JPH10132890A - Method and device for locating failure point - Google Patents

Method and device for locating failure point

Info

Publication number
JPH10132890A
JPH10132890A JP8290036A JP29003696A JPH10132890A JP H10132890 A JPH10132890 A JP H10132890A JP 8290036 A JP8290036 A JP 8290036A JP 29003696 A JP29003696 A JP 29003696A JP H10132890 A JPH10132890 A JP H10132890A
Authority
JP
Japan
Prior art keywords
phase
fault
current
voltage
symmetrical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8290036A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasaki
宏 佐々木
Yutaka Takiguchi
裕 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Electric Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electric Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP8290036A priority Critical patent/JPH10132890A/en
Publication of JPH10132890A publication Critical patent/JPH10132890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Landscapes

  • Locating Faults (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the location of failure points and improve accuracy based on normal phase, reverse phase and zero phase equivalent circuit by the method of symmetrical component coordinates. SOLUTION: During an accident of three-phase alternating current transmission line 3, a failure point locating device 100 periodically samples the voltage and current of each phase measuring with data collection terminals 10A and 10B at electric sites A and B with a data acquisition part 101, which are maintained during the accident. A symmetrical component signal converter 103 converts the voltage and current of each phase into symmetrical component voltage and symmetrical component current in each circuit of normal phase, reverse phase and zero phase of a symmetrical component equivalent circuit. An accident kind judgment par 104 selects the phase of symmetrical component equivalent circuit used in failure point locating operation according to the accident scheme judged by the symmetrical component current and the like. A failure point location operation part 105 calculates failure point of the symmetrical component equivalent circuit of selected phase by utilizing the fact that the symmetrical component voltage of the failure point become the same value in both sides of electric sites A and B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三相交流送電線の
短絡あるいは地絡の故障点標定方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for locating a short-circuit or ground fault in a three-phase AC transmission line.

【0002】[0002]

【従来の技術】送電線の故障点標定方式として、たとえ
ば、論文「送電線事故様相特定装置の開発(電気学会論
文誌B、114巻7/8号、平成6年)」に記載の演算
方式などが知られている。
2. Description of the Related Art As a method of locating a fault in a transmission line, for example, an arithmetic method described in a paper "Development of a transmission line accident aspect identification apparatus (IEEJ Transactions on Communications, Vol. 114, No. 7/8, 1994)" Etc. are known.

【0003】これら従来の故障点標定方式は実系統にお
ける電圧降下を演算するために、送電線の各相の電圧、
電流信号と、各相の自己インピーダンスと相間の相互イ
ンピーダンスを用いて演算式を構成している。
In these conventional fault locating methods, the voltage of each phase of a transmission line is calculated in order to calculate a voltage drop in an actual system.
An arithmetic expression is configured using the current signal, the self-impedance of each phase, and the mutual impedance between the phases.

【0004】[0004]

【発明が解決しようとする課題】従来の故障点標定演算
は実系統によるため、対象回路が3相で線路インピーダ
ンスも多く演算式が複雑になる。また、短絡故障や1線
地絡故障など事故種別によっては、標定するための独立
した情報が複数存在するケースでも、それらの情報をま
とめた演算方式となるため演算に時間がかかる。のみな
らず、事故種別毎にみた場合の精度が低下する。さら
に、演算に使用する線路定数が多いので、系統の新設や
変更時の定数設定に時間がかかる。
Since the conventional fault locating operation is based on an actual system, the target circuit is three-phase, the line impedance is large, and the operation formula is complicated. Also, depending on the type of accident, such as a short-circuit fault or a single-line ground fault, even if there are a plurality of independent information items for locating, it takes a long time to perform the calculation because the calculation method is based on those information items. Not only that, the accuracy when viewed for each accident type is reduced. Furthermore, since there are many line constants used for calculation, it takes time to set constants when newly establishing or changing the system.

【0005】本発明の目的は、従来技術の問題点を克服
し、簡素な演算式による高速で精度の高い三相交流送電
線の故障点標定方法および装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for overcoming the problems of the prior art and for locating a fault point of a three-phase AC transmission line with high speed and high accuracy by using a simple arithmetic expression.

【0006】[0006]

【課題を解決するための手段】上記目的は、三相交流の
送電線に発生した事故の故障点を、その両側の基準端子
AまたはBからの距離として求める故障点標定方法にお
いて、送電線の事故時、基準端子A及びBの各々で測定
している三相交流各相の電圧、電流を、対称分等価回路
の正相、逆相及び零相の各回路での基準端子A,Bの対
称分電圧、対称分電流に変換し、故障点の対称分電圧が
基準端子A及びBの両側からみて同値になることを利用
して、故障点を算出することにより達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a fault point locating method for determining a fault point of an accident occurring in a three-phase AC transmission line as a distance from a reference terminal A or B on both sides thereof. At the time of an accident, the voltages and currents of each of the three-phase alternating current phases measured at each of the reference terminals A and B are compared with those of the reference terminals A and B in the positive-phase, reverse-phase, and zero-phase circuits of the symmetric equivalent circuit. This is achieved by converting into a symmetrical component voltage and a symmetrical component current and calculating the fault point by utilizing that the symmetrical component voltages at the fault point have the same value as viewed from both sides of the reference terminals A and B.

【0007】前記故障点は、基準端子A及びBの両側か
ら対称分線路インピーダンスを一様とした電圧降下によ
って算出することを特徴とする。
[0007] The fault point is calculated by a voltage drop from both sides of the reference terminals A and B with a symmetrical line impedance being uniform.

【0008】前記故障点の算出は、前記正相、逆相及び
零相の各々における対称分電流が健全状態で発生する不
平衡分を超える所定値以上に増大している相の対称分等
価回路を用いて行なうことを特徴とする。
[0008] The calculation of the fault point is performed by calculating a symmetric component equivalent circuit of a phase in which the symmetric component current in each of the positive phase, the negative phase, and the zero phase is increased to a predetermined value exceeding an unbalance component generated in a normal state. It is characterized by performing using.

【0009】または、三相交流の電流が大きく変化して
いる事故相から事故種別を特定し、当該事故種別に対応
し前記故障点の算出に適用可能な対称分等価回路の相を
選択することを特徴とする。事故相はA,B両端子で測
定した同時刻の電流の合成値が、予め定められるしきい
値を超えたか否かによって判別できる。
Alternatively, an accident type is specified from an accident phase in which the three-phase AC current greatly changes, and a phase of a symmetrical equivalent circuit applicable to the calculation of the fault point corresponding to the accident type is selected. It is characterized by. The fault phase can be determined based on whether or not the combined value of the currents measured at both terminals A and B at the same time has exceeded a predetermined threshold.

【0010】前記事故種別が1線地絡または2線地絡の
ときは、前記正相、逆相、零相の各回路で算出した故障
点またはその平均値を取得し、2線短絡のときは、前記
正相及び逆相の各回路で算出した故障点またはその平均
値を取得し、3線短絡または3線地絡のときは、前記正
相の回路で算出した故障点を取得することを特徴とす
る。
When the type of fault is a one-wire ground fault or a two-wire ground fault, the fault point calculated by each of the positive-phase, negative-phase, and zero-phase circuits or an average value thereof is obtained. Obtains a fault point calculated in each of the positive-phase and negative-phase circuits or an average value thereof, and obtains a fault point calculated in the positive-phase circuit when a three-wire short circuit or a three-wire ground fault occurs. It is characterized by.

【0011】本発明の方法を適用した故障点標定装置
は、電気所A及びBで測定している各相の電圧、電流を
周期的にサンプリングすると共に所定の期間保持するデ
ータ収集部と、前記電圧、電流を対称分等価回路の正
相、逆相及び零相の各回路での対称分電圧、対称分電流
に変換する対称分信号変換部と、前記対称分電流が定常
時に比較して増大している相の対称分等価回路を選択す
る適用回路判別部と、選択された相の対称分等価回路に
ついて、前記故障点の対称分電圧が電気所A及びBの両
側からみて同値になることを利用して故障点を算出する
故障点標定演算部を設けたことを特徴とする。
A fault point locating apparatus to which the method of the present invention is applied is a data collection unit that periodically samples the voltage and current of each phase measured at electric stations A and B and holds the voltage and current for a predetermined period; A symmetrical signal converter for converting a voltage and a current into a symmetrical component voltage and a symmetrical component current in each of the positive-phase, reverse-phase, and zero-phase circuits of the symmetrical equivalent circuit; The applied circuit discriminating unit that selects the symmetrical equivalent circuit of the phase in question and the symmetrical equivalent circuit of the selected phase have the same symmetrical voltage at the fault point when viewed from both sides of the electric stations A and B. And a failure point locating operation unit for calculating a failure point by utilizing the above method.

【0012】また、前記対称分等価回路の正相、逆相及
び零相の各々に、電気所A,B間の線路インピーダンス
を一様分布で設定する記憶手段を設け、電気所A及びB
の両側から前記故障点までの電圧降下を求めて故障点を
算出する。
Further, storage means for setting the line impedance between the electric stations A and B with a uniform distribution is provided for each of the positive phase, the negative phase and the zero phase of the symmetrical equivalent circuit.
And calculating the voltage drop from both sides to the fault point to calculate the fault point.

【0013】なお、前記適用回路判別部に代えて、前記
各相の電流またはその対称分電流が定常から変化してい
る相を検出して事故種別を判別し、当該事故種別によっ
て故障電流の流れる相の対称分等価回路を選択する事故
種別判定部を設けるようにしてもよい。
Instead of the applied circuit discriminating unit, the type of the fault is discriminated by detecting the phase in which the current of each phase or its symmetrical current has changed from the steady state, and the fault current flows according to the type of the fault. An accident type determination unit for selecting a phase symmetrical equivalent circuit may be provided.

【0014】本発明の構成によれば、対称座標法による
三相交流回路の対称分等価回路をもとに、三相交流送電
線の故障点標定を行なう。すなわち、対称分等価回路に
よることで、正相、逆相及び零相の各々における対称分
電圧、対称分電流による電圧降下から故障点を簡単に算
出でき、故障点標定が高速化できる。
According to the configuration of the present invention, the fault point of the three-phase AC transmission line is located based on the symmetric equivalent circuit of the three-phase AC circuit by the symmetric coordinate method. That is, by using the symmetrical equivalent circuit, the fault point can be easily calculated from the voltage drop due to the symmetrical component voltage and the symmetrical component current in each of the positive phase, the negative phase, and the zero phase, and the fault location can be speeded up.

【0015】また、故障の種別によって、利用可能とな
る対称分等価回路の相が異なる。これは、対称分等価回
路の接続状態が事故種別によって変化するためで、基本
的には故障電流の流れる回路が選択される。ちなみに、
1線地絡または2線地絡のときは正相、逆相及び零相の
各回路、2線短絡のときは正相及び逆相の各回路、3線
短絡または3線地絡のときは正相回路が利用できる。複
数の回路で故障点を算出したときは、その平均値を求め
ることで精度が向上できる。
The phases of the symmetrical equivalent circuits that can be used differ depending on the type of the fault. This is because the connection state of the symmetrical equivalent circuit changes depending on the type of accident, and basically a circuit through which a fault current flows is selected. By the way,
1-phase ground fault or 2-wire ground fault, positive-phase, negative-phase, and zero-phase circuits; 2-wire short-circuit, positive-phase and reverse-phase circuits; 3-wire short-circuit or 3-wire ground fault A positive-phase circuit can be used. When a fault point is calculated by a plurality of circuits, the accuracy can be improved by obtaining the average value.

【0016】[0016]

【発明の実施の形態】本発明の実施形態について、図面
を参照しながら詳細に説明する。各図を通して同じ回路
要素や信号には同一の記号を付している。
Embodiments of the present invention will be described in detail with reference to the drawings. The same symbols are given to the same circuit elements and signals throughout the figures.

【0017】図1は、三相交流送電線に適用した一実施
例による故障点標定装置の全体構成を示す。電力系統の
送電線3および発電源EA,EBなどは、それぞれa
相,b相,c相の三相交流で形成されるが、単線図にて
簡略化して示してある。Fは故障点の例を示す記号であ
る。
FIG. 1 shows an overall configuration of a fault locating apparatus according to an embodiment applied to a three-phase AC transmission line. The transmission line 3 and the power sources EA and EB of the power system are respectively a
It is formed by a three-phase alternating current of a phase, a b-phase, and a c-phase, but is simplified in a single diagram. F is a symbol indicating an example of a failure point.

【0018】ZPA,ZPBは電気所A、電気所Bから
発電源EA,EBまでのインピーダンスを示す。インピ
ーダンスZPA,ZPBも各相に存在する。ZNA,Z
NBは三相交流回路の中性点接地インピーダンスであ
る。系統の電圧階級によって、中性点接地インピーダン
スは直接接地や抵抗接地などの形態がある。また、図示
していないが、送電線3のインピーダンスは、電気所
A,B間で一様分布と見なし、正相インピーダンスZ
1,逆相Z2,零相インピーダンスZ0が存在する。
ZPA and ZPB indicate impedances from the electric stations A and B to the power sources EA and EB. Impedances ZPA and ZPB also exist in each phase. ZNA, Z
NB is the neutral point ground impedance of the three-phase AC circuit. Depending on the voltage class of the system, the neutral point ground impedance has a form such as direct grounding or resistance grounding. Although not shown, the impedance of the transmission line 3 is regarded as a uniform distribution between the electric stations A and B, and the positive-phase impedance Z
1, negative phase Z2, and zero-phase impedance Z0.

【0019】電圧変成器1A,1Bは電気所A,電気所
Bにおいて、送電線3のa相電圧Va,b相電圧Vb,
c相電圧Vcを計測する。変流器2A,2Bは電気所
A,Bにおいて、それぞれ三相分のa相電流Ia,b相
電流Ib,c相電流Icを計測する。
The voltage transformers 1A and 1B are connected to the substation A and the substation B, respectively, so that the a-phase voltage Va, the b-phase voltage Vb,
The c-phase voltage Vc is measured. The current transformers 2A and 2B measure the three-phase a-phase current Ia, b-phase current Ib, and c-phase current Ic at the electric stations A and B, respectively.

【0020】データ収集端末10A,10Bは電気所
A,Bにおいて計測した電圧、電流信号を収集する。ま
た、三相交流電圧Va,Vb,Vcおよび電流Ia,I
b,Icを、たとえば、アナログ量をディジタル量に変
換し、データ伝送回線20A,20Bによって、故障点
標定装置100に伝送する。
The data collection terminals 10A and 10B collect voltage and current signals measured at the electric stations A and B. Further, the three-phase AC voltages Va, Vb, Vc and the currents Ia, Ia
For example, b and Ic are converted from analog quantities to digital quantities and transmitted to the fault point locating apparatus 100 via the data transmission lines 20A and 20B.

【0021】故障点標定演算装置100は、データ収集
端末10A,10Bからのデータを受信するデータ収集
部101、故障点標定演算を行うか否かを判別する演算
起動部102、入力した三相交流の電圧、電流データを
対称座標法にもとづき、正相成分、逆相成分、零相成分
に変換するための対称分信号変換部103を備えてい
る。さらに、故障点標定演算を実施するための対象とな
る対称分等価回路を選択する事故種別判別部(適用回路
判別部)104、故障点標定演算部105、出力表示部
106を備えている。
The fault point locating operation device 100 includes a data collecting unit 101 for receiving data from the data collecting terminals 10A and 10B, an operation starting unit 102 for determining whether or not to execute a fault point locating operation, and an input three-phase AC. Is provided with a symmetrical signal conversion unit 103 for converting the voltage and current data into a positive-phase component, a negative-phase component, and a zero-phase component based on the symmetric coordinate method. Further, an accident type discriminating unit (applied circuit discriminating unit) 104 for selecting a symmetrical equivalent circuit to be subjected to a fault point locating operation, an error point locating calculating unit 105, and an output display unit 106 are provided.

【0022】データ収集部101は、送電線3の故障点
Fに地絡や短絡等の事故が発生したときに、故障継続中
の電圧,電流信号のデータを時系列に蓄積する。系統故
障継続時間は電圧階級や、短絡事故か地絡事故かなどの
事故種別によって異なるが、シビアケースを考えると7
0〜100ms程度もあり得るので、この程度のデータ
を保持できるものとする。
When an accident such as a ground fault or a short circuit occurs at the fault point F of the transmission line 3, the data collecting unit 101 accumulates data of voltage and current signals during the fault in a time series. The duration of system failure depends on the voltage class and the type of accident, such as short-circuit or ground-fault.
Since there can be about 0 to 100 ms, it is assumed that data of this degree can be held.

【0023】演算起動部102は、送電線3に故障が発
生した可能性を検知し、故障点標定演算を開始するスタ
ート条件を判定する。たとえば、不足電圧検出、過電流
検出、あるいは、三相各相毎の電気所Aと電気所Bの電
流信号の差(保護リレーでは電流差動方式と呼ばれる)
などによってスタート条件を判別する。なお、送電線3
の故障検出には、図示していない保護リレーを利用する
ようにしてもよい。
The calculation starting unit 102 detects the possibility that a fault has occurred in the transmission line 3 and determines a start condition for starting a fault locating calculation. For example, undervoltage detection, overcurrent detection, or the difference between the current signals of the substation A and the substation B for each of the three phases (this is called a current differential system in a protection relay).
The start condition is determined by the following method. In addition, transmission line 3
For the failure detection, a protection relay (not shown) may be used.

【0024】対称分信号変換部103は、三相交流a
相,b相,c相の電圧あるいは電流信号の入力データ
を、対称座標法に基づいてそれぞれ正相,逆相及び零相
の各成分に変換する。その基本的な変換式は数1及び数
3に示す。数式中のa及びa2はベクトルオペレータで
あり、数2にその内容を示す。
The symmetrical component signal converter 103 has a three-phase AC a
The input data of the phase, b-phase, and c-phase voltage or current signals are converted into positive-phase, negative-phase, and zero-phase components based on the symmetric coordinate method. The basic conversion formulas are shown in Expressions 1 and 3. “A” and “a 2” in the formula are vector operators, and their contents are shown in Equation 2.

【0025】[0025]

【数1】 (Equation 1)

【0026】[0026]

【数2】 (Equation 2)

【0027】[0027]

【数3】 (Equation 3)

【0028】数1は電流信号について示したもので、I
1は正相分、I2は逆相分、I0は零相分を示す。数3
は電圧信号について同様に示したものである。数1、数
3は、いずれもa相の信号を基準に変換した例である
が、相順同順にて、b相基準あるいはc相基準であって
もよい。
Equation 1 shows the current signal.
1 indicates a positive phase component, I2 indicates a negative phase component, and I0 indicates a zero phase component. Number 3
Is the same for voltage signals. Equations (1) and (3) are examples in which the signal of the a-phase is converted into the reference, but the b-phase reference or the c-phase reference may be used in the same order of the phase order.

【0029】事故種別判定部104は故障点標定演算が
正相,逆相,零相の各対称分等価回路のいずれで実行で
きるか判別するための判定部である。つまり、三相交流
回路の事故種別によって対称分等価回路の接続構成が決
まることを利用するための手段である。事故種別と対称
分等価回路の接続構成については後述する。
The fault type determination unit 104 is a determination unit for determining whether the fault point locating operation can be performed by using a positive phase, a negative phase, or a zero phase symmetrical equivalent circuit. In other words, this is a means for utilizing the fact that the connection configuration of the symmetrical equivalent circuit is determined by the fault type of the three-phase AC circuit. The connection configuration of the accident type and the symmetrical equivalent circuit will be described later.

【0030】故障点標定演算部105は、事故種別によ
って決まる対称分等価回路の演算対象に従って、故障点
標定演算を行う。入力データがディジタル量に変換され
たサンプル値であれば、ディジタルコンピュータにより
演算可能である。
The fault point locating operation section 105 performs a fault point locating operation in accordance with the operation target of the symmetrical equivalent circuit determined by the accident type. If the input data is a sample value converted into a digital quantity, it can be calculated by a digital computer.

【0031】出力表示部106は、故障点標定演算によ
って解いた結果を表示するための装置であり、CRTデ
ィスプレイやラインプリンタなどによる。
The output display unit 106 is a device for displaying a result solved by the fault location calculation, and is constituted by a CRT display, a line printer, or the like.

【0032】つぎに、事故種別と対称分等価回路の接続
構成について説明する。図2は図1に示した系統で、a
相1線地絡時の対称分等価回路の接続構成を示す。図示
の記号で末尾のA,Bはそれぞれ電気所A側あるいはB
側の信号、あるいはインピーダンスを意味する。
Next, the connection configuration of the accident type and the symmetrical equivalent circuit will be described. FIG. 2 shows the system shown in FIG.
The connection configuration of the symmetrical equivalent circuit at the time of the phase 1 line ground fault is shown. A and B at the end of the symbols in the illustration are the substation A side or B respectively.
Side signal or impedance.

【0033】電気所A〜B間の距離を1として、故障点
Fの距離が電気所Aからxの値になるものとする。E1
Aは図1における発電源EAの正相分電圧、E1Bは発
電源EBの正相分電圧を示す。
Assuming that the distance between the substations A and B is 1, the distance from the substation A to the value of x from the substation A is assumed. E1
A indicates the positive-phase component voltage of the power source EA in FIG. 1, and E1B indicates the positive-phase component voltage of the power source EB.

【0034】電気所A〜B間の送電線のインピーダンス
は図示していないが正相分がZ1、逆相分がZ2、零相
分がZ0とする。また、電気所Aと発電源EA間のイン
ピーダンスは、正相,逆相,零相とも等しくZPA、電
気所B側も同様でZPBにて示す。中性点接地インピー
ダンスは、零相回路に変換すると3倍の値にすること
が、対称分座標法によって定められているので、3ZN
A,3ZNBと示してある。
Although the impedance of the transmission line between the electric stations A and B is not shown, it is assumed that the positive phase component is Z1, the negative phase component is Z2, and the zero phase component is Z0. The impedance between the substation A and the generating power source EA is equal to the positive phase, the negative phase, and the zero phase, and is ZPA, and the substation B side is similarly indicated by ZPB. Since the neutral point ground impedance is determined to be tripled when converted to a zero-phase circuit by the symmetrical coordinate method, 3ZN
A, 3ZNB.

【0035】図2から明らかなように、a相1線地絡時
には故障による電流が正相,逆相,零相の各回路に流れ
るので、各々の対称分等価回路からxの値を求めること
ができる。すなわち、正相回路から数4の電圧降下式が
成立し、数5によって故障点Fまでの距離xが算出でき
る。
As is apparent from FIG. 2, when an a-phase 1-line ground fault occurs, a current due to a fault flows through each of the positive-phase, reverse-phase, and zero-phase circuits. Can be. That is, the voltage drop equation of Equation 4 is established from the positive-phase circuit, and the distance x to the fault point F can be calculated by Equation 5.

【0036】[0036]

【数4】 (Equation 4)

【0037】[0037]

【数5】 (Equation 5)

【0038】ここで、電圧信号V1A,V1B、電流信
号I1A,I1Bはそれぞれ各電気所A,Bで計測した
三相の相電圧、線電流をもとに数1,数3によって変換
した正相分信号である。
Here, the voltage signals V1A and V1B and the current signals I1A and I1B are the positive phase converted by the equations (1) and (3) based on the three-phase voltages and the line currents measured at the substations A and B, respectively. Minute signal.

【0039】同様に、逆相回路においても数6が成立
し、数7により故障点までの距離xが算出できる。
Similarly, the equation (6) is also established in the reverse phase circuit, and the distance x to the fault point can be calculated from the equation (7).

【0040】[0040]

【数6】 (Equation 6)

【0041】[0041]

【数7】 (Equation 7)

【0042】さらに、零相回路においても数8が成立
し、数9により故障点までの距離xが算出できる。
Further, also in the zero-phase circuit, equation (8) holds, and equation (9) can be used to calculate the distance x to the fault point.

【0043】[0043]

【数8】 (Equation 8)

【0044】[0044]

【数9】 (Equation 9)

【0045】図2では、a相地絡時について示したが、
b相あるいはc相の1線地絡時でも、発生する電圧,電
流信号が、相順に従い120度ずつ偏位するのみであ
り、故障点までの距離xは上記a相と同様にして算出で
きる。
FIG. 2 shows the case of the a-phase ground fault.
Even at the time of a single-line ground fault of the b-phase or the c-phase, the generated voltage and current signals are only displaced by 120 degrees according to the phase order, and the distance x to the fault point can be calculated in the same manner as in the a-phase. .

【0046】図3に、bc相2線地絡時の対称分等価回
路の接続構成を示す。2線地絡時には、正相回路と逆相
回路及び零相回路が故障点で並列接続された形になるの
で、1線地絡時と同様に数4〜数9によって、xが少な
くとも3個が算出できる。
FIG. 3 shows a connection configuration of a symmetrical equivalent circuit at the time of a bc phase two-line ground fault. At the time of a two-line ground fault, the positive-phase circuit, the negative-phase circuit, and the zero-phase circuit are connected in parallel at the fault point. Can be calculated.

【0047】2線地絡時の故障点標定は数4〜数9以外
の算出式によっても可能である。すなわち、完全地絡時
には事故点Fにて正相、逆相、零相が並列接続となるの
で、故障点Fの対称分等価電圧は正相電圧V1Fと逆相
電圧V2F、零相電圧V0Fでそれぞれ等しくなる。従
って、A端子側及びB端子側の双方から、故障点Fの対
象分電圧を求める合計6個の電圧降下式が成立し、これ
らの組合せによって数4〜数9以外の算出式が可能にな
る。たとえば、数10から数11によるxの算出、数1
2から数13によるxの算出、数14から数15による
xの算出が可能である。これら連立式の組合せ方によっ
て、xが複数の数式により算出できる。
The fault location at the time of the two-line ground fault can also be performed by a calculation formula other than Equations 4 to 9. In other words, at the time of the complete ground fault, the positive phase, the negative phase, and the zero phase are connected in parallel at the fault point F, so that the equivalent voltage of the failure point F is symmetrical with the positive phase voltage V1F, the negative phase voltage V2F, and the zero phase voltage V0F. Respectively equal. Accordingly, a total of six voltage drop equations for obtaining the target voltage at the fault point F are established from both the A terminal side and the B terminal side, and a calculation equation other than Equations 4 to 9 is made possible by combining these. . For example, calculation of x from Expression 10 to Expression 11, Expression 1
It is possible to calculate x from 2 to 13 and to calculate x from 14 to 15. X can be calculated by a plurality of formulas by the combination of these simultaneous formulas.

【0048】[0048]

【数10】 (Equation 10)

【0049】[0049]

【数11】 [Equation 11]

【0050】[0050]

【数12】 (Equation 12)

【0051】[0051]

【数13】 (Equation 13)

【0052】[0052]

【数14】 [Equation 14]

【0053】[0053]

【数15】 (Equation 15)

【0054】ただし、故障点Fにアーク抵抗などが入っ
た場合は、故障点Fに発生する正相電圧V1F,逆相電
圧V2F,零相電圧V0Fの大きさが異なってくる。こ
の場合、数10〜数15は完全地絡でなければ成立しな
いので、演算結果には故障の程度による誤差を伴う。
However, when an arc resistance or the like enters the failure point F, the magnitudes of the positive-phase voltage V1F, the negative-phase voltage V2F, and the zero-phase voltage V0F generated at the failure point F differ. In this case, Equations (10) to (15) do not hold unless they are completely grounded, so that the calculation result involves an error due to the degree of failure.

【0055】なお、図3にはbc相2線地絡時の等価回
路を示したが、ab相やca相の2線地絡時でも、各対
称分電圧,電流信号が相順に従い、位相が120度づつ
ずれるのみで、数4〜数9によりxを算出することは可
能である。
FIG. 3 shows an equivalent circuit at the time of the bc-phase two-wire ground fault. However, even at the time of the ab-phase or the ca-phase two-wire ground fault, the respective symmetrical voltage and current signals follow the phase order and the phase is changed. Is shifted by 120 degrees, it is possible to calculate x from Equations 4 to 9.

【0056】図4に、bc相2線短絡時の対称分等価回
路を示す。この場合は零相回路に故障電流が流れないか
ら、正相と逆相回路の選択により、数4と数5及び数6
と数7によりxが2個求められる。
FIG. 4 shows a symmetrical equivalent circuit when the bc phase two-wire is short-circuited. In this case, no fault current flows through the zero-phase circuit.
And 2 are obtained from Equation (7).

【0057】また、ab相短絡、ca相短絡についても
同様にそれぞれ相順に従い120度づつ偏位した正相と
逆相回路によってxが各々2個算出できる。
Similarly, for the ab-phase short-circuit and the ca-phase short-circuit, two x's can be calculated respectively by the positive-phase and negative-phase circuits deviated by 120 degrees according to the phase order.

【0058】図5に、3線短絡、あるいは3線地絡時の
対称分等価回路の接続状態を示す。3線短絡,地絡では
正相回路のみに故障電流が流れるので、xは正相回路に
よってのみ求まる。すなわち、数4のみ成立し、数5に
よって故障点Fまでの距離xが算出できる。
FIG. 5 shows a connection state of a symmetrical equivalent circuit when a three-wire short circuit or a three-wire ground fault occurs. Since a fault current flows only in the positive phase circuit in the case of a three-wire short circuit or ground fault, x can be obtained only by the positive phase circuit. That is, only Equation 4 is satisfied, and the distance x to the failure point F can be calculated from Equation 5.

【0059】以上説明した事故種別と故障点標定演算に
用いられる対称分回路の関係は、事故種別対応演算回路
テーブル107に記憶され、事故種別判別部104によ
って参照される。図6に、事故種別対応演算回路テーブ
ルの内容を示す。
The relationship between the accident type and the symmetric sub-circuit used in the fault point locating operation described above is stored in the accident type corresponding operation circuit table 107 and is referred to by the accident type discriminating unit 104. FIG. 6 shows the contents of the accident type corresponding arithmetic circuit table.

【0060】図7に、本発明の一実施例による故障点標
定の演算フローを示す。この演算は演算起動部102に
よる送電線の故障検出によって開始される。
FIG. 7 shows a calculation flow of the fault location according to one embodiment of the present invention. This calculation is started by the detection of a fault in the transmission line by the calculation starting unit 102.

【0061】対称分信号変換処理210は、計測器によ
り入力した三相電圧,電流信号を数1、数3に従い、正
相,逆相,零相の各対称分に変換する演算を行う。零相
電流I0は各相電流Ia,Ib,Icの同時刻にサンプ
リングによって得た値を単に加算し、3分の1にすれば
得られる。
The symmetric component signal conversion processing 210 performs an operation of converting the three-phase voltage and current signals input by the measuring instrument into respective positive-phase, reverse-phase, and zero-phase symmetric components according to Equations 1 and 3. The zero-phase current I0 can be obtained by simply adding values obtained by sampling at the same time of the respective phase currents Ia, Ib, and Ic and reducing the value to one third.

【0062】正相電流I1は、Iaのサンプル値を基準
に、Ibの電気角240度以前のサンプル値と、Icの
電気角120度以前のサンプル値を加算し、3分の1に
すれば得られる。逆相電流I2は、たとえばIaのサン
プル値を基準に、Ibの電気角120度以前のサンプル
値とIcの240度以前のサンプル値を加算し、3分の
1にすることによって得られる。電圧信号の対称分につ
いても同様にして変換できる。
The positive-phase current I1 is obtained by adding the sample value of Ib before the electrical angle of 240 degrees and the sample value of Ic before the electrical angle of 120 degrees on the basis of the sample value of Ia. can get. The negative-phase current I2 is obtained, for example, by adding a sample value of the electrical angle of 120 degrees or less of Ib and a sample value of 240 degrees or less of Ic on the basis of the sample value of Ia to make it 1/3. The conversion can be similarly performed for the symmetric component of the voltage signal.

【0063】故障点標定対象演算回路の選択処理230
は、正,逆,零相のうち、どの対称分回路でxが演算で
きるか判別する。このため、正相,逆相,零相の各対称
分成分に変換した電流I1,I2,I0の大きさを判定
し、健全状態で発生する不平衡分を超える所定値以上、
すなわち故障電流の流れている相の対称分等価回路を選
択する。たとえば、3線短絡の場合は正相回路のI1の
みが増大するので、正相回路が選択される。
Process 230 for selecting a fault point locating target arithmetic circuit
Determines which x-phase symmetrical circuit can be used to calculate x. For this reason, the magnitudes of the currents I1, I2, and I0 converted into the symmetric components of the positive phase, the negative phase, and the zero phase are determined, and are determined to be equal to or more than a predetermined value exceeding the unbalance generated in the normal state.
That is, a symmetrical equivalent circuit of the phase in which the fault current flows is selected. For example, in the case of a three-wire short circuit, only the positive phase circuit I1 increases, so that the positive phase circuit is selected.

【0064】標定演算処理240は、選択された演算対
象回路に対応する演算式を用いて、故障点標定のための
xを算出する。数5,数7,数9の演算は交流信号のベ
クトル演算であるから、電圧信号、電流信号ともサンプ
ル値を複素数に変換されたものである。線路の対称分等
価インピーダンスは予め設備の状態から既知であるの
で、複素数による定数としてメモリに設定しておく。サ
ンプル値をもとに複素数に変換する手法は周知であり、
説明は省略する。
The location calculation processing 240 calculates x for fault location using an arithmetic expression corresponding to the selected operation target circuit. Since the operations of Expressions 5, 5, and 9 are vector operations of an AC signal, both the voltage signal and the current signal are obtained by converting sample values into complex numbers. Since the symmetric equivalent impedance of the line is known in advance from the state of the equipment, it is set in a memory as a complex constant. Techniques for converting sample values to complex numbers are well known,
Description is omitted.

【0065】出力表示処理250は、ひとつの故障で複
数のxの値が得られたとき、それらの値を平均化するな
ど、外部に故障点を明示するための処理を行い、プリン
タやCRTに表示する。
When a plurality of values of x are obtained by one fault, the output display process 250 performs a process for specifying the fault point to the outside, such as averaging the values, and outputs the result to the printer or CRT. indicate.

【0066】なお、事故種別は、各相電流の大きさを比
較して異常に変化した相を検出し、事故相を特定するこ
とにより判定できる。すなわち、入力データとして取り
込んでいるA,B両端子の各相電流信号について、同時
刻のデータ合成値を求め、予め定めたしきい値を超えて
いる場合に事故相と判定する。なお、しきい値の設定に
は、送電線3のA,B端子間の充電電流や計測上の誤差
が考慮されている。なお、電気所A,Bから、図示して
いない保護リレーによる事故相判別信号を受信するよう
にしてもよい。
The type of fault can be determined by comparing the magnitude of each phase current, detecting the abnormally changed phase, and specifying the fault phase. That is, for each phase current signal of both the A and B terminals taken in as input data, a data composite value at the same time is obtained, and if it exceeds a predetermined threshold value, it is determined that an accident phase has occurred. In setting the threshold value, a charging current between the A and B terminals of the transmission line 3 and a measurement error are considered. In addition, you may make it receive the accident phase discrimination signal by the protection relay not shown from the electric stations A and B.

【0067】事故種別の判別が行なわれる場合には、図
6に点線で表示した事故種別判別処理220がまず行な
われ、その結果に従い処理230で事故種別対応演算回
路テーブル107を参照して、利用する対象分等価回路
を選択する。
When the type of an accident is determined, an accident type determination process 220 indicated by a dotted line in FIG. 6 is first performed, and the result is used in process 230 by referring to the accident type corresponding arithmetic circuit table 107 in a process 230. Select the equivalent circuit for the target.

【0068】上記した実施例では1つのサンプリング時
点を基準に事故点の標定演算を行っているが、複数のサ
ンプリング時点の演算結果を利用して標定することも可
能である。
In the above-described embodiment, the location calculation of the accident point is performed based on one sampling point. However, the location can be determined by using the calculation results at a plurality of sampling points.

【0069】[0069]

【発明の効果】本発明によれば、電力系統の保護,制御
等で使用される三相交流の対称座標法による正相,逆
相,零相の各対称分等価回路にもとづき、相別の故障点
標定演算が行えるので、演算が簡素化されて高速にな
る。また、線路定数の設定が容易になり、系統の新設や
変更に対しシステムの構成が容易。
According to the present invention, each phase-based equivalent circuit based on the symmetrical coordinate system of three-phase alternating current, which is used for protection and control of a power system, and the like, is provided for each phase. Since the fault location calculation can be performed, the calculation is simplified and the speed is increased. In addition, it is easy to set the line constants, and the system configuration is easy when a new system is installed or changed.

【0070】また、事故の種別によっては、ひとつの事
故で複数の演算式が成立し、複数の故障点標定値のばら
つき様相から、解の確からしさの決定、あるいは平均値
によって精度を高めるなどの性能向上がはかれる。
In addition, depending on the type of accident, a plurality of arithmetic expressions are established in one accident, and the likelihood of a solution is determined based on the variation of the plurality of fault location values, or the accuracy is improved by an average value. Performance is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位置実施例による故障点標定装置の全
体構成図。
FIG. 1 is an overall configuration diagram of a fault point locating apparatus according to a position embodiment of the present invention.

【図2】a相1線地絡時の対称分等価回路。FIG. 2 is a symmetrical equivalent circuit at the time of a-phase 1-line ground fault.

【図3】bc相2線地絡時の対称分等価回路。FIG. 3 is a symmetrical equivalent circuit at the time of a bc phase two-line ground fault.

【図4】bc相2線短絡時の対称分等価回路。FIG. 4 is a symmetrical equivalent circuit when a bc phase two-wire is short-circuited.

【図5】3線短絡及び3線地絡時の対称分等価回路。FIG. 5 is a symmetrical equivalent circuit at the time of a three-wire short circuit and a three-wire ground fault.

【図6】故障点標定に用いる事故種別対応演算回路テー
ブルの説明図。
FIG. 6 is an explanatory diagram of an accident type corresponding arithmetic circuit table used for fault point location.

【図7】故障点標定の演算処理フロー図。FIG. 7 is a flowchart of a fault point location calculation process.

【符号の説明】[Explanation of symbols]

1A,1B…電圧変成器、2A,2B…変流器、3…送
電線、10A,10B…データ伝送装置、20A,20
B…データ伝送回線、100…故障点標定装置、101
…データ収集部、102…演算起動部、103…対称分
信号変換部、104…事故種別判定部(適用回路判別
部)、105…故障点標定演算部、107…事故種別対
応演算回路テーブル、A,B…電気所(基準端子)、V
a…a相電圧、Vb…b相電圧、Vc…c相電圧、Ia
…a相電流、Ib…b相電流、Ic…c相電流、V1…
正相分電圧、V2…逆相分電圧、V0…零相分電圧、I
1…正相分電流、I2…逆相分電流、I0…零相分電
流。
1A, 1B: voltage transformer, 2A, 2B: current transformer, 3: transmission line, 10A, 10B: data transmission device, 20A, 20
B: data transmission line, 100: fault point locating device, 101
... Data collection unit, 102 ... Operation start unit, 103 ... Symmetric component signal conversion unit, 104 ... Fault type determination unit (applicable circuit determination unit), 105 ... Failure point location calculation unit, 107 ... Fault type correspondence calculation circuit table, A , B ... electric station (reference terminal), V
a ... a phase voltage, Vb ... b phase voltage, Vc ... c phase voltage, Ia
... a-phase current, Ib ... b-phase current, Ic ... c-phase current, V1 ...
Positive phase component voltage, V2 ... Negative phase component voltage, V0 ... Zero phase component voltage, I
1: positive phase current, I2: negative phase current, I0: zero phase current.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 三相交流の送電線に発生した事故の故障
点を、その両側の基準端子AまたはBからの距離として
求める故障点標定方法において、 送電線の事故時、基準端子A及びBで測定している三相
交流各相の電圧、電流を、対称分等価回路の正相、逆相
及び零相での基準端子A,Bの対称分電圧、対称分電流
に変換し、故障点の対称分電圧が基準端子A及びBの両
側からみて同値になることを利用して、前記対称分等価
回路における電圧降下から故障点を算出することを特徴
とする故障点標定方法。
1. A method for locating a fault point of an accident occurring in a three-phase AC transmission line as a distance from a reference terminal A or B on both sides thereof. The voltage and current of each phase of the three-phase alternating current measured by the above are converted into the symmetrical component voltage and the symmetrical component current of the reference terminals A and B in the positive phase, the negative phase and the zero phase of the symmetric equivalent circuit, and the fault point A fault point is calculated from a voltage drop in the symmetrical equivalent circuit using the fact that the symmetrical component voltages have the same value as viewed from both sides of the reference terminals A and B.
【請求項2】 請求項1において、 前記故障点の算出は、前記正相、逆相及び零相の各々に
おける対称分電流が健全状態で発生する不平衡分を超え
る所定値以上に増大している相の対称分等価回路を用い
て行なうことを特徴とする故障点標定方法。
2. The method according to claim 1, wherein the calculation of the fault point is performed by increasing a symmetrical current in each of the positive phase, the negative phase, and the zero phase to a predetermined value that exceeds an unbalanced portion generated in a normal state. A fault point locating method characterized in that the method is performed using a symmetrical equivalent circuit of a certain phase.
【請求項3】 請求項1において、 送電線の事故検出時に、三相交流の電流が大きく変化し
ている相から事故種別を特定し、当該事故種別に対応し
前記故障点の算出に適用可能な対称分等価回路の相を選
択することを特徴とする故障点標定方法。
3. The fault detection method according to claim 1, wherein when detecting a fault in the transmission line, the fault type is specified from the phase in which the three-phase AC current greatly changes, and the fault type is calculated according to the fault type. A fault locating method characterized by selecting a phase of a simple symmetric equivalent circuit.
【請求項4】 請求項3において、 前記事故種別が1線地絡または2線地絡のときは、前記
正相、逆相及び零相の各回路で算出した故障点またはそ
の平均値を取得し、2線短絡のときは、前記正相及び逆
相の各回路で算出した故障点またはその平均値を取得
し、3線短絡または3線地絡のときは、前記正相の回路
で算出した故障点を取得することを特徴とする故障点標
定方法。
4. The fault point according to claim 3, wherein when the fault type is a one-line ground fault or a two-wire ground fault, a fault point calculated by each of the positive-phase, negative-phase, and zero-phase circuits or an average value thereof is acquired. In the case of a two-wire short circuit, the fault point calculated in each of the positive-phase and negative-phase circuits or the average value thereof is obtained. In the case of a three-wire short circuit or a three-wire ground fault, the fault is calculated in the positive-phase circuit. A fault point locating method characterized by acquiring a failed point.
【請求項5】 複数の電気所で三相交流送電線の各相の
電圧、電流を測定し、電気所間に発生した事故の故障点
をその両側の電気所AまたはBからの距離として求める
故障点標定装置において、 電気所A及びBで測定している各相の電圧、電流を周期
的にサンプリングすると共に所定の期間保持するデータ
収集部と、 前記電圧、電流を対称分等価回路の正相、逆相及び零相
の各回路での対称分電圧、対称分電流に変換する対称分
信号変換部と、 前記対称分電流が所定値以上に増大している相の対称分
等価回路を選択する適用回路判別部と、 選択された相の対称分等価回路について、前記故障点の
対称分電圧が電気所A及びBの両側からみて同値になる
ことを利用して故障点を算出する故障点標定演算部を設
けたことを特徴とする故障点標定装置。
5. The voltage and current of each phase of a three-phase AC transmission line are measured at a plurality of electric stations, and a fault point of an accident occurring between the electric stations is determined as a distance from the electric station A or B on both sides thereof. In the fault locating device, a data collection unit that periodically samples the voltage and current of each phase measured at the electric stations A and B and holds the voltage and current for a predetermined period; A symmetrical component signal converter for converting into a symmetrical component voltage and a symmetrical component current in each of the phase, reverse phase and zero-phase circuits, and a symmetrical component equivalent circuit of the phase in which the symmetrical component current has increased to a predetermined value or more. A fault point for calculating a fault point using the fact that the symmetrical component voltage of the fault point has the same value as viewed from both sides of the electric stations A and B for the symmetrical equivalent circuit of the selected phase. Failure point location characterized by providing a location calculation unit Location.
【請求項6】 複数の電気所で三相交流送電線の各相の
電圧、電流を測定し、電気所間に発生した事故の故障点
をその両側の電気所AまたはBからの距離として求める
故障点標定装置において、 電気所A及びBで測定した各相の電圧、電流を周期的に
サンプリングすると共に所定の期間保持するデータ収集
部と、 前記電圧、電流を対称分等価回路の正相、逆相及び零相
の各回路での対称分電圧、対称分電流に変換する対称分
信号変換部と、 前記各相の電流またはその対称分電流が所定値以上に増
大している相を検出して事故種別を判別し、当該事故種
別によって故障電流の流れる相の対称分等価回路を選択
する事故種別判定部と、 選択された相の対称分等価回路について、前記故障点の
対称分電圧が電気所A及びBの両側からみて同値になる
ことを利用して故障点を算出する故障点標定演算部を設
けたことを特徴とする故障点標定装置。
6. A voltage and a current of each phase of a three-phase AC transmission line are measured at a plurality of electric stations, and a fault point of an accident occurring between the electric stations is determined as a distance from the electric station A or B on both sides thereof. In the fault locating device, a data collection unit that periodically samples the voltage and current of each phase measured at the electric stations A and B and holds the voltage and current for a predetermined period; A symmetrical component voltage in each of the negative-phase and zero-phase circuits, a symmetrical component signal converting unit that converts the symmetrical component current into a symmetrical component current; An accident type determination unit that determines the type of the fault and selects a symmetrical equivalent circuit of a phase through which a fault current flows according to the type of the fault. From both sides A and B Fault point locating system which characterized in that a fault point locating calculator for calculating the fault point by using the.
【請求項7】 請求項5または6において、 前記対称分等価回路の正相、逆相及び零相の各々に、電
気所A,B間の線路インピーダンスを一様分布で設定す
る記憶手段を設け、 電気所A及びBの両側から前記故障点までの電圧降下を
求めて故障点を算出することを特徴とする故障点標定装
置。
7. The storage device according to claim 5, wherein a line impedance between the electric stations A and B is set in a uniform distribution in each of the positive phase, the negative phase, and the zero phase of the symmetric component equivalent circuit. A fault point locating device which calculates a fault point by calculating a voltage drop from both sides of the electric stations A and B to the fault point.
JP8290036A 1996-10-31 1996-10-31 Method and device for locating failure point Pending JPH10132890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8290036A JPH10132890A (en) 1996-10-31 1996-10-31 Method and device for locating failure point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8290036A JPH10132890A (en) 1996-10-31 1996-10-31 Method and device for locating failure point

Publications (1)

Publication Number Publication Date
JPH10132890A true JPH10132890A (en) 1998-05-22

Family

ID=17750961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8290036A Pending JPH10132890A (en) 1996-10-31 1996-10-31 Method and device for locating failure point

Country Status (1)

Country Link
JP (1) JPH10132890A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676600B1 (en) 2005-10-17 2007-01-30 이호기술단(주) Faulted Indicator method for Underground Distribution Line using Method of non-working by backfeed Faulted current
US8197753B2 (en) 2004-08-27 2012-06-12 Alstom Technology Ltd. APC process parameter estimation
JP2017173212A (en) * 2016-03-25 2017-09-28 中国電力株式会社 Sensor for current detection and ground fault locating system
JP2021063750A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Earth fault point locating system
CN113224839A (en) * 2021-04-25 2021-08-06 深圳市芯中芯科技有限公司 Power monitoring method and monitoring equipment
CN113589024A (en) * 2020-04-30 2021-11-02 南京南瑞继保电气有限公司 Method and device for rapidly detecting single set of abnormal alternating voltage measurement of redundant system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197753B2 (en) 2004-08-27 2012-06-12 Alstom Technology Ltd. APC process parameter estimation
KR100676600B1 (en) 2005-10-17 2007-01-30 이호기술단(주) Faulted Indicator method for Underground Distribution Line using Method of non-working by backfeed Faulted current
JP2017173212A (en) * 2016-03-25 2017-09-28 中国電力株式会社 Sensor for current detection and ground fault locating system
JP2021063750A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Earth fault point locating system
CN113589024A (en) * 2020-04-30 2021-11-02 南京南瑞继保电气有限公司 Method and device for rapidly detecting single set of abnormal alternating voltage measurement of redundant system
CN113224839A (en) * 2021-04-25 2021-08-06 深圳市芯中芯科技有限公司 Power monitoring method and monitoring equipment

Similar Documents

Publication Publication Date Title
RU2540851C2 (en) Method for selection of short-circuited phase and determination of short circuit type
CN101344567B (en) Method for determining location of phase-to-earth fault
CN103852691A (en) Directional detection of a fault in a network of a grounding system with compensated or insulated neutral point
WO1998029752A1 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
KR100350722B1 (en) Apparatus and method for locating fault distance in a power double circuit transmision line
JPH10132890A (en) Method and device for locating failure point
US3958153A (en) Method and apparatus for fault detection in a three-phase electric network
JPH08101244A (en) Method for location of fault point in transmission line
JPH07122651B2 (en) Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line
JP2984294B2 (en) Method of locating short-circuit fault point of three-terminal parallel two-circuit transmission line
JP3053119B2 (en) Accident aspect identification device
JPH08122395A (en) Method for locating fault on multiterminal transmission line
JP7134846B2 (en) Transmission line protection relay device
JP2564414B2 (en) Power system accident aspect identification device
JP3278561B2 (en) How to select the faulty line of the parallel transmission line
JP2003009381A (en) Troue phase selector
JP2002139538A (en) Base point terminal selection method for multiple-port fault point locating device
JP4564199B2 (en) Accident point locator
JP2715090B2 (en) Fault location device
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP3656966B2 (en) Fault location system
JPH04299273A (en) Locating method for fault point using right-angled component system
JPH06249910A (en) Orientation method of ground-fault point
JPH06258378A (en) Fault point standardizing apparatus using direction decided result