JP2002139538A - Base point terminal selection method for multiple-port fault point locating device - Google Patents

Base point terminal selection method for multiple-port fault point locating device

Info

Publication number
JP2002139538A
JP2002139538A JP2000335990A JP2000335990A JP2002139538A JP 2002139538 A JP2002139538 A JP 2002139538A JP 2000335990 A JP2000335990 A JP 2000335990A JP 2000335990 A JP2000335990 A JP 2000335990A JP 2002139538 A JP2002139538 A JP 2002139538A
Authority
JP
Japan
Prior art keywords
terminal
line
phase
current
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000335990A
Other languages
Japanese (ja)
Inventor
Katsuyuki Tado
克幸 田戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000335990A priority Critical patent/JP2002139538A/en
Publication of JP2002139538A publication Critical patent/JP2002139538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To make selectable the optimum terminal having a largest trouble phase current as a base point terminal, and to locate accurately a fault point of both circuits by an impedance method, regardless of the power flow direction and magnitude of a current between each terminal of a transmission line, when dual-circuit in-phase one-line ground is generated in the multi-port parallel dual-circuit transmission line. SOLUTION: In base point terminal selection of this multiple-port fault point orientation device, when in-phase one-line ground of circuits L1, L2 is generated, either of terminals α, β is selected as the base point terminal based on measurement information of the currents and the voltages of each terminal α, β of the multi-port parallel dual- circuit transmission line 1, and the distance from the base point terminal to the fault point where a trouble of the circuits L1, L2 is generated is operated by the measurement information of the current and the voltage of the base point terminal and an impedance characteristic of the transmission line 1. In this method, respective absolute values of each phase current in each circuit L1, L2 are determined relative to each terminal α, β, and the sums of the absolute values of all the phase currents in the circuits L1, L2 are operated, and the terminal corresponding to the maximum sum selected therefrom is selected as the base point terminal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多端子の平行2回
線送電線の2回線同相1線地絡の事故発生時いずれかの
端子を基点端に選定し、インピーダンス方式で両回線の
事故が発生した故障点を標定する多端子式故障点標定装
置(多端子フォルトロケータ)における、前記基点端の
選定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-terminal parallel two-line power transmission line, in which a two-line in-phase one-line ground fault occurs, one of the terminals is selected as a base end, and an impedance system is used to detect the failure of both lines. The present invention relates to a method of selecting the base end in a multi-terminal fault locator (multi-terminal fault locator) for locating a fault point that has occurred.

【0002】[0002]

【従来の技術】一般に、平行2回線送電線の系統にあっ
ては、地絡,短絡の事故が発生したときに、迅速に事故
が発生した故障点を探索し、すみやかに必要な措置をと
ることが、故障の波及防止等の観点から重要である。
2. Description of the Related Art In general, in a system of two parallel transmission lines, when a ground fault or short circuit accident occurs, a fault point at which the accident occurred is quickly searched and necessary measures are taken promptly. This is important from the viewpoint of preventing the spread of failure.

【0003】そして、近年のマイクロコンピュータを用
いたデジタルリレーの発達に伴い、この種の送電線の故
障点の標定には、従来からのパルスレーダ方式やサージ
受信式の故障点標定装置に代って、前記デジタルリレー
を用いたデジタル式の故障点標定装置が多用される。
[0003] With the development of digital relays using microcomputers in recent years, this type of transmission line fault location is replaced by a conventional pulse radar type or surge receiving type fault location device. Therefore, a digital fault locating device using the digital relay is often used.

【0004】このデジタル式の故障点標定装置には、片
端電源の系統に適用される自端式のものと、平行2回線
送電線の各端子の電圧・電流情報を1か所に集めて標定
を行う多端子式のものとがあり、多端子式の故障点標定
装置が片端電源の平行2回線送電線の系統に設けられる
場合、例えば図3の単線結線図に示すように形成され
る。
[0004] This digital fault locating device is a self-terminal type that is applied to a single-ended power supply system, and voltage and current information of each terminal of a parallel two-line transmission line are collected at one place. In the case where the multi-terminal type fault point locating device is provided in a system of a parallel two-line transmission line with a single-ended power supply, the multi-terminal type fault locating device is formed as shown in, for example, a single-line diagram in FIG.

【0005】この図3の平行2回線送電線1は、一方の
端子αが中性点抵抗接地の3相の電源2に接続されて電
源側の端子を形成し、他方の端子βに、負荷3が接続さ
れて負荷側の端子を形成し、端子α,βの計器用変圧器
4により端子α,βでの各相電圧が計測される。
In the parallel two-line power transmission line 1 shown in FIG. 3, one terminal α is connected to a three-phase power source 2 having a neutral point resistance ground to form a power source side terminal, and the other terminal β is connected to a load. 3 are connected to form a load-side terminal, and each phase voltage at the terminals α and β is measured by the instrument transformer 4 at the terminals α and β.

【0006】また、端子α,β間の2回線L1,L2はそ
れぞれ両端に遮断器5及び計器用変流器6が設けられ、
変流器6により回線L1,L2の各相電流が計測される。
A circuit breaker 5 and an instrument current transformer 6 are provided at both ends of each of the two lines L 1 and L 2 between the terminals α and β.
The current transformer 6 measures each phase current of the lines L 1 and L 2 .

【0007】さらに、端子αの収集・演算ユニット7と
端子βの収集ユニット8とによりデジタル式の故障点標
定装置が形成される。
Further, a digital fault locating device is formed by the collection / operation unit 7 of the terminal α and the collection unit 8 of the terminal β.

【0008】そして、ユニット7のデータ収集装置9α
は、端子αの変圧器4の電圧計測情報,端子αの回線L
1,L2それぞれの変流器6の電流計測情報,回線L1
2の端子α側遮断器5の開閉状態の情報(遮断器情
報)及び事故検出に基づくこれらの遮断器5のトリップ
指令等を収集する。
The data collection device 9α of the unit 7
Is the voltage measurement information of the transformer 4 at the terminal α, and the line L at the terminal α
1 , L 2 , current measurement information of each current transformer 6, line L 1 ,
L 2 of the information of the opening and closing state of the terminal α-side breaker 5 (breaker information) and based on the fault detection collecting trip command, etc. These circuit breakers 5.

【0009】また、ユニット8のデータ収集装置9β
は、端子βの変圧器4の電圧計測情報,端子βの回線L
1,L2それぞれの変流器6の電流計測情報,回線L1
2の端子β側遮断器5の遮断器情報及び事故検出に基
づくこれらの遮断器5の保護継電器(図示せず)からの
トリップ指令等を収集する。
The data collection device 9β of the unit 8
Is the voltage measurement information of the transformer 4 at the terminal β, and the line L at the terminal β
1 , L 2 , current measurement information of each current transformer 6, line L 1 ,
Based on breaker information and fault detection of the terminal β-side circuit breaker 5 of the L 2 collecting trip command, etc. from the protective relay of the circuit breaker 5 (not shown).

【0010】そして、両データ収集装置9α,9βは、
それぞれ制御器具番号「44S」の距離継電器,同番号
「67G」の地絡方向継電器等の各種のデジタルリレー
の機能を有し、電流,電圧の計測情報に基づくこれらの
デジタルリレーの動作と、前記のトリップ指令の入力と
を条件に、送電線1の事故発生を検出するとともに、こ
の検出時点から設定された系統基本波周期の間の電流,
電圧の計測情報を収集して保持する。
[0010] The two data collection devices 9α and 9β
Each of them has a function of various digital relays such as a distance relay of control device number "44S" and a ground fault directional relay of the same number "67G". The operation of these digital relays based on current and voltage measurement information, Under the condition that the trip command is input, the occurrence of an accident on the transmission line 1 is detected, and the current,
Collect and hold voltage measurement information.

【0011】なお、負荷端にデータ収集装置を設置した
場合等には、事故が発生しても、前記の距離継電器や地
絡方向継電器が動作しないこともあるため、データ収集
装置9α,9βには、制御器具番号「27」の不足電圧
継電器,同番号「64」の地絡過電圧継電器の機能も備
え、「27」,「64」の継電器のいずれか一方の動作
によっても前記の電流,電圧の計測情報の収集,保持を
行うことが好ましい。
When a data collection device is installed at the load end, even if an accident occurs, the distance relay and the ground fault direction relay may not operate. Has the function of an undervoltage relay having the control device number "27" and a function of a ground fault overvoltage relay having the same number "64". The current and the voltage can be obtained by the operation of one of the relays of the "27" and "64". It is preferable to collect and hold the measurement information.

【0012】つぎに、前記の事故発生の検出後、この検
出情報及びデータ収集装置9α,9βが保持している電
流,電圧の計測情報は、データ収集装置9α,9βから
ユニット7の演算装置10に有線又は無線で送られる。
After detecting the occurrence of the accident, the detected information and the current and voltage measurement information held by the data collection devices 9α and 9β are transmitted from the data collection devices 9α and 9β to the arithmetic unit 10 of the unit 7. Sent by wire or wirelessly.

【0013】なお、演算装置10は端子α,βのいずれ
の側に設けてもよいが、ここでは端子α側のユニット7
に設けられている。
Although the arithmetic unit 10 may be provided on either side of the terminals α and β, here, the unit 7 on the terminal α side
It is provided in.

【0014】そして、演算装置10は設定された標定演
算のプログラムを実行し、事故発生の検出情報の受信に
基づき、従来は図4に示すように動作する。
Then, the arithmetic unit 10 executes the set orientation calculation program, and conventionally operates as shown in FIG. 4 based on the reception of accident detection information.

【0015】すなわち、同図のステップS1で事故の発
生を判別すると、ステップS2により受信情報に含まれ
た継電器情報から、「44」の継電器の動作時は短絡事
故であると判別し、「67G」の継電器のみの動作時は
地絡事故であると判別する。
[0015] That is, when it is determined the occurrence of an accident in the step S 1 of the drawing, to determine from the relay information included in the received information in step S 2, the operation of the relay "44" is a short circuit, When only the “67G” relay operates, it is determined that a ground fault has occurred.

【0016】そして、電流の最も大きい端子から、事故
点までの距離(インピーダンス)を演算して故障点を標
定すれば、標定誤差が最も少なくなると考えられるた
め、地絡事故の判定時、演算装置10は、従来、各端子
のうちの零相電流が最大となる端子を基点端に選定す
る。
If the fault point is located by calculating the distance (impedance) from the terminal having the largest current to the fault point, it is considered that the positioning error is minimized. Conventionally, the terminal 10 selects the terminal having the largest zero-phase current among the terminals as the base end.

【0017】すなわち、ステップS2で地絡事故と判別
すると、ステップS3により、データ収集装置9αの電
流の計測情報に基づき、端子αの両回線L1,L2の零相
電流のベクトル和の大きさ(絶対値)を演算し、データ
収集装置9βの計測情報に基づき、端子βの両回線
1,L2の零相電流のベクトル和の大きさ(絶対値)を
演算する。
[0017] That is, when determining that a ground fault in step S 2, the step S 3, based on the measurement information of the current data collection device 9.alpha, vector sum of the two lines L 1, the zero-phase current of L 2 of the terminal α (Absolute value), and the magnitude (absolute value) of the vector sum of the zero-phase current of both lines L 1 and L 2 of the terminal β is calculated based on the measurement information of the data collection device 9β.

【0018】具体的には、図3に示すように、回線
1,L2に同相1線地絡の事故が発生し、端子αから事
故点1φG1,1φG2に零相電流I゜01α,I゜02α
流れ、端子βから故障点1φG1,1φG2に零相電流I
01β,I゜02βが流れた場合、ステップS3 により、
端子αについてはベクトル和の絶対値|I゜01α+I゜
02 α|を演算し、端子βについてはベクトル和の絶対値
|I゜01β+I゜02β|を演算する。
More specifically, as shown in FIG. 3, an in-phase one-line ground fault occurs in the lines L 1 and L 2 , and the zero-phase current I ゜01α flows from the terminal α to the fault points 1φG 1 and 1φG 2. , I ° 02α flows, the fault point from the terminal β 1φG 1, the 1FaiG 2 zero-phase current I
° 01Beta, when flow I ° 02Beta, in step S 3,
For the terminal α, the absolute value of the vector sum | I {01α + I }
02 alpha | computes, for terminal β is the absolute value of the vector sum | computing the | I ° 01β + I ° 02Beta.

【0019】なお、零相電流I゜01α〜I゜02βの右肩
の○印はベクトルであることを示す記号であり、以下同
様である。
It should be noted that the circles at the right shoulder of the zero-phase currents I ゜01α to I ゜02β are symbols indicating that they are vectors, and so on.

【0020】そして、|I゜01α+I゜02α|>|I゜
01β+I゜02β|であれば、大きい方の端子αを基点端
に選定する。
Then, | I ゜01α + I ゜02α |> | I ゜
If 01β + I ゜02β |, the larger terminal α is selected as the base end.

【0021】一方、短絡事故の判定時は、端子α,β側
それぞれの各相電流の回線L1,L2の和電流が最大とな
る端子を基点端に選定する。
On the other hand, when a short circuit accident is determined, the terminal at which the sum current of the lines L 1 and L 2 of the respective phase currents of the terminals α and β is the largest is selected as the base end.

【0022】すなわち、ステップS2で短絡事故と判別
すると、ステップS4により、データ収集装置9αの電
流の計測情報に基づき、端子αの各相電流の両回線
1,L2のベクトル和を演算してそれらの絶対値を求
め、データ収集装置9Bの電流の計測情報に基づき、端
子Bの各相電流の両回線L1,L2のベクトル和を演算し
てそれらの絶対値を求める。
[0022] That is, when determining that short circuit in step S 2, the step S 4, based on measurement information of the current data collection device 9.alpha, the vector sum of the two lines L 1, L 2 of each phase current of the terminal α The absolute values are obtained by calculation, and the vector sum of both lines L 1 and L 2 of each phase current at the terminal B is calculated based on the current measurement information of the data collection device 9B to obtain their absolute values.

【0023】そして、前記ベクトル和の各絶対値のうち
の最大のものの端子,例えば端子αを基点端に選定す
る。
Then, the terminal of the largest one of the absolute values of the vector sum, for example, the terminal α is selected as the base end.

【0024】具体的には、送電線1の3相をA,B,C
とし、端子α側の回線Lの各相電流をI゜A1α,I゜
B1α,I゜C1α,端子α側の回線L2 の各相電流をI゜
A2α,I゜B2α,I゜C2αとし、同様に、端子β側の回
線L1,L2の各相電流をI゜ A1β,I゜B1β,I
C1β,I゜A2β,I゜B2β,I゜C2βとすると、端子
α側の各相の和電流の大きさ(絶対値)|I゜A1α+I
A2α|,|I゜B1α+I゜ B2α|,|I゜C1α+I゜
C2α|,・・・,及び端子β側の各相の和電流の大きさ
|I゜A1β+I゜A2β|,|I゜B1β+I゜B2β|,|
I゜C1β+I゜C2β|を演算し、これらのうちの最大の
ものの端子を基点端に選定する。
Specifically, the three phases of the transmission line 1 are represented by A, B, C
And the line L on the terminal α side1Each phase current of I ゜A1α, I ゜
B1α, I ゜C1α, Terminal L side line LTwoEach phase current of I ゜
A2α, I ゜B2α, I ゜C2αSimilarly, the rotation on the terminal β side
Line L1, LTwoEach phase current of I ゜ A1β, I ゜B1β, I
C1β, I ゜A2β, I ゜B2β, I ゜C2βThen the terminal
The magnitude (absolute value) of the sum current of each phase on the α side | I ゜A1α+ I
A2α|, | I ゜B1α+ I ゜ B2α|, | I ゜C1α+ I ゜
C2α|, ... and the magnitude of the sum current of each phase on the terminal β side
| I ゜A1β+ I ゜A2β|, | I ゜B1β+ I ゜B2β|, |
I ゜C1β+ I ゜C2βAnd calculate the largest of these
Terminal is selected at the base end.

【0025】つぎに、ステップS3又はステップS4で基
点端を選定すると、ステップS5 により、基点端の電
流,電圧の情報と送電線1のインピーダンス情報とに基
づき、インピーダンス方式の標定演算で基点端である例
えば端子αから事故点1φG1,1φG2までの距離Xを
求めて故障点1φG1,1φG2を標定する。
Next, when selecting a base point terminal at Step S 3 or step S 4, the step S 5, base terminal of the current, based on the information and the impedance information of the transmission line 1 voltage, in orientation calculation of the impedance method fault point is base end, for example, from terminal α 1φG 1, fault point 1FaiG 1 seeking distance X to 1φG 2, Standardize 1φG 2.

【0026】具体的には、地絡事故の場合、つぎの数1
の標定演算式から距離Xを算出して求める。
Specifically, in the case of a ground fault, the following equation 1
The distance X is calculated and calculated from the orientation formula of (1).

【0027】[0027]

【数1】 (Equation 1)

【0028】また、短絡事故の場合は、零相電流を線間
電流に置換した数1と同様の式から距離Xを算出して求
める。
In the case of a short-circuit accident, the distance X is obtained by calculating the distance X from the same equation as in Equation 1 in which the zero-phase current is replaced by the line current.

【0029】[0029]

【発明が解決しようとする課題】前記従来の多端子式故
障点標定装置の零相電流を用いた基点端選定方法の場
合、図2に示すように送電線1が端子βも中性点抵抗接
地の電源11に接続された系統であれば、両回線L1
2の同相1線地絡が発生したときに、以下の問題点が
ある。
In the case of the above-described conventional multi-terminal fault locating apparatus, the method of selecting a base end using zero-sequence current, as shown in FIG. If the system is connected to the grounded power supply 11, both lines L 1 ,
When phase 1 line ground of L 2 occurs, the following problems.

【0030】すなわち、図2の電源2の容量が300
A,電源11の容量が100Aで、送電線1の負荷分布
等に基づき、電流の潮流方向が図中の矢印に示すように
端子βから端子αの方向であったとする。
That is, the capacity of the power supply 2 in FIG.
A, it is assumed that the capacity of the power supply 11 is 100 A, and the current flow direction is from the terminal β to the terminal α as shown by an arrow in the figure based on the load distribution and the like of the transmission line 1.

【0031】この状態で回線L1,L2に同相1線地絡の
事故が発生すると、電源2の中性点接地抵抗が電源11
の中性点接地抵抗より小さく、零相電流のベクトル和の
大きさ(絶対値)は、|I゜0A1+I゜0A2|>|I゜
0B1+I゜0B2|となって、端子αの方が端子βより大
きくなることから、従来方法では、必ず端子αが基点端
に選定される。
In this state, when an in-phase one-line ground fault occurs on the lines L 1 and L 2 , the neutral point ground resistance of the power source 2 is reduced by the power source 11.
And the magnitude (absolute value) of the vector sum of the zero-phase current is | I | 0A1 + I ゜0A2 |> | I ゜
0B1 + I ゜0B2 |, and the terminal α is larger than the terminal β. Therefore, in the conventional method, the terminal α is always selected as the base end.

【0032】しかし、地絡の事故電流(相電流)は電源
2,11の中性点接地抵抗の制限を受け、潮流の方向及
び大きさによっては、端子αの事故電流が潮流方向の負
荷電流と逆向きでほぼ同程度の大きさになり、計測され
る事故相電流が極めて小さくなる事態が生じる。
However, the fault current (phase current) due to the ground fault is limited by the neutral point grounding resistance of the power supplies 2 and 11, and depending on the direction and magnitude of the power flow, the fault current at the terminal α becomes the load current in the power flow direction. In the opposite direction, the magnitude becomes almost the same, and a situation occurs in which the measured fault phase current becomes extremely small.

【0033】そのため、端子αを基点端として前記数1
の式の演算から距離Xを求めると、事故相電流のA/D
変換のビット誤差や演算誤差が、距離Xの演算に大きく
影響し、故障点Pの標定精度が著しく低下する問題点が
ある。
Therefore, when the terminal α is used as a base end,
When the distance X is obtained from the calculation of the following equation, the A / D
The conversion bit error and the calculation error greatly affect the calculation of the distance X, and there is a problem that the localization accuracy of the fault point P is significantly reduced.

【0034】なお、3端子以上の多端子平行2回線送電
線に設けられる多端子式故障点標定装置においても、そ
の送電線に2回線同相1線地絡が発生すると、インピー
ダンス方式で故障点を標定する場合、前記と同様の問題
点が生じる。
In a multi-terminal type fault point locating device provided on a multi-terminal parallel two-line transmission line having three or more terminals, if a two-line in-phase one-line ground fault occurs on the transmission line, a fault point is determined by an impedance method. In the case of orientation, the same problems as described above occur.

【0035】本発明は、この種の送電線に設けられる多
端子式故障点標定装置において、送電線の両回線の同相
1線地絡(2回線同相1線地絡)が発生したときに、送
電線の各端子間の電流の潮流の方向,大きさによらず、
事故相電流が最も大きい最適な端子を基点端に選定でき
るようにし、インピーダンス方式で故障点を精度よく標
定し得るようにすることを課題とする。
The present invention relates to a multi-terminal type fault locating device provided for a transmission line of this type, in which an in-phase one-line ground fault (two-line in-phase one-line ground fault) occurs in both lines of the transmission line. Regardless of the direction and magnitude of the current flow between the terminals of the transmission line,
An object of the present invention is to make it possible to select an optimum terminal having the largest fault phase current as a base end, and to accurately locate a fault point by an impedance method.

【0036】[0036]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の多端子式故障点標定装置の基点端選定方
法は、多端子平行2回線送電線の各端子の電流,電圧の
計測情報に基づき、送電線の両回線の同相1線地絡の発
生時、各端子のいずれか1つを基点端に選定し、基点端
の電流,電圧の計測情報と、送電線のインピーダンス特
性とにより、基点端から両回線の地絡が発生した故障点
までの距離を演算し、両回線の故障点をインピーダンス
方式で標定する多端子式故障点標定装置の基点端の選定
に際し、各端子毎に、回線別に各相電流それぞれの絶対
値を求めて両回線の全ての相電流の絶対値の和を演算
し、各絶対値の和のうちの最大のものに対応する端子を
基点端に選定する。
In order to solve the above-mentioned problems, a method of selecting a base end of a multi-terminal type fault locating apparatus according to the present invention comprises the steps of: Based on the measurement information, when an in-phase one-line ground fault occurs on both lines of the transmission line, one of the terminals is selected as the base end, the current and voltage measurement information at the base end, and the transmission line impedance characteristics By calculating the distance from the base end to the fault point at which the ground fault of both circuits occurred, when selecting the base end of the multi-terminal fault point locating device that locates the fault point of both circuits by the impedance method, For each line, calculate the absolute value of each phase current for each line, calculate the sum of the absolute values of all phase currents of both lines, and set the terminal corresponding to the largest of the sums of the absolute values to the base end. Select.

【0037】したがって、送電線の2回線同相1線地絡
が発生したときは、送電線の各端子毎に、回線別に各相
電流それぞれの絶対値を求めて両回線の全ての相電流の
絶対値の和(全相電流のスカラー和)を演算する。
Therefore, when a two-line in-phase one-line ground fault of the transmission line occurs, the absolute value of each phase current is determined for each line for each terminal of the transmission line, and the absolute value of all the phase currents of both lines is determined. Calculate the sum of the values (scalar sum of all phase currents).

【0038】そして、各端子の前記の全相電流のスカラ
ー和は、例えば図2の矢印の向きの潮流が発生している
と、端子αより端子βの方が大きくなる。
The scalar sum of the above-mentioned all-phase currents at each terminal is larger at the terminal β than at the terminal α when, for example, a power flow in the direction of the arrow in FIG. 2 occurs.

【0039】そして、前記の全相電流のスカラー和が最
も大きくなる端子を基点端に選定するため、潮流の方
向,大きさによらず、基点端で計測される事故相電流は
ビット誤差や演算誤差が無視し得る程度に十分に大き
く、これらの誤差の影響を受けることなく、前記数1の
式の演算により、インピーダンス方式で故障点が精度よ
く標定される。
Since the terminal at which the scalar sum of all the phase currents is the largest is selected at the base end, the fault phase current measured at the base end is determined by the bit error or the calculation regardless of the direction and magnitude of the power flow. The error is large enough to be ignored, and the fault point is accurately located by the impedance method by the calculation of the equation (1) without being affected by these errors.

【0040】[0040]

【発明の実施の形態】本発明の実施の1形態につき、図
1及び図2を参照して説明する。図2の単線結線図に示
すように、この形態の場合、送電線1は一方の端子αが
容量300Aの中性点抵抗接地の電源2に接続され、他
方の端子βが容量100Aの中性点抵抗接地の電源11
に接続される。なお、図2において、図3と同一符号は
同一もしくは相当するものを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. As shown in the single-line diagram of FIG. 2, in the case of this embodiment, the transmission line 1 has one terminal α connected to a power supply 2 having a neutral point resistance grounding of a capacity 300A and the other terminal β connected to a neutral capacity 100A. Power supply with point resistance ground 11
Connected to. In FIG. 2, the same reference numerals as those in FIG. 3 denote the same or corresponding components.

【0041】そして、送電線1の両回線L1,L2の電流
の潮流方向は、図中の矢印線に示すように端子βから端
子αの向きである。
The current flow direction of the two lines L 1 and L 2 of the transmission line 1 is from the terminal β to the terminal α as shown by the arrow in the figure.

【0042】この状態で回線L1,L2の同相1線地絡の
事故が発生すると、データ収集装置9α,9βは従来と
同様に送電線1の事故発生を検出するとともに電流,電
圧の計測情報を収集して保持する。
In this state, if an in-phase one-line ground fault occurs in the lines L 1 and L 2 , the data collection devices 9α and 9β detect the occurrence of the fault in the transmission line 1 and measure the current and voltage in the same manner as in the prior art. Collect and retain information.

【0043】その後、データ収集装置9α,9βから演
算装置10に有線又は無線で各情報が送られ、演算装置
10が設定された標定演算のプログラムを実行する。
Thereafter, the information is transmitted from the data collection devices 9α and 9β to the arithmetic device 10 by wire or wirelessly, and the arithmetic device 10 executes the set orientation calculation program.

【0044】この標定演算のプログラムは従来と異な
り、演算装置10が図1に示すように動作する。
The program for the orientation calculation is different from the conventional one, and the arithmetic unit 10 operates as shown in FIG.

【0045】すなわち、図1のステップQ1,Q2により
図4のステップS1,S2と同様にして事故の発生及び地
絡/短絡を判別する。
That is, the occurrence of an accident and the ground fault / short circuit are determined in steps Q 1 and Q 2 in FIG. 1 in the same manner as in steps S 1 and S 2 in FIG.

【0046】さらに、地絡の判別時はステップQ3 によ
り、受信した「44S」,「67G」等のデジタルリレ
ーの動作情報やトリップ指令等の遮断器5の情報から、
回線L1,L2の2回線同相1線地絡か、回線L1又は回
線L2の1回線1線地絡かを判別する。
[0046] Further, determination time of ground fault by step Q 3, the received "44S", from the information of the circuit breaker 5 of the operation information and trip command of the digital relay such as "67G",
It is determined whether the two lines L 1 and L 2 have the same-phase one-line ground fault or the one-line one-line ground fault of the line L 1 or L 2 .

【0047】そして、回線L1,L2の2回線同相1線地
絡の発生時は、ステップQ3 からステップQ4 に移行
し、まず、端子α側,端子β側それぞれにつき、受信し
た電流の計測情報に基づき、回線L1,L2それぞれの各
相電流の大きさ(絶対値)を求め、それらの和(全相電
流のスカラー和)を演算する。
When a two-line in-phase one-line ground fault occurs on the lines L 1 and L 2 , the process shifts from step Q 3 to step Q 4. , The magnitude (absolute value) of each phase current of each of the lines L 1 and L 2 is calculated, and the sum of them (scalar sum of all phase currents) is calculated.

【0048】具体的には、端子α側について、全相電流
のスカラー和(|I゜A1α|+|I゜A2α|+|I゜
B1α|+|I゜B2α|+|I゜C1α|+|I゜C2α|)
を演算し、端子β側について、全相電流のスカラー和
(|I゜A1β|+|I゜A2β|+|I゜B1β|+|I゜
B2β|+|I゜C1β|+|I゜C2β|)を演算する。
Specifically, on the terminal α side, a scalar sum of all phase currents (| I ゜A1α | + | I ゜A2α | + | I ゜
B1α | + | I ゜B2α | + | I ゜C1α | + | I ゜C2α |)
Is calculated, and a scalar sum of all phase currents (| I ゜A1β | + | I ゜A2β | + | I ゜B1β | + | I }
B2β | + | I ゜C1β | + | I ゜C2β |) is calculated.

【0049】すなわち、送電線1の各端子n側につい
て、全相電流のスカラー和(|I゜A1 |+|I゜A2n
|+|I゜B1n|+|I゜B2n|+|I゜C1n|+|I
C2n|)を演算する。
That is, for each terminal n of the transmission line 1, the scalar sum of all the phase currents (| I ゜A1 n | + | I ゜A2n
| + | I ° B1n | + | I ° B2n | + | I ° C1n | + | I
C2n |) is calculated.

【0050】つぎに、各端子の全相電流のスカラー和の
うちの最大のものに対応する端子を、基点端に選定す
る。
Next, the terminal corresponding to the largest one of the scalar sums of all the phase currents of each terminal is selected as a base end.

【0051】具体的には、端子α側の全相電流のスカラ
ー和と、端子β側の全相電流のスカラー和との大きい方
向に対応する端子α又は端子βを、基点端に選定する。
More specifically, the terminal α or the terminal β corresponding to the direction in which the scalar sum of the all-phase currents on the terminal α side and the scalar sum of the all-phase currents on the terminal β side are larger is selected as the base end.

【0052】この場合、図2のように電力の潮流方向が
端子βから端子αであると、事故発生時、両回線L1
2の各相に端子βから端子αに向う潮流方向の負荷電
流が流れ、事故相については、この負荷電流に加えて端
子α,βから故障点1φG1,1φG2に向う事故電流が
流れる。
In this case, if the power flow direction is from terminal β to terminal α as shown in FIG. 2, when an accident occurs, both lines L 1 ,
L load current flow direction to flow toward the respective phases 2 from the terminal beta to the terminal alpha, for fault phase, terminal alpha, fault point from β 1φG 1, the fault current flows toward the 1FaiG 2 in addition to the load current .

【0053】そのため、端子α,βの両回線L1,L2
おいて、計測される各相電流I゜A1 α,I゜B1α,I゜
C1α,・・・,I゜A2β,I゜B2β,I゜C2βは、事故
相の端子β側のものが最も大きくなり、事故相の端子α
側のものが最も小さくなる。
[0053] Therefore, the terminal alpha, in both lines L 1, L 2 of the beta, the respective phase currents are measured I ° A1 alpha, I ° B1arufa, I °
C1α ,..., I ゜A2β , I ゜B2β , I ゜C2β are the largest on the terminal β side of the accident phase, and the terminal α of the accident phase
The side one is the smallest.

【0054】したがって、零相電流を用いた従来方法で
判別すると、|I゜01α+I゜02α|>|I゜01β+I
02β|になって、端子αが誤って基点端に選定されて
しまうが、本形態の場合は、(|I゜A1α|+・・・+
|I゜C2α|)<(|I゜A1 β|+・・・+|I゜C2β
|)になって、事故相電流の最も大きい最適な端子βが
基点端に選定される。
Therefore, when discriminated by the conventional method using zero-phase current, | I ゜01α + I ゜02α |> | I ゜01β + I
02β |, and the terminal α is erroneously selected as the base end. In the case of the present embodiment, (| I ゜A1α | +... +
| I ゜C2α |) <(| I ゜A1 β | +... + | I ゜C2β
|), The optimum terminal β having the largest fault phase current is selected as the base end.

【0055】そして、基点端の選定後、図1のステップ
5 により前記数1の式のインピーダンス方式の標定演
算で、回線L1,L2毎に、基点端に選定された端子βか
ら故障点1φG1,1φG2までの距離Xを求めて故障点
1φG1,1φG2を標定し、ステップQ6により標定結
果を制御装置や表示装置に出力して標定を終了する。
[0055] After selection of the base end, in the orientation calculation equation of the impedance mode of the number 1 in the step Q 5 in FIG. 1, for each line L 1, L 2, a fault from the terminal β which is selected as a base point end point 1φG 1, fault point 1FaiG 1 seeking distance X to 1φG 2, and orientation of 1φG 2, outputs the orientation results to the control unit and the display device terminates the orientation in step Q 6.

【0056】この場合、潮流の方向,大きさによらず、
必ず、事故相電流の最も大きい端子が基点端に選定され
るため、故障点1φG1,1φG2を精度よく標定するこ
とができる。
In this case, regardless of the direction and size of the tidal current,
Since the terminal having the largest fault phase current is always selected as the base end, the fault points 1φG 1 and 1φG 2 can be accurately located.

【0057】なお、送電線1が図3の片電源端の系統で
あれば、各相電流が必ず端子αから端子βに流れるた
め、本発明の選定方法によっても、事故相電流が最も大
きくなる端子αが基点端に選定される。
If the transmission line 1 is a single power supply terminal system shown in FIG. 3, each phase current always flows from the terminal α to the terminal β. Therefore, even with the selection method of the present invention, the fault phase current is maximized. The terminal α is selected at the base end.

【0058】つぎに、回線L1又は回線L2の1回線1線
地絡事故の発生時は、各相電流につき、健全な回線から
事故が発生した故障回線への電流の回り込みが発生する
ため、前記の全相電流のスカラー和を求める方法では、
回り込んだ電流も加算されて基点端の選定ミスが生じ
る。
Next, upon the occurrence of a 1 line 1 line ground fault of the line L 1 or line L 2 is, per each phase current, in order to sneak the current to the accident has occurred from the healthy line failure circuit occurs In the method of obtaining the scalar sum of all the phase currents,
The sneak currents are also added to cause a mistake in selecting the base end.

【0059】そこで、回線L1又は回線L2の1回線1線
地絡事故が発生すると、図3のステップQ3からステッ
プQ7に移行し、インピーダンス方式より演算負担は大
きくなるが、差電流分流比方式で故障点を標定する。
[0059] Therefore, when one line 1 line earth fault line L 1 or line L 2 is generated, the process proceeds from step Q 3 of FIG. 3 in step Q 7, although computation load than the impedance method increases, the difference current The fault point is located by the shunt ratio method.

【0060】この差電流分流比方式は、日新電機技報V
oL.43,NO.2(’98.9発行)のP.P.2
5−33,特開平5−223881号公報の明細書等に
記載されているように、回線間差電流と端子間の区間長
とに基づいて各端子から故障点までの距離を求めて故障
点を標定する方法であり、この方法の場合は、どの端子
を基点端にとっても、前記の回り込み等の問題なく故障
点の標定が行える。
This differential current shunt ratio method is described in Nissin Electric Technical Report V
oL. 43, NO. 2 (issued in '98 .9) P. 2
5-33, as described in the specification of Japanese Patent Application Laid-Open No. 5-223883, the distance from each terminal to the fault point is obtained based on the line-to-line difference current and the section length between the terminals. In the case of this method, the fault point can be located without any problem such as the wraparound, regardless of which terminal is used as the base point end.

【0061】また、短絡事故の発生時は、図1のステッ
プQ2からステップQ8に移行し、図4のステップS4
同様の手法で基点端を選定し、その後、ステップQ5
より、インピーダンス方式で故障点を標定する。
[0061] Further, upon occurrence of a short circuit accident, the process proceeds from step Q 2 in FIG. 1 in step Q 8, selects the base end in the same manner as Step S 4 in FIG. 4, then, in step Q 5, The fault point is located by the impedance method.

【0062】したがって、この形態の場合は、回線
1,L2の2回線同相1線地絡が発生したときに、端子
α,β間の電流の潮流の方向,大きさによらず、事故相
電流が最も大きい最適な端子を基点端に選定してインピ
ーダンス方式で精度よく故障点1φG1,1φG2を標定
することができ、回線L1又は回線L2のみの1回線1線
地絡事故,短絡事故に対しても最適な手法で精度よく故
障点を標定することができる。
Therefore, in the case of this embodiment, when a two-line in-phase one-line ground fault of lines L 1 and L 2 occurs, an accident occurs regardless of the direction and magnitude of the current flow between terminals α and β. precisely fault point impedance manner by selecting the phase current largest optimum terminal base end 1FaiG 1, it is possible to locating the 1φG 2, 1 line 1 line earth fault only line L 1 or line L 2 In addition, even in the event of a short circuit, the failure point can be accurately located by an optimal method.

【0063】そして、前記形態にあっては2端子α,β
の送電線1に設けられる多端子式故障点標定装置の基点
端の選定に適用したが、本発明は、3端子以上の多端子
の送電線に設けられる多端子式故障点標定装置の基点端
の選定に適用できるのも勿論である。
In the above embodiment, the two terminals α and β
The present invention is applied to the selection of the base end of the multi-terminal fault locating device provided on the transmission line 1 of the present invention. Of course, the present invention can be applied to the selection.

【0064】[0064]

【発明の効果】本発明は、以下に記載する効果を奏す
る。送電線1の両回線L1,L2の同相1線地絡事故(2
回線同相1線地絡事故)が発生したときに、送電線1の
各端子α,β毎に、回線L1,L2別に各相電流それぞれ
の絶対値を求めて両回線L1,L2の全ての相電流の絶対
値の和(全相電流のスカラー和)が演算され、この全相
電流のスカラー和が最も大きくなる端子を、基点端に選
定したため、端子α,β間の事故前の各相電流の潮流の
方向,大きさによらず、事故相電流が最も大きい最適な
端子を基点端に選定することができ、この選定に基づ
き、インピーダンス方式で精度よく故障点を標定するこ
とができる。
The present invention has the following effects. In-phase 1-line ground fault of both lines L 1 and L 2 of transmission line 1 (2
When the line phase 1 line earth fault) occurs, the terminals of the transmission line 1 alpha, for each beta, line L 1, L 2 separate phase currents each of the two lines L 1 and the absolute value, L 2 The sum of the absolute values of all the phase currents (scalar sum of all phase currents) is calculated, and the terminal having the largest scalar sum of all phase currents is selected as the base end. Regardless of the direction and magnitude of the current flow of each phase current, the optimal terminal with the largest fault phase current can be selected at the base end, and based on this selection, the fault point can be accurately located by the impedance method Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の故障点標定のフローチ
ャートである。
FIG. 1 is a flowchart of a fault point locating according to one embodiment of the present invention.

【図2】図1の故障点標定が行われる送電線の単線結線
図である。
FIG. 2 is a single-line diagram of a transmission line on which the fault location of FIG. 1 is performed.

【図3】片端電源の送電線の単線結線図である。FIG. 3 is a single-line diagram of a transmission line of a single-ended power supply.

【図4】従来例の故障点標定のフローチャートである。FIG. 4 is a flowchart of a conventional fault point location.

【符号の説明】[Explanation of symbols]

1 平行2回線送電線 2,11 電源 7 収集・演算ユニット 8 収集ユニット 9α,9β データ収集装置 10 演算装置 L1,L2 回線DESCRIPTION OF SYMBOLS 1 2 parallel transmission lines 2, 11 Power supply 7 Collection / operation unit 8 Collection unit 9 α , 9 β data collection device 10 Operation device L 1 , L 2 line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多端子平行2回線送電線の各端子の電
流,電圧の計測情報に基づき、 前記送電線の両回線の同相1線地絡の発生時、 前記各端子のいずれか1つを基点端に選定し、 前記基点端の電流,電圧の計測情報と、前記送電線のイ
ンピーダンス特性とにより、前記基点端から前記両回線
の前記地絡が発生した故障点までの距離を演算し、 前記両回線の故障点をインピーダンス方式で標定する多
端子式故障点標定装置の前記基点端の選定に際し、 前記各端子毎に、回線別に各相電流それぞれの絶対値を
求めて両回線の全ての相電流の絶対値の和を演算し、 前記各絶対値の和のうちの最大のものに対応する端子を
前記基点端に選定することを特徴とする多端子式故障点
標定装置の基点端選定方法。
1. When an in-phase one-line ground fault occurs in both lines of the transmission line based on measurement information of current and voltage of each terminal of the multi-terminal parallel two-line transmission line, one of the terminals is disconnected. Based on the current and voltage measurement information at the base end, and the impedance characteristics of the power transmission line, the distance from the base end to the fault point at which the ground fault of the two lines has occurred is calculated, When selecting the base point end of the multi-terminal type fault point locating apparatus for locating the fault points of the two lines by the impedance method, for each of the terminals, obtain the absolute value of each phase current for each line and obtain the absolute value of each of the two lines. Calculating the sum of the absolute values of the phase currents, and selecting the terminal corresponding to the largest one of the sums of the absolute values as the base end, selecting the base end of the multi-terminal type fault point locating device. Method.
JP2000335990A 2000-11-02 2000-11-02 Base point terminal selection method for multiple-port fault point locating device Pending JP2002139538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335990A JP2002139538A (en) 2000-11-02 2000-11-02 Base point terminal selection method for multiple-port fault point locating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335990A JP2002139538A (en) 2000-11-02 2000-11-02 Base point terminal selection method for multiple-port fault point locating device

Publications (1)

Publication Number Publication Date
JP2002139538A true JP2002139538A (en) 2002-05-17

Family

ID=18811641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335990A Pending JP2002139538A (en) 2000-11-02 2000-11-02 Base point terminal selection method for multiple-port fault point locating device

Country Status (1)

Country Link
JP (1) JP2002139538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005868A (en) * 2015-06-10 2017-01-05 三菱電機株式会社 Distance relay device and transmission line protection method
CN109541392A (en) * 2018-10-15 2019-03-29 天津大学 A kind of one-end fault ranging method suitable for flexible HVDC transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005868A (en) * 2015-06-10 2017-01-05 三菱電機株式会社 Distance relay device and transmission line protection method
CN109541392A (en) * 2018-10-15 2019-03-29 天津大学 A kind of one-end fault ranging method suitable for flexible HVDC transmission system

Similar Documents

Publication Publication Date Title
US9118181B2 (en) Method of fault phase selection and fault type determination
US7123459B2 (en) Protective relay capable of protection applications without protection settings
KR100822988B1 (en) Fault type selection system for identifying faults in an electric power system
EP1982395B1 (en) Method and adaptive distance protection relay for power transmission lines
EP1446675B1 (en) Determining electrical faults on undergrounded power systems using directional element
US9425609B2 (en) Method and apparatus for differential protection of an electric connection
US10859639B2 (en) Fault-type identification in an electric power delivery system using composite signals
Thompson et al. A tutorial on calculating source impedance ratios for determining line length
CN103852691A (en) Directional detection of a fault in a network of a grounding system with compensated or insulated neutral point
KR100350722B1 (en) Apparatus and method for locating fault distance in a power double circuit transmision line
US6661630B1 (en) Distance relay for protection of transmission line having minimized reactance effect
JP2004080839A (en) Ground direction relay and ground direction relay device
EP1342095B1 (en) Fault location method and device
EP1610431B1 (en) Method and system for identifying faulted phase
US20230129666A1 (en) Coordination of protective elements in an electric power system
JP2002139538A (en) Base point terminal selection method for multiple-port fault point locating device
JP3575814B2 (en) Power system fault location system
JPH10132890A (en) Method and device for locating failure point
JP5283369B2 (en) Disconnection protection relay
JP3451552B2 (en) Protection relay device for power system
JP7134846B2 (en) Transmission line protection relay device
Monemi et al. A Protection Scheme in RTDS Model of an IEEE 16-Bus System
JP2003009381A (en) Troue phase selector
JP3278561B2 (en) How to select the faulty line of the parallel transmission line
JPH02106126A (en) Method and apparatus for distinguishing types of failures in transmission line