIn +ΔIn ′) に基づいて、電流データが欠落した1端での故障相差電
流ΔIn ″を推定し、これらの故障相差電流ΔIn 、Δ
In ′及びΔIn ″を用いて1回線短絡故障点を標定す
る方法である。
According to the first aspect of the present invention, there is provided a method comprising:
In the method of locating a single-circuit short-circuit fault point in a three-terminal parallel two-line power transmission line with one power transmission end and a load connected to the other two ends, current data at one end with the load connected was lacking. Fault phase difference current Δ at the end where another load is connected
In ′, the fault sum current ΣIn and the fault phase difference current ΔIn at the transmitting end are detected, and the fault phase difference at one end where the current data is missing is determined based on the equation ΔIn ″ = | ΣIn | − (ΔIn + ΔIn ′). The current ΔIn ″ is estimated and these fault phase difference currents ΔIn, ΔIn
This is a method for locating a one-line short-circuit fault using In 'and .DELTA.In ".

【0013】請求項2記載の方法は、送電端を2つ有
し、他の1端には負荷を接続した3端子平行2回線送電
線における1回線短絡故障点を標定する方法において、
負荷を接続した端での電流データが欠けた場合に、他の
2つの端での故障相差電流ΔIn 及びΔIn ′、並びに
故障相和電流ΣIn 及びΣIn ′を検出し、式 ΔIn ″=|ΣIn +ΣIn ′|−(ΔIn +ΔIn
′) に基づいて、欠落した1端での故障相差電流ΔIn ″を
推定し、これらの故障相差電流ΔIn 、ΔIn ′及びΔ
In ″を用いて1回線短絡故障点を標定する方法であ
る。
A method according to claim 2 for locating a single-circuit short-circuit fault point in a three-terminal parallel two-line transmission line having two power transmission terminals and a load connected to the other terminal.
When the current data at the end to which the load is connected is lost, the fault phase difference currents .DELTA.In and .DELTA.In 'and the fault phase sum currents .DELTA.In and .DELTA.In' at the other two ends are detected. '|-(ΔIn + ΔIn
′), The fault phase difference current ΔIn ″ at the missing one end is estimated, and these fault phase difference currents ΔIn, ΔIn ′ and ΔIn
This is a method of locating a one-line short-circuit fault point using In ".

【0014】[0014]

【作用】まず、請求項1に記載の発明について図1を参
照しながら説明する。図1は発明の適用対象である3端
子平行2回線送電線回路を示す。送電端Aと負荷端B、
負荷端Cとの間に3端子平行2回線送電線1L,2Lが
設けられており、送電端Aと分岐点Tとの間の距離はd
1 、負荷端Bと分岐点Tとの間の距離はd2 、負荷端C
と分岐点Tとの間の距離はd3 とする。
First, the first aspect of the present invention will be described with reference to FIG. FIG. 1 shows a three-terminal parallel two-circuit transmission line circuit to which the present invention is applied. Transmission end A and load end B,
The three-terminal parallel two-line transmission lines 1L and 2L are provided between the transmission terminal A and the load terminal C, and the distance between the transmission terminal A and the branch point T is d.
1, the distance between load end B and branch point T is d2, load end C
The distance between the point and the branch point T is d3.

【0015】1点Fにおいて1L回線側に短絡事故が発
生し、短絡電流IF が流れ込んでいるとする。A端,B
端,C端で測定された、各回線の故障相電流をI1n,I
2n,I1n′,I2n′,I1n″,I2n″と表記する。 短絡電流IF は、 IF =I1n+I1n′+I1n″ (4) で表される。2L回線側は、故障がないのであるから、 0=I2n+I2n′+I2n″ (5) と表される。(4) 式から(5) 式を引くと、 IF =(I1n−I2n)+(I1n′−I2n′)+(I1n″−I2n″)(6) となる。各端子の電流は殆ど同相であるから、(6) 式
は、 |IF |=|I1n−I2n|+|I1n′−I2n′|+|I1n″−I2n″| =ΔIn +ΔIn ′+ΔIn ″ (7) と書くことができる。
It is assumed that a short circuit accident has occurred at the point F on the 1L line side, and a short circuit current IF has flowed. A end, B
I1n, I1n
2n, I1n ', I2n', I1n ", I2n". The short-circuit current IF is expressed by IF = I1n + I1n '+ I1n "(4) Since there is no failure on the 2L line side, it is expressed as 0 = I2n + I2n' + I2n" (5). By subtracting equation (5) from equation (4), IF = (I1n-I2n) + (I1n-I2n ') + (I1n "-I2n") (6) Since the currents at the terminals are almost in phase, equation (6) gives: | IF | = | I1n−I2n | + | I1n′−I2n ′ | + | I1n ″ −I2n ″ | = ΔIn + ΔIn ′ + ΔIn ″ (7 ) Can be written.

【0016】一方、A端での1L回線及び2L回線を流
れる電流の和I1n+I2nをΣIn 、B端での1L回線及
び2L回線を流れる電流の和I1n′+I2n′をΣIn
′、C端での1L回線及び2L回線を流れる電流の和
I1n″+I2n″をΣIn ″とすると、短絡電流IF は
ΣIn +ΣIn ′+ΣIn ″に等しい。すなわち、 IF =ΣIn +ΣIn ′+ΣIn ″ となる。したがって、(7) 式は |ΣIn +ΣIn ′+ΣIn ″| =|ΣIn |+|ΣIn ′|+|ΣIn ″| =ΔIn +ΔIn ′+ΔIn ″ となる。
On the other hand, the sum I1n + I2n of the currents flowing through the 1L line and the 2L line at the end A is ΔIn, and the sum I1n ′ + I2n ′ of the currents flowing through the 1L line and the 2L line at the end B is ΔIn
', If the sum I1n "+ I2n" of the currents flowing through the 1L line and 2L line at the C end is "In", the short-circuit current IF is
It is equal to ΣIn + ΣIn '+ ΣIn ″, that is, IF = ΣIn + ΣIn' + ΣIn ″. Therefore, the expression (7) becomes | ΣIn + ΣIn ′ + ΣIn ″ | = | ΣIn | + | ΣIn ′ | + | ΣIn ″ | = ΔIn + ΔIn ′ + ΔIn ″.

【0017】しかし、ΣIn ′,ΣIn ″は、短絡故障
時に負荷に供給される故障相の電流であり、短絡故障電
流IF に比べるとはるかに小さい。よって、この式は |ΣIn |=ΔIn +ΔIn ′+ΔIn ″ となり、この式を書き換えると、 ΔIn ″=|ΣIn |−(ΔIn +ΔIn ′) (8) となる。この式は、負荷端Cでの差電流を、送電端A及
び負荷端Bの差電流及び送電端Aの和電流を用いて推定
することができることを示している。
However, .DELTA.In 'and .DELTA.In "are currents of the fault phase supplied to the load at the time of short-circuit fault, and are much smaller than short-circuit fault current IF. Therefore, this equation is given as | ΣIn | = ΔIn + ΔIn ′. + ΔIn ″, and this equation is rewritten as ΔIn ″ = | ΣIn | − (ΔIn + ΔIn ′) (8) This equation calculates the difference current at the load end C by the difference between the power transmission end A and the load end B. This indicates that the estimation can be performed using the current and the sum current of the power transmission end A.

【0018】上の仮定では、負荷端Cでの電流電圧デー
タが欠けているとしたが、負荷端Bでの電流電圧データ
が欠けている場合も、同じように取り扱える。 ΔIn ′=|ΣIn |−(ΔIn +ΔIn ″) (9) 次に、請求項2記載の発明について説明する。図2は発
明の適用対象である3端子平行2回線送電線回路を示
す。
In the above assumption, the current / voltage data at the load terminal C is missing. However, the case where the current / voltage data at the load terminal B is missing can be handled in the same manner. ΔIn ′ = | ΣIn | − (ΔIn + ΔIn ″) (9) Next, the invention of claim 2 will be described.FIG. 2 shows a three-terminal parallel two-line transmission line circuit to which the invention is applied.

【0019】送電端Aと送電端B、負荷端Cとの間に3
端子平行2回線送電線が設けられている。 短絡電流IF は、 IF =I1n+I1n′+I1n″ (10) で表される。2L回線側は、故障がないのであるから、 0=I2n+I2n′+I2n″ (11) と表される。(10)式から(11)式を引くと、 IF =(I1n−I2n)+(I1n′−I2n′)+(I1n″−I2n″)(12) となる。各端子の電流は殆ど同相であるから、(12)式
は、 |IF |=|I1n−I2n|+|I1n′−I2n′|+|I1n″−I2n″| =ΔIn +ΔIn ′+ΔIn ″ (13) と書くことができる。
Between the transmitting end A and the transmitting end B and between the transmitting end
A terminal parallel two-circuit transmission line is provided. The short-circuit current IF is expressed by IF = I1n + I1n '+ I1n "(10) Since there is no failure on the 2L line side, it is expressed as 0 = I2n + I2n' + I2n" (11). By subtracting equation (11) from equation (10), IF = (I1n-I2n) + (I1n'-I2n ') + (I1n "-I2n") (12) Since the currents at the terminals are almost in phase, equation (12) gives: | IF | = | I1n−I2n | + | I1n′−I2n ′ | + | I1n ″ −I2n ″ | = ΔIn + ΔIn ′ + ΔIn ″ (13 ) Can be written.

【0020】一方、短絡電流IF は IF =ΣIn +ΣIn ′+ΣIn ″ となる。したがって、(13)式は |ΣIn +ΣIn ′+ΣIn ″| =|ΣIn |+|ΣIn ′|+|ΣIn ″| =ΔIn +ΔIn ′+ΔIn ″ となる。On the other hand, the short-circuit current IF is given by IF = ΣIn + ′ In '+ ″ In ″ Therefore, the expression (13) is given by | ΣIn + ΣIn ′ + ΣIn ″ | = | ΣIn | + | ΣIn ′ | + | ΣIn ”| '+ ΔIn ″.

【0021】しかし、ΣIn ″は、短絡故障時に負荷に
供給される故障相の電流であり、短絡故障電流IF に比
べるとはるかに小さい。よって、この式は |ΣIn |+|ΣIn ′|=ΔIn +ΔIn ′+ΔIn ″ となり、この式を書き換えると、 ΔIn ″=|ΣIn |+|ΣIn ′|−(ΔIn +ΔIn ′) (14) となる。この式は、負荷端Cでの差電流を、送電端A及
び送電端Bの差電流並びに送電端A及び送電端Bの和電
流を用いて推定することができることを示している。
However, {In} is the current of the fault phase supplied to the load in the event of a short-circuit fault, and is much smaller than the short-circuit fault current IF. Therefore, this equation is given as: | ΣIn | + | ΣIn '| = ΔIn + ΔIn ′ + ΔIn ″, and this equation is rewritten as: ΔIn ″ = | ΣIn | + | ΣIn ′ | − (ΔIn + ΔIn ′) (14) This equation calculates the difference current at the load end C by the transmission end. This indicates that the estimation can be performed using the difference current between the power transmitting end A and the power transmitting end B and the sum current of the power transmitting end A and the power transmitting end B.

【0022】[0022]

【実施例】以下、この発明の故障点標定方法を添付図面
に基いて詳細に説明する。なお、前述した図1、図2と
共通するものについて同じ符号を使用する。図3は一般
的な3端子平行2回線送電線、及びこの発明に係る故障
点標定方法を実施する故障点算定装置を示す図であり、
3端子平行2回線送電線は、送電端A側に電源又は変圧
器を配置し、負荷端B、負荷端C側に負荷を配置してい
る。故障点算定装置3Aは送電端A側に配置されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The fault locating method of the present invention will be described below in detail with reference to the accompanying drawings. Note that the same reference numerals are used for components common to FIGS. 1 and 2 described above. FIG. 3 is a diagram showing a general three-terminal parallel two-circuit power transmission line and a fault point calculating device for implementing the fault point locating method according to the present invention;
In the three-terminal parallel two-circuit transmission line, a power supply or a transformer is arranged on the power transmission end A side, and loads are arranged on the load end B and load end C sides. The failure point calculation device 3A is arranged on the power transmission end A side.

【0023】上記3端子平行2回線送電線には、送電端
A側における1L回線、2L回線のa相、b相及びc相
にそれぞれ接続される変流器CT1A及びCT2A、並
びに送電端A側の母線に接続され、線間電圧を検出する
トランス4Aが接続されている。故障点算定装置3Aに
は、変流器CT1A,CT2A及びトランス4Aを通し
て読み取った値を各相電圧・電流を表わす所定レベルの
電圧信号に変換する入力部31A、入力部31Aの電圧
信号を所定電気角(例えば30度)毎にサンプリングする
サンプルホールド回路32A、A/D変換器33A、負
荷端B,Cにおける測定値のデータを無線、光等を通し
て受信する受信器34A、A/D変換器33Aにより変
換されたディジタル値、及び受信器34Aを通して読み
取った負荷端B,Cにおける測定値のディジタル値に基
づいて短絡故障を検出する故障検出部36A、短絡故障
時に、B端又はC端での電流データが欠けた場合(以下
ではC端でのデータが欠落した場合を想定する)に、B
端での故障相差電流ΔIn ′、並びにA端での故障相和
電流ΣIn 及び故障相差電流ΔIn を検出し、式 ΔIn ″=|ΣIn |−(ΔIn +ΔIn ′) に基づいて、電流データが欠落したC端での故障相差電
流ΔIn ″を算出し、距離検出部37Aに供給するデー
タ復元部35A、データ復元部35Aから供給されるデ
ータに基づいて故障点の距離を算出する距離算出部37
A、並びに故障の発生及び故障点までの距離等を表示す
る表示部38Aが設けられている。
The three-terminal parallel two-circuit power transmission line includes current transformers CT1A and CT2A connected to the 1L line and the 2L line at phases a, b, and c of the transmission end A, respectively. And a transformer 4A for detecting a line voltage. The fault point calculating device 3A converts the value read through the current transformers CT1A, CT2A and the transformer 4A into a voltage signal of a predetermined level representing each phase voltage and current. A sample-and-hold circuit 32A that samples at each angle (for example, 30 degrees), an A / D converter 33A, a receiver 34A that receives data of measured values at the load terminals B and C through wireless or light, and an A / D converter 33A. A failure detection unit 36A that detects a short-circuit failure based on the digital value converted by the above and the digital value of the measured value at the load terminals B and C read through the receiver 34A. When data is missing (hereinafter, it is assumed that data at the C end is missing), B
The fault phase difference current .DELTA.In 'at the end, the fault sum current .DELTA.In and the fault phase difference current .DELTA.In at the A end are detected, and the current data is lost based on the formula .DELTA.In "= | .DELTA.In.vertline. A data restoration unit 35A that calculates the fault phase difference current ΔIn ″ at the C end and supplies the distance detection unit 37A, and a distance calculation unit 37 that calculates the distance of the fault point based on the data supplied from the data recovery unit 35A.
A, and a display unit 38A for displaying the occurrence of a failure, the distance to the failure point, and the like are provided.

【0024】なお、前記説明ではデータ復元部35A
は、C端電流データが欠落した場合に、C端の電流を復
元しているが、B端電流データが欠落した場合でもB端
の差電流を同じように復元できるものである。また、負
荷端Bには、1L回線、2L回線のa相、b相及びc相
に接続される変流器CT1B及びCT2B、並びに負荷
端B側の母線に接続され、線間電圧を検出するトランス
4Bが接続されている。
In the above description, the data restoration unit 35A
Although the current at the C end is restored when the C end current data is lost, the difference current at the B end can be similarly restored even when the B end current data is lost. The load terminal B is connected to the current transformers CT1B and CT2B connected to the a-phase, b-phase, and c-phase of the 1L line and the 2L line, and the bus on the load end B side to detect a line voltage. The transformer 4B is connected.

【0025】測定装置3Bには、変流器CT1B,CT
2B及びトランス4Bを通して読み取った値を各相電流
・電圧を表わす所定レベルの電圧信号に変換する入力部
31B、入力部31Bの電圧信号を所定電気角(例えば
30度)毎にサンプリングするサンプルホールド回路32
B、A/D変換器33B、負荷端Bにおける測定値のデ
ータを無線、光等を通して送信する送信器34Bが設け
られている。
The measuring devices 3B include current transformers CT1B and CT1B.
2B and an input section 31B for converting a value read through the transformer 4B into a voltage signal of a predetermined level representing a current and a voltage of each phase.
Sampling and holding circuit 32 that samples every 30 degrees)
B, an A / D converter 33B, and a transmitter 34B for transmitting the data of the measurement value at the load end B via radio, light, or the like.

【0026】また、負荷端Cには、負荷端C側における
1L回線、2L回線のa相、b相及びc相に接続される
変流器CT1C,CT2C、並びに負荷端C側の母線に
接続され、線間電圧を検出するトランス4Cが接続さ
れ、測定装置3Cには、上記変流器CT1C,CT2
C、及びトランス4Cを通して読み取った値を各相電圧
・電流を表わす所定レベルの電圧信号に変換する入力部
31C、入力部31Cの電圧信号を所定電気角(例えば
30度)毎にサンプリングするサンプルホールド回路32
C、A/D変換器33C、負荷端Cにおける測定値のデ
ータを無線、光等を通して送信する送信器34Cが設け
られている。
The load terminal C is connected to current transformers CT1C and CT2C connected to the 1L line, 2L line a-phase, b-phase and c-phase on the load terminal C side, and to a bus on the load terminal C side. The transformer 4C for detecting the line voltage is connected, and the current transformers CT1C and CT2 are connected to the measuring device 3C.
C and an input unit 31C for converting a value read through the transformer 4C into a voltage signal of a predetermined level representing each phase voltage and current, and converting the voltage signal of the input unit 31C to a predetermined electrical angle (for example,
Sampling and holding circuit 32 that samples every 30 degrees)
C, an A / D converter 33C, and a transmitter 34C that transmits data of the measured value at the load terminal C through radio, light, or the like.

【0027】なお、サンプルホールド回路32A,32
B,32Cの間には、演算誤差を発生させないよう、後
述するようにサンプリング同期が採られている。上記故
障点算定装置3Aの動作は次のとおりである。故障検出
部36Aが故障を検出すると、距離算出部37Aに故障
点標定動作を開始させる。距離算出部37Aはデータ復
元部35Aから故障相差電流のデータを取り出す。
The sample and hold circuits 32A, 32A
Sampling synchronization is adopted between B and 32C as described later so as not to cause an operation error. The operation of the fault point calculating device 3A is as follows. When the failure detection unit 36A detects a failure, it causes the distance calculation unit 37A to start a failure point locating operation. The distance calculation unit 37A extracts the data of the fault phase difference current from the data restoration unit 35A.

【0028】距離算出部37Aは、上記各データを取り
込み、送電端Aの故障相差電流ΔI、受電端Bの故障相
差電流ΔI′、受電端Cの故障相差電流ΔI″を検出す
る。そして、既に示した公知の(1) 式、(2) 式、(3) 式
に基づいていずれかの端A,B又はCから故障点までの
距離を数値計算する。この場合、短絡故障時に、負荷端
Cの電流データが欠落していても、他端で測定された故
障相差電流及び故障相和電流データに基づいて、A端及
びB端の故障相差電流ΔIn 、ΔIn ′並びにA端の故
障相和電流ΣInを算出して、式 ΔIn ″=|ΣIn |−(ΔIn +ΔIn ′) を適用することによってC端の欠落した故障相差電流デ
ータを復元することができるので、距離の算出に支障を
与えることはない。
The distance calculating section 37A fetches the above data and detects a fault phase difference current ΔI at the power transmitting end A, a fault phase difference current ΔI 'at the power receiving end B, and a fault phase difference current ΔI ″ at the power receiving end C. The distance from any one of the ends A, B or C to the fault point is numerically calculated based on the known formulas (1), (2) and (3) shown below. Even if the current data of C is missing, based on the fault phase difference current and fault sum current data measured at the other end, the fault phase difference currents ΔIn, ΔIn ′ at the A and B ends and the fault sum at the A end By calculating the current ΣIn and applying the equation ΔIn ″ = | ΣIn | − (ΔIn + ΔIn ′), it is possible to restore the fault phase difference current data missing at the C end, which hinders the calculation of the distance. There is no.

【0029】したがって、測定装置3B又は3Cの変流
器、トランス、入力部、サンプルホールド回路、A/D
変換器を初めから省略することも可能になる。なお、上
記故障点算定装置3A、測定装置3B、測定装置3C間
のデータの伝送にあたっては、高速、高信頼性が要求さ
れる。したがって、データ伝送方式として、例えばPC
M伝送方式を用い、通信路も大容量のものを用いること
が好ましい。特に、データのサンプリング同期を正確に
とらなければ演算結果に誤差が生じるので、データ伝送
中に生じるサンプリング時間差を正確に測定し補正する
いわゆるSP同期制御技術(送信器13、受信器12間
で信号を往復させ、その往復にかかった時間を測定して
サンプリング時間差を補正する技術。三菱電機技報Vol.
63,No.8,1989,p.p.27-31 参照)を採用することが好ま
しい。
Therefore, the current transformer, transformer, input section, sample and hold circuit, A / D of the measuring device 3B or 3C
It is also possible to omit the converter from the beginning. It should be noted that high-speed, high-reliability is required for data transmission between the fault point calculation device 3A, the measurement device 3B, and the measurement device 3C. Therefore, as a data transmission method, for example, PC
It is preferable to use the M transmission method and use a large capacity communication path. In particular, if the data sampling synchronization is not accurately obtained, an error occurs in the calculation result. Therefore, a so-called SP synchronization control technique (signal transmission between the transmitter 13 and the receiver 12) for accurately measuring and correcting the sampling time difference occurring during data transmission. To reciprocate and measure the time taken for the reciprocation to correct the sampling time difference.Mitsubishi Electric Technical Report Vol.
63, No. 8, 1989, pp. 27-31).

【0030】以上、実施例に基づき説明してきたが、本
発明は前記実施例に限定されるものではない。例えば図
4に示すように、送電端Aと送電端B、負荷端Cとの間
に3端子平行2回線送電線が設けられている場合でも、
A端及びB端の故障相差電流ΔIn 、ΔIn ′並びにA
端及びB端の故障相和電流ΣIn 、ΣIn ′を算出し
て、式 ΔIn ″=|ΣIn +ΣIn ′|−(ΔIn +ΔIn
′) を適用することによってC端の欠落したデータを補完す
る請求項2記載の発明を実施することも可能である。
Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments. For example, as shown in FIG. 4, even when a three-terminal parallel two-circuit transmission line is provided between the power transmission end A and the power transmission end B, and the load end C,
The fault phase difference currents ΔIn, ΔIn 'at A-end and B-end and A
故障 In, ΣIn 'at the end and the B end are calculated, and the equation ΔIn ″ = | ΣIn + ΣIn ′ | − (ΔIn + ΔIn
It is also possible to implement the invention according to claim 2 which complements the missing data at the C-end by applying ').

【0031】さらに、送電端A、負荷端B,Cにそれぞ
れ送信機を設置してデータの伝送をさせ、送電端Aから
も負荷端B,Cからも離れた場所に故障点算定装置3A
を設置することも可能である。その他本発明の要旨を変
更しない範囲内において、種々の変更を施すことが可能
である。
Further, a transmitter is installed at each of the power transmitting end A and the load terminals B and C to transmit data, and the fault point calculating device 3A is located at a place away from both the power transmitting end A and the load terminals B and C.
It is also possible to set up. Various other changes can be made without departing from the scope of the present invention.

【0032】[0032]

【発明の効果】以上のように請求項1記載の発明によれ
ば、1つの負荷端の電流データが欠落した場合に、送電
端の故障相和電流と差電流及び他の負荷端の差電流のデ
ータを用いることによって、欠落したデータを補完する
ことができる。また、請求項2記載の発明によれば、1
つの負荷端の電流データが欠落した場合に、2つの送電
端の故障相和電流と差電流を用いることによって、欠落
したデータを補完することができる。
As described above, according to the first aspect of the present invention, when the current data at one load terminal is lost, the fault sum current and the differential current at the transmitting terminal and the differential current at the other load terminals are lost. By using the above data, the missing data can be complemented. According to the invention described in claim 2, 1
When the current data of two load terminals is lost, the missing data can be complemented by using the fault sum current and the difference current of the two power transmission terminals.

【0033】したがって、3端子平行2回線送電線の短
絡故障点の標定が可能になり、少ない労力で故障点の探
索作業を行うことができる。
Therefore, it is possible to locate a short-circuit fault point of a three-terminal parallel two-circuit transmission line, and it is possible to search for a fault point with a small amount of labor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明(請求項1)の作用を説明するための、
3端子平行2回線送電線の故障相等価回路図である。
FIG. 1 is a diagram for explaining the operation of the present invention (claim 1);
It is a failure phase equivalent circuit diagram of a three-terminal parallel two-circuit transmission line.

【図2】本発明(請求項2)の作用を説明するための、
3端子平行2回線送電線の故障相等価回路図である。
FIG. 2 is a view for explaining the operation of the present invention (claim 2);
It is a failure phase equivalent circuit diagram of a three-terminal parallel two-circuit transmission line.

【図3】3端子平行2回線送電線における故障点標定方
法に適用される故障点算定装置を示す図である。
FIG. 3 is a diagram showing a fault point calculating device applied to a fault point locating method in a three-terminal parallel two-circuit transmission line.

【図4】3端子平行2回線送電線における故障点標定方
法に適用される故障点算定装置を示す図である。
FIG. 4 is a diagram showing a fault point calculating device applied to a fault point locating method in a three-terminal parallel two-circuit transmission line.

【図5】一般的な3端子平行2回線送電線の回路図であ
る。
FIG. 5 is a circuit diagram of a general three-terminal parallel two-circuit transmission line.

【符号の説明】[Explanation of symbols]

1L,2L 3端子平行2回線送電線 3A 故障点算定装置 3B,3C 測定装置 35A データ復元部 37A 距離算出部 4A,4B,4C トランス A 送電端 B 送電端又は受電端 C 受電端 CT1A,2A 変流器 CT1B,2B 変流器 CT1C,2C 変流器 1L, 2L 3-terminal parallel 2-circuit transmission line 3A Fault point calculation device 3B, 3C measurement device 35A Data restoration unit 37A Distance calculation unit 4A, 4B, 4C Transformer A Transmitting end B Transmitting end or receiving end C Receiving end CT1A, 2A Current transformer CT1B, 2B Current transformer CT1C, 2C Current transformer

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/08 H02H 3/26 - 3/30 H02H 3/32 - 3/52 Continued on the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01R 31/08 H02H 3/26-3/30 H02H 3/32-3/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】送電端を1つ有し、他の2端には負荷を接
続した3端子平行2回線送電線における1回線短絡故障
点を標定する方法において、負荷を接続した1端での電
流データが欠けた場合に、他の負荷を接続した端での故
障相差電流ΔIn ′、並びに送電端での故障相和電流Σ
In 及び故障相差電流ΔIn を検出し、式 ΔIn ″=|ΣIn |−(ΔIn +ΔIn ′) に基づいて、電流データが欠落した1端での故障相差電
流ΔIn ″を推定し、これらの故障相差電流ΔIn 、Δ
In ′及びΔIn ″を用いて1回線短絡故障点を標定す
ることを特徴とする短絡故障点標定方法。
1. A method for locating a single-circuit short-circuit fault point in a three-terminal parallel two-line power transmission line having one power transmitting end and a load connected to the other two ends. If the current data is missing, the fault phase difference current ΔIn ′ at the end to which another load is connected and the fault sum current Σ at the transmission end
In and the fault phase difference current ΔIn are detected, a fault phase difference current ΔIn ″ at one end where current data is missing is estimated based on the equation ΔIn ″ = | ΣIn | − (ΔIn + ΔIn ′), and these fault phase difference currents are detected. ΔIn, Δ
A method of locating a short-circuit fault point using In 'and .DELTA.In ".
【請求項2】送電端を2つ有し、他の1端には負荷を接
続した3端子平行2回線送電線における1回線短絡故障
点を標定する方法において、負荷を接続した端での電流
データが欠けた場合に、他の2つの端での故障相差電流
ΔIn 及びΔIn ′、並びに故障相和電流ΣIn 及びΣ
In ′を検出し、式 ΔIn ″=|ΣIn +ΣIn ′|−(ΔIn +ΔIn
′) に基づいて、欠落した1端での故障相差電流ΔIn ″を
推定し、これらの故障相差電流ΔIn 、ΔIn ′及びΔ
In ″を用いて1回線短絡故障点を標定することを特徴
とする短絡故障点標定方法。
2. A method for locating a single-circuit short-circuit fault point in a three-terminal parallel two-line power transmission line having two power transmission terminals and a load connected to the other terminal. If the data is missing, the fault phase difference currents .DELTA.In and .DELTA.In 'at the other two ends, and the fault sum currents .DELTA.In and .SIGMA.
In ′ is detected, and the equation ΔIn ″ = | ΣIn + ΣIn ′ | − (ΔIn + ΔIn
′), The fault phase difference current ΔIn ″ at the missing one end is estimated, and these fault phase difference currents ΔIn, ΔIn ′ and ΔIn
A method of locating a short-circuit fault point using In ".
JP3095214A 1991-04-25 1991-04-25 Short-circuit fault location method Expired - Fee Related JP3013491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095214A JP3013491B2 (en) 1991-04-25 1991-04-25 Short-circuit fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095214A JP3013491B2 (en) 1991-04-25 1991-04-25 Short-circuit fault location method

Publications (2)

Publication Number Publication Date
JPH04324376A JPH04324376A (en) 1992-11-13
JP3013491B2 true JP3013491B2 (en) 2000-02-28

Family

ID=14131501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095214A Expired - Fee Related JP3013491B2 (en) 1991-04-25 1991-04-25 Short-circuit fault location method

Country Status (1)

Country Link
JP (1) JP3013491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459518B2 (en) * 2014-02-04 2019-01-30 東京電力ホールディングス株式会社 Accident point locator

Also Published As

Publication number Publication date
JPH04324376A (en) 1992-11-13

Similar Documents

Publication Publication Date Title
US4996624A (en) Fault location method for radial transmission and distribution systems
US9118181B2 (en) Method of fault phase selection and fault type determination
US20190146024A1 (en) Fault location during pole-open condition
US20240044965A1 (en) Parameter independent traveling wave-based fault location using unsynchronized measurements
US11327105B2 (en) Fault location in multi-terminal tapped lines
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JP3013491B2 (en) Short-circuit fault location method
JP3341485B2 (en) Transmission line fault location method
JP3586266B2 (en) Fault location method for transmission line and fault location system using the same
JP3013488B2 (en) Ground fault fault location method
JP3013487B2 (en) Fault location method
JPH11344525A (en) Fault point plotting device
JP2560994B2 (en) Short-circuit fault location method
EP0013104B1 (en) Fault distance locator
CN110865279A (en) Single-phase earth fault positioning method based on neutral point earth current starting
CN217085087U (en) Detection apparatus for three-phase four-wire is zero line dual supply residual current altogether
JP2581061B2 (en) Power system protection device
JP3451552B2 (en) Protection relay device for power system
JPS62249078A (en) Fault point locating system
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP3277534B2 (en) Fault location method for 3-terminal parallel 2-circuit transmission line
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPH05297053A (en) Trouble-point location method of ground fault
JPH06249910A (en) Orientation method of ground-fault point
CN113219239A (en) Device and method for detecting residual current of dual-power supply of three-phase four-wire common-zero line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees