JP2021063750A - Earth fault point locating system - Google Patents

Earth fault point locating system Download PDF

Info

Publication number
JP2021063750A
JP2021063750A JP2019189256A JP2019189256A JP2021063750A JP 2021063750 A JP2021063750 A JP 2021063750A JP 2019189256 A JP2019189256 A JP 2019189256A JP 2019189256 A JP2019189256 A JP 2019189256A JP 2021063750 A JP2021063750 A JP 2021063750A
Authority
JP
Japan
Prior art keywords
fault point
distribution line
ground fault
switch
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019189256A
Other languages
Japanese (ja)
Inventor
大原 久征
Hisamasa Ohara
久征 大原
浩太郎 野元
Kotaro Nomoto
浩太郎 野元
和幸 内呂
Kazuyuki Uchiro
和幸 内呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Saneisha Seisakusho KK
Original Assignee
Chugoku Electric Power Co Inc
Saneisha Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Saneisha Seisakusho KK filed Critical Chugoku Electric Power Co Inc
Priority to JP2019189256A priority Critical patent/JP2021063750A/en
Publication of JP2021063750A publication Critical patent/JP2021063750A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)

Abstract

To install switches with built- current sensors and voltage sensors, at such a distance that an earth fault point can be highly accurately located while suppressing equipment investment costs.SOLUTION: An earth fault point locating system is provided, comprising: a switch for construction work which has a box-shaped body and removably installed on a strut on which a distribution line is laid, the switch connecting or disconnecting the distribution line; a current sensor which is housed in the body, and detects current flowing in the distribution line; a voltage sensor which is housed in the body and detects voltage appearing in the distribution line; a measurement terminal installed on the strut together with the switch for construction work; and an earth fault point locating device locating an earth fault point in the distribution line on the basis of information output from the measurement terminal.SELECTED DRAWING: Figure 1

Description

本発明は、地絡点標定システムに関する。 The present invention relates to a ground fault point determination system.

例えば、配電線(例えば6kVの配電系統)に地絡事故が発生した場合に、配電線のどの位置に地絡事故が発生したのかを標定する地絡点標定システムが知られている(例えば、特許文献1を参照)。 For example, when a ground fault occurs in a distribution line (for example, a 6 kV distribution system), a ground fault point positioning system is known that determines the position of the ground fault in the distribution line (for example,). See Patent Document 1).

この地絡点標定システムは、配電線に流れる電流を検出する電流センサ、配電線に現れる電圧を検出する電圧センサ、計測端末、地絡点標定装置を含んで構成されている。電流センサ、電圧センサ、計測端末は、例えば配電線が架設される支柱ごとに設置され、地絡点標定装置は、例えば電力会社等に設置されている。そして、複数の計測端末は、電流センサ及び電圧センサからそれぞれ得られる零相電流及び零相電圧を示す情報を、GPS衛星から得られる現在時刻を示す情報に対応付けて、地絡点標定装置に送信する。一方、地絡点標定装置は、複数の計測端末から得られる零相電流及び零相電圧を示す情報及び現在時刻を示す情報に基づいて、所定の演算を行うことによって地絡点を標定する。 This ground fault point locating system includes a current sensor that detects a current flowing through a distribution line, a voltage sensor that detects a voltage that appears on the distribution line, a measuring terminal, and a ground fault point locating device. The current sensor, the voltage sensor, and the measuring terminal are installed for each support column on which the distribution line is erected, and the ground fault point locating device is installed in, for example, an electric power company. Then, the plurality of measuring terminals associate the information indicating the zero-phase current and the zero-phase voltage obtained from the current sensor and the voltage sensor with the information indicating the current time obtained from the GPS satellite, and use the ground fault point determining device. Send. On the other hand, the ground fault point locating device defines the ground fault point by performing a predetermined calculation based on the information indicating the zero-phase current and the zero-phase voltage and the information indicating the current time obtained from a plurality of measuring terminals.

特開2004−132762号公報Japanese Unexamined Patent Publication No. 2004-132762

地絡点標定システムにおける電流センサ及び電圧センサは、例えば、配電自動化システムにおける電流センサ及び電圧センサと兼用されている。配電自動化システムは、配電線の状態を常時監視し、配電線に事故区間を検出すると、電流センサ及び電圧センサの検出結果に基づいて、開閉器の開閉動作を制御することによって、事故区間を健全区間へと自動的に融通するシステムである。ここで、配電自動化システムに用いられる開閉器(センサ開閉器)は、配電線が架設される支柱に設置され、電流センサ及び電圧センサは、この開閉器の内部に収容されている。 The current sensor and the voltage sensor in the ground fault point positioning system are also used as, for example, the current sensor and the voltage sensor in the power distribution automation system. The distribution automation system constantly monitors the condition of distribution lines, and when an accident section is detected on the distribution line, the accident section is sound by controlling the opening and closing operation of the switch based on the detection results of the current sensor and voltage sensor. It is a system that automatically accommodates sections. Here, the switch (sensor switch) used in the power distribution automation system is installed on a support column on which the distribution wire is erected, and the current sensor and the voltage sensor are housed inside the switch.

配電自動化システムにおいて、開閉器は、配電線における電流及び電圧を監視して細かな電圧管理が必要となる箇所に常設する仕様として取り付けられるものであり、総亘長が例えば15km以上の配電線に対して、例えば3台程度しか施設しないのが現状である。 In the distribution automation system, the switch is installed as a permanent specification in a place where detailed voltage control is required by monitoring the current and voltage in the distribution line, and the total length is, for example, a distribution line of 15 km or more. On the other hand, the current situation is that, for example, only about 3 units are installed.

一方、地絡点を標定するために必要となる零相電流は、高周波帯域(数十kHz)にある電流であって、配電線の距離に比例して減衰する特性を有している。そのため、地絡点を精度よく標定するためには、配電線に対して例えば数kmおきに開閉器を施設する必要があるが、これでは、配電自動化システムとしての主目的である電圧管理のために施設する開閉器の台数とは大きくかけ離れてしまい、過剰な設備投資となってしまう問題があった。 On the other hand, the zero-phase current required for defining the ground fault point is a current in the high frequency band (several tens of kHz), and has a characteristic of being attenuated in proportion to the distance of the distribution line. Therefore, in order to accurately locate the ground fault point, it is necessary to install switches on the distribution line, for example, every few km, but this is for voltage management, which is the main purpose of the distribution automation system. There was a problem that it was far from the number of switches installed in the facility, resulting in excessive capital investment.

そこで、本発明は、設備投資費用を抑えつつ、地絡点を精度よく標定することが可能な距離おきに電流センサ及び電圧センサを内蔵する開閉器を施設することが可能な地絡点標定システムを提供することを目的とする。 Therefore, the present invention is a ground fault point positioning system capable of installing a switch incorporating a current sensor and a voltage sensor at intervals at which the ground fault point can be accurately ground while suppressing capital investment costs. The purpose is to provide.

前述した課題を解決する主たる本発明は、地絡点標定システムであって、箱状の本体を有し、配電線路が架設される支柱に対して着脱自在に設置され、前記配電線路を接続又は切断する工事用開閉器と、前記本体に収容され、前記配電線路に流れる電流を検出する電流センサと、前記本体に収容され、前記配電線路に現れる電圧を検出する電圧センサと、前記支柱に対して前記工事用開閉器とともに設置される計測端末と、前記計測端末から出力される情報に基づいて、前記配電線路の地絡点を標定する地絡点標定装置と、を備える。
本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。
The main invention for solving the above-mentioned problems is a ground fault point positioning system, which has a box-shaped main body, is detachably installed on a support column on which a distribution line is erected, and connects or connects the distribution line. For the construction switch to be cut, the current sensor housed in the main body and detecting the current flowing through the distribution line, the voltage sensor housed in the main body and detecting the voltage appearing on the distribution line, and the support column. It is provided with a measurement terminal installed together with the construction switch, and a ground fault point locating device for locating the ground fault point of the distribution line based on the information output from the measurement terminal.
Other features of the invention will become apparent with reference to the accompanying drawings and the description herein.

本発明によれば、地絡点標定システムとして、設備投資費用を抑えつつ、地絡点を精度よく標定することが可能な距離おきに電流センサ及び電圧センサを内蔵する開閉器を施設することが可能となる。 According to the present invention, as a ground fault point positioning system, it is possible to install a switch having a built-in current sensor and a voltage sensor at intervals at which the ground fault point can be accurately positioned while suppressing capital investment costs. It will be possible.

本実施形態に係る地絡点標定システムを示すブロック図である。It is a block diagram which shows the ground fault point setting system which concerns on this embodiment. 本実施形態に係る地絡点標定システムに用いられる工事用開閉器の一例を示す正面図である。It is a front view which shows an example of the switch for constructions used in the ground fault point setting system which concerns on this embodiment. 本実施形態に係る地絡点標定システムに用いられる工事用開閉器の一例を示す右側面図である。It is a right side view which shows an example of the switch for constructions used in the ground fault point setting system which concerns on this embodiment. 本実施形態に係る地絡点標定システムに用いられる工事用開閉器の一例を示す上面図である。It is a top view which shows an example of the switch for constructions used in the ground fault point setting system which concerns on this embodiment. 本実施形態に係る地絡点標定システムに用いられる工事用開閉器の一例を示す下面図である。It is a bottom view which shows an example of the switch for constructions used in the ground fault point setting system which concerns on this embodiment. 本実施形態に係る地絡点標定システムに用いられる工事用開閉器を支柱に設置した様子を示す側面図である。It is a side view which shows the state which the construction switch used for the ground fault point setting system which concerns on this Embodiment is installed in a support | column. 本実施形態に係る地絡点標定システムにおいて、工事用開閉器内に収容される電流センサ及び電圧センサを示す回路図である。It is a circuit diagram which shows the current sensor and the voltage sensor housed in the switch for construction work in the ground fault point setting system which concerns on this embodiment.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
===地絡点標定システム===
The description of this specification and the accompanying drawings will clarify at least the following matters.
=== Ground fault point positioning system ===

図1は、本実施形態に係る地絡点標定システムを示すブロック図である。
地絡点標定システム100は、配電線路200に地絡事故が発生した場合に、配電線路200のどの位置に地絡事故が発生したのかを標定するシステムである。
FIG. 1 is a block diagram showing a ground fault point determination system according to the present embodiment.
The ground fault point locating system 100 is a system for locating the position of the distribution line 200 where the ground fault has occurred when the distribution line 200 has a ground fault.

地絡点標定システム100は、地絡点を標定するための手段として、複数の電流センサ310、複数の電圧センサ320、複数の計測端末400、地絡点標定装置500を含んで構成されている。 The ground fault point locating system 100 includes a plurality of current sensors 310, a plurality of voltage sensors 320, a plurality of measuring terminals 400, and a ground fault point locating device 500 as means for locating the ground fault point. ..

複数の電流センサ310は、それぞれ、例えば支柱600ごとに設置されている。電流センサ310は、例えば、配電線路200の全相(R相、S相、T相)に流れる電流を合成して零相電流を検出する零相変流器ZCTである。電流センサ310は、配電線路200に地絡事故が発生した場合に、支柱600の設置場所における配電線路200の零相電流を検出する。複数の電圧センサ320は、複数の電流センサ310と1対1に対応するように、それぞれ、例えば支柱600ごとに設置されている。電圧センサ320は、例えば、配電線路200の各相に現れる電圧を検出する計器用変圧器PDである。電圧センサ320は、配電線路200に地絡事故が発生した場合に、支柱600の設置場所における配電線路200の零相電圧を検出する。尚、支柱600に設置される一対の電流センサ310及び電圧センサ320は、外部要因(風雨、紫外線等)から保護するために、例えば支柱600ごとに設置される工事用開閉器800の内部に密閉状態で収容されることとする。工事用開閉器800の詳細については後述する。 Each of the plurality of current sensors 310 is installed, for example, for each support column 600. The current sensor 310 is, for example, a zero-phase current transformer ZCT that detects a zero-phase current by synthesizing currents flowing in all phases (R-phase, S-phase, T-phase) of the distribution line 200. The current sensor 310 detects the zero-phase current of the distribution line 200 at the place where the support column 600 is installed when a ground fault occurs in the distribution line 200. The plurality of voltage sensors 320 are installed, for example, for each support column 600 so as to have a one-to-one correspondence with the plurality of current sensors 310. The voltage sensor 320 is, for example, a voltage transformer PD for detecting a voltage appearing in each phase of the distribution line 200. The voltage sensor 320 detects the zero-phase voltage of the distribution line 200 at the place where the support column 600 is installed when a ground fault occurs in the distribution line 200. The pair of current sensor 310 and voltage sensor 320 installed on the support column 600 are sealed inside the construction switch 800 installed on each support column 600, for example, in order to protect them from external factors (wind, rain, ultraviolet rays, etc.). It shall be housed in a state. Details of the construction switch 800 will be described later.

複数の計測端末400は、それぞれ、例えば支柱600ごとに設置され、無線通信を介して地絡点標定装置500と接続されている。そして、計測端末400は、電流センサ310から得られる零相電流を示す情報及び電圧センサ320から得られる零相電圧を示す情報を、GPS衛星700から得られる現在時刻を示す情報に対応付けて、地絡点標定装置500に送信する。尚、計測端末400は、有線の通信線を介して地絡点標定装置500と接続されていてもよい。 Each of the plurality of measurement terminals 400 is installed, for example, for each support column 600, and is connected to the ground fault point locating device 500 via wireless communication. Then, the measuring terminal 400 associates the information indicating the zero-phase current obtained from the current sensor 310 and the information indicating the zero-phase voltage obtained from the voltage sensor 320 with the information indicating the current time obtained from the GPS satellite 700. It is transmitted to the ground fault point locating device 500. The measuring terminal 400 may be connected to the ground fault point locating device 500 via a wired communication line.

地絡点標定装置500は、地絡点を標定することができるように、無線通信を介して複数の計測端末400を統括的に管理する装置であって、例えば電力会社等に設置されている。地絡点標定装置500は、地絡点を挟む2つの計測端末400の組合せのうち、設置間距離が最短となる2つの計測端末400(例えば計測端末400A、400B)から得られる零相電流及び零相電圧を示す情報と現在時刻を示す情報とに基づいて、所定の演算を行うことによって地絡点を標定する。 The ground fault point locating device 500 is a device that comprehensively manages a plurality of measurement terminals 400 via wireless communication so that the ground fault point can be located, and is installed in, for example, an electric power company. .. The ground fault point locating device 500 includes a zero-phase current obtained from two measurement terminals 400 (for example, measurement terminals 400A and 400B) having the shortest distance between installations among a combination of two measurement terminals 400 sandwiching the ground fault point. The ground fault point is defined by performing a predetermined calculation based on the information indicating the zero-phase voltage and the information indicating the current time.

具体的には、地絡点標定装置500は、以下の式(1)に従って地絡点から計測端末400Aまでの距離L1を算出する。
L1=(L+(T1−T2)v)/2 ・・・(1)
但し、L:計測端末400A、400B間の配電線路200上の距離
L1:地絡点から計測端末400Aまでの配電線路200上の距離
T1−T2:サージ到達時刻の差
v:サージ伝搬速度
である。尚、地絡点の標定手法については例えば特許文献1に開示されているため、その詳細については説明を省略する。
===工事用開閉器===
Specifically, the ground fault point locating device 500 calculates the distance L1 from the ground fault point to the measurement terminal 400A according to the following equation (1).
L1 = (L + (T1-T2) v) / 2 ... (1)
However, L: the distance on the distribution line 200 between the measurement terminals 400A and 400B L1: the distance on the distribution line 200 from the ground fault point to the measurement terminal 400A T1-T2: the difference in surge arrival time v: the surge propagation speed. .. Since the method for determining the ground fault point is disclosed in Patent Document 1, for example, the details thereof will be omitted.
=== Construction switch ===

図2は、本実施形態に係る地絡点標定システムに用いられる工事用開閉器の一例を示す正面図である。図3は、本実施形態に係る地絡点標定システムに用いられる工事用開閉器の一例を示す右側面図である。図4は、本実施形態に係る地絡点標定システムに用いられる工事用開閉器の一例を示す上面図である。図5は、本実施形態に係る地絡点標定システムに用いられる工事用開閉器の一例を示す下面図である。図6は、本実施形態に係る地絡点標定システムに用いられる工事用開閉器を支柱に設置した様子を示す側面図である。図7は、本実施形態に係る地絡点標定システムにおいて、工事用開閉器内に収容される電流センサ及び電圧センサを示す回路図である。尚、図2〜図6において、工事用開閉器800の正面(背面)から背面(正面)へ向かう奥行方向をX軸に沿う方向とし、工事用開閉器800の左側面(右側面)から右側面(左側面)へ向かう幅方向をY軸に沿う方向とし、工事用開閉器800の上面(下面)から下面(上面)へ向かう高さ方向をZ軸に沿う方向とする。又、説明の便宜上、工事用開閉器800に収容される電流センサ310及び電圧センサ320は、図2のみに記すこととする。 FIG. 2 is a front view showing an example of a construction switch used in the ground fault point positioning system according to the present embodiment. FIG. 3 is a right side view showing an example of a construction switch used in the ground fault point positioning system according to the present embodiment. FIG. 4 is a top view showing an example of a construction switch used in the ground fault point positioning system according to the present embodiment. FIG. 5 is a bottom view showing an example of a construction switch used in the ground fault point positioning system according to the present embodiment. FIG. 6 is a side view showing a state in which a construction switch used in the ground fault point positioning system according to the present embodiment is installed on a support column. FIG. 7 is a circuit diagram showing a current sensor and a voltage sensor housed in a construction switch in the ground fault point positioning system according to the present embodiment. In FIGS. 2 to 6, the depth direction from the front (rear surface) to the back surface (front) of the construction switch 800 is defined as the direction along the X axis, and the construction switch 800 is from the left side surface (right side surface) to the right side. The width direction toward the surface (left surface) is the direction along the Y axis, and the height direction from the upper surface (lower surface) to the lower surface (upper surface) of the construction switch 800 is the direction along the Z axis. Further, for convenience of explanation, the current sensor 310 and the voltage sensor 320 housed in the construction switch 800 will be shown only in FIG.

一般に、配電線の張り替え、支持碍子の交換、変圧器の揚げ替え等の電気工事を行う場合、電気工事に係る工事区間を停電させる一方、電気工事に係る工事区間をバイパスして送電を継続させることが行われている。工事用開閉器800は、このようなバイパス区間の支柱600に対して着脱自在に設置(仮設)され、電源側から負荷側へ送電が行われるようにバイパス用の配電線を接続する。工事用開閉器800は、普段は電力会社や工事会社等の営業所に工事用機材として常備されている。そして、工事用開閉器800は、電気工事を行うとき、作業車に搭載されて工事現場まで運搬され、ロープ等で吊り上げることによって支柱600に設置される。又、工事用開閉器800は、電気工事を終了したとき、ロープ等で吊り下げることによって支柱600から取り外され、作業車に搭載されて営業所まで運搬される。このように、工事用開閉器800は、作業車による運搬や支柱600に対する取り付け及び取り外しが頻繁に行われるため、壊れにくくなるように比較的簡易な構造を呈している。 In general, when performing electrical work such as replacement of distribution lines, replacement of support porcelain, and replacement of transformers, power is cut off in the construction section related to electrical work, while power transmission is continued by bypassing the construction section related to electrical work. Is being done. The construction switch 800 is detachably installed (temporarily installed) on the support column 600 in such a bypass section, and a distribution line for bypass is connected so that power transmission is performed from the power supply side to the load side. The construction switch 800 is usually stocked as construction equipment at sales offices of electric power companies, construction companies, and the like. Then, when performing electrical work, the construction switch 800 is mounted on a work vehicle, transported to a construction site, and installed on a support column 600 by being lifted by a rope or the like. Further, when the electrical work is completed, the construction switch 800 is removed from the support column 600 by hanging it with a rope or the like, mounted on a work vehicle, and transported to a business office. As described above, the construction switch 800 has a relatively simple structure so as to be hard to break because it is frequently transported by a work vehicle and attached to and detached from the support column 600.

以下、図2〜図6を参照しつつ、工事用開閉器800の構造について説明する。
工事用開閉器800は、本体810、電源側ブッシング820A、負荷側ブッシング820B、電源側ブッシングガード830A、負荷側ブッシングガード830B、操作ハンドル840、指針850、接地端子860、レセプタクル870、吊上金具880、フック金具890を含んで構成されている。
Hereinafter, the structure of the construction switch 800 will be described with reference to FIGS. 2 to 6.
The construction switch 800 includes a main body 810, a power supply side bushing 820A, a load side bushing 820B, a power supply side bushing guard 830A, a load side bushing guard 830B, an operation handle 840, a pointer 850, a ground terminal 860, a receptacle 870, and a lifting bracket 880. , The hook metal fitting 890 is included.

本体810は、実質的に箱状(直方体形状)を呈している。本体810の内部には、配電線路200を接続又は切断するための構造体(不図示)、電流センサ310、電圧センサ320が収容されている。電流センサ310は、本体810の内部において、例えば本体810の右側面(+Y方向)に近い位置に収容されている。電圧センサ320は、本体810の内部において、例えば本体810の右側面に近い位置で電流センサ310と隣り合うように収容されている。 The main body 810 has a substantially box shape (rectangular parallelepiped shape). Inside the main body 810, a structure (not shown) for connecting or disconnecting the distribution line 200, a current sensor 310, and a voltage sensor 320 are housed. The current sensor 310 is housed inside the main body 810 at a position close to, for example, the right side surface (+ Y direction) of the main body 810. The voltage sensor 320 is housed inside the main body 810 so as to be adjacent to the current sensor 310 at a position close to the right side surface of the main body 810, for example.

電源側ブッシング820Aは、本体810の左側面(−Y方向)に取り付けられている。電源側ブッシング820Aは、電源側の配電線路200を本体810内部の構造体と電気的に接続する。 The power supply side bushing 820A is attached to the left side surface (−Y direction) of the main body 810. The power supply side bushing 820A electrically connects the power distribution line 200 to the structure inside the main body 810.

負荷側ブッシング820Bは、本体810の右側面に取り付けられている。負荷側ブッシング820Bは、負荷側の配電線路200を本体810内部の構造体と電気的に接続する。 The load side bushing 820B is attached to the right side surface of the main body 810. The load-side bushing 820B electrically connects the load-side distribution line 200 to the structure inside the main body 810.

電源側ブッシングガード830Aは、工事用開閉器800を運搬又は設置する際に電源側ブッシング820Aを損傷から保護するために、本体810の左側面に取り付けられている。電源側ブッシングガード830Aは、電源側の配電線路200と本体810内部の構造体との接続を妨げることがないように、複数のパイプを組み合わせたフレーム構造となっている。 The power supply side bushing guard 830A is attached to the left side surface of the main body 810 in order to protect the power supply side bushing 820A from damage when transporting or installing the construction switch 800. The power supply side bushing guard 830A has a frame structure in which a plurality of pipes are combined so as not to interfere with the connection between the power supply side distribution line 200 and the structure inside the main body 810.

負荷側ブッシングガード830Bは、工事用開閉器800を運搬又は設置する際に負荷側ブッシング830Aを損傷から保護するために、本体810の右側面に取り付けられている。負荷側ブッシングガード830Bは、負荷側の配電線路200と本体810内部の構造体との接続を妨げることがないように、複数のパイプを組み合わせたフレーム構造となっている。 The load-side bushing guard 830B is attached to the right side surface of the main body 810 in order to protect the load-side bushing 830A from damage when the construction switch 800 is transported or installed. The load-side bushing guard 830B has a frame structure in which a plurality of pipes are combined so as not to interfere with the connection between the load-side distribution line 200 and the structure inside the main body 810.

操作ハンドル840は、電源側の配電線路200と負荷側の配電線路200とが接続又は切断の何れか一方の状態に切り替わるように、本体810内部の構造体を外側から操作するための長尺のハンドルである。操作ハンドル840は、本体810の正面(−X方向)に回動自在に取り付けられている。本体810の正面には、「入」「切」の文字が記されている。操作ハンドル840を「入」の側へ時計回りに一定量回動させると、本体810内部の構造体は、操作ハンドル840の回動に連動して、電源側の配電線路200と負荷側の配電線路200とを接続する。一方、操作ハンドル840を「切」の側へ反時計回りに一定量回動させると、本体810内部の構造体は、操作ハンドル840の回動に連動して、電源側の配電線路200と負荷側の配電線路200とを切断する。 The operation handle 840 is a long length for operating the structure inside the main body 810 from the outside so that the distribution line 200 on the power supply side and the distribution line 200 on the load side are switched to either a connected state or a disconnected state. It is a handle. The operation handle 840 is rotatably attached to the front surface (−X direction) of the main body 810. The characters "on" and "off" are written on the front of the main body 810. When the operation handle 840 is rotated clockwise by a certain amount to the "ON" side, the structure inside the main body 810 is linked to the rotation of the operation handle 840, and the power distribution line 200 on the power supply side and the power distribution on the load side. Connect to line 200. On the other hand, when the operation handle 840 is rotated counterclockwise by a certain amount to the "off" side, the structure inside the main body 810 is interlocked with the rotation of the operation handle 840, and the distribution line 200 on the power supply side and the load are loaded. The distribution line 200 on the side is disconnected.

指針850は、現時点において、電源側の配電線路200と負荷側の配電線路200とが接続又は切断の何れの状態であるのかを、作業者が目視するための手段である。指針850は、操作ハンドル840の回動に連動するように、本体810の正面に回動自在に取り付けられている。指針850の先端は、本体810の正面(YZ平面)から下面(XY平面)へ向かってL字型に折れ曲がった形状を呈している。本体810の下面(−Z方向)には、正面の「入」「切」の文字と並ぶ位置に「入」「切」の文字が記されている。操作ハンドル840を「入」の側へ時計回りに一定量回動させると、指針850は、操作ハンドル840の回動に連動して「入」の側に回動する。一方、操作ハンドル840を「切」の側へ反時計回りに一定量回動させると、指針850は、操作ハンドル840の回動に連動して「切」の側に回動する。このように、作業者は、本体810の正面及び下面において指針850が「入」「切」の何れの文字を指し示しているのかを目視することによって、電源側の配電線路200と負荷側の配電線路200とが接続又は切断の何れの状態であるのかを確認することができる。 The guideline 850 is a means for the operator to visually check whether the distribution line 200 on the power supply side and the distribution line 200 on the load side are connected or disconnected at the present time. The pointer 850 is rotatably attached to the front surface of the main body 810 so as to be interlocked with the rotation of the operation handle 840. The tip of the pointer 850 has an L-shaped bend from the front surface (YZ plane) to the bottom surface (XY plane) of the main body 810. On the lower surface (-Z direction) of the main body 810, the characters "ON" and "OFF" are written at positions alongside the characters "ON" and "OFF" on the front surface. When the operation handle 840 is rotated clockwise by a certain amount to the "ON" side, the pointer 850 rotates to the "ON" side in conjunction with the rotation of the operation handle 840. On the other hand, when the operation handle 840 is rotated counterclockwise by a certain amount to the "off" side, the pointer 850 rotates to the "off" side in conjunction with the rotation of the operation handle 840. In this way, the operator visually observes which character of "ON" or "OFF" the pointer 850 points to on the front surface and the lower surface of the main body 810, so that the distribution line 200 on the power supply side and the distribution on the load side can be distributed. It is possible to confirm whether the line 200 is connected or disconnected.

接地端子860は、本体810内部の構造体、電流センサ310、電圧センサ320等を接地するための端子であって、例えば本体810の左側面と下面との角部に取り付けられている。 The ground terminal 860 is a terminal for grounding the structure inside the main body 810, the current sensor 310, the voltage sensor 320, and the like, and is attached to, for example, the corners of the left side surface and the lower surface of the main body 810.

レセプタクル870は、他の機器(例えば計測端末400)と接続するためのコネクタであって、例えば本体810の右側面と下面との角部に取り付けられている。 The receptacle 870 is a connector for connecting to another device (for example, a measuring terminal 400), and is attached to, for example, a corner portion between the right side surface and the lower surface of the main body 810.

吊上金具880は、工事用開閉器800を支柱600に設置する際に、工事用開閉器800を吊り上げるロープ等を引っ掛けるための金具であって、本体810の上面(+Z方向)に取り付けられている。 The lifting metal fitting 880 is a metal fitting for hooking a rope or the like for lifting the construction switch 800 when the construction switch 800 is installed on the support column 600, and is attached to the upper surface (+ Z direction) of the main body 810. There is.

フック金具890は、工事用開閉器800を支柱600に設置する際に、装柱金具900を引っ掛けるための金具であって、例えば本体810の背面(+X方向)に取り付けられている。そして、装柱金具900の一端をフック金具890に引っ掛けるとともに装柱金具900の他端を支柱600の周面に押し付け、チェーン部材1000を装柱金具900の孔910を通して支柱600に巻き付けることによって、工事用開閉器800を支柱600に設置することができる。 The hook metal fitting 890 is a metal fitting for hooking the pillar metal fitting 900 when the construction switch 800 is installed on the pillar 600, and is attached to, for example, the back surface (+ X direction) of the main body 810. Then, one end of the pillar metal fitting 900 is hooked on the hook metal fitting 890, the other end of the pillar metal fitting 900 is pressed against the peripheral surface of the pillar 600, and the chain member 1000 is wound around the pillar 600 through the hole 910 of the pillar metal fitting 900. The construction switch 800 can be installed on the pillar 600.

以下、図7を参照しつつ、電流センサ310及び電圧センサ320の回路例について説明する。
電流センサ310は、先に説明したように、配電線路200の全相(R相、S相、T相)に流れる電流を合成して零相電流を検出する零相変流器ZCTである。
Hereinafter, circuit examples of the current sensor 310 and the voltage sensor 320 will be described with reference to FIG. 7.
As described above, the current sensor 310 is a zero-phase current transformer ZCT that detects a zero-phase current by synthesizing currents flowing in all phases (R-phase, S-phase, T-phase) of the distribution line 200.

電圧センサ320は、先に説明したように、配電線路200の各相(R相、S相、T相)に現れる電圧を検出する計器用変圧器PDである。具体的には、計器用変圧器PDは、配電線路200の各相(R相、S相、T相)と接地との間に直列に接続された2つのコンデンサの接続点から検出電圧を出力する構成となっている。 As described above, the voltage sensor 320 is a voltage transformer PD that detects the voltage appearing in each phase (R phase, S phase, T phase) of the distribution line 200. Specifically, the voltage transformer PD outputs the detection voltage from the connection point of two capacitors connected in series between each phase (R phase, S phase, T phase) of the distribution line 200 and the ground. It is configured to be.

零相変流器ZCT及び計器用変圧器PDの接地は、接地端子860と電気的に接続されている。
このようにして構成される工事用開閉器800は、配電自動化システム及び地絡点標定システム100の一部として機能する。
===まとめ===
The grounding of the zero-phase current transformer ZCT and the instrument transformer PD is electrically connected to the grounding terminal 860.
The construction switch 800 configured in this way functions as a part of the power distribution automation system and the ground fault point positioning system 100.
=== Summary ===

以上説明したように、本実施形態に係る地絡点標定システム100は、箱状の本体810を有し、配電線路200が架設される支柱600に対して着脱自在に設置され、配電線路200を接続又は切断する工事用開閉器800と、本体810に収容され、配電線路200に流れる電流を検出する電流センサ310(零相変流器ZCT)と、本体810に収容され、配電線路200に現れる電圧を検出する電圧センサ320(計器用変圧器PD)と、支柱600に対して工事用開閉器800とともに設置される計測端末400と、計測端末400から出力される情報に基づいて、配電線路200の地絡点を標定する地絡点標定装置500と、を備えている。 As described above, the ground fault point positioning system 100 according to the present embodiment has a box-shaped main body 810, and is detachably installed on a support column 600 on which the distribution line 200 is erected, and the distribution line 200 is installed. A construction switch 800 for connecting or disconnecting, a current sensor 310 (zero-phase current transformer ZCT) housed in the main body 810 and detecting the current flowing through the distribution line 200, and a current sensor 310 (zero-phase current transformer ZCT) housed in the main body 810 and appearing on the distribution line 200. The distribution line 200 is based on the voltage sensor 320 (instrument transformer PD) that detects the voltage, the measurement terminal 400 installed together with the construction switch 800 on the support column 600, and the information output from the measurement terminal 400. It is equipped with a ground fault point locating device 500 for locating the ground fault point of the above.

このように、地絡点を標定するために必要となる電流センサ310及び電圧センサ320を収容する開閉器として、配電自動化システムに用いられる常設型のセンサ開閉器とは異なり、配電線200に係る電気工事を行うに際して必要な期間、必要な場所へ取り付けることが可能な工事用開閉器800を用いることによって、既設のセンサ開閉器に追加する形で、設備投資費用を抑えて、センサ開閉器と同等の耐久性及び対候性を維持しつつ、地絡点を精度よく標定するのに必要とされる距離おきに長期に亘って工事用開閉器800を設置することが可能となる。又、工事用開閉器800は、支柱600に対する着脱を容易に行うことができる構造となっているため、例えば、地絡事故が発生する時期や地絡事故が頻発する地点において、既設のセンサ開閉器に追加する形で、工事用開閉器800を設置でき、配電線200の亘長が長い場合であっても、柔軟に対応できる地絡点標定システム100を実現することが可能となる。これによって、地絡事故の原因を早期に発見することが可能となる。 As described above, the switch for accommodating the current sensor 310 and the voltage sensor 320 required for determining the ground fault point is related to the distribution wire 200, unlike the permanent sensor switch used in the power distribution automation system. By using a construction switch 800 that can be attached to the required location for the required period when performing electrical work, it can be added to the existing sensor switch to reduce capital investment costs and become a sensor switch. It is possible to install the construction switch 800 for a long period of time at intervals required for accurately locating the ground fault point while maintaining the same durability and weather resistance. Further, since the construction switch 800 has a structure that can be easily attached to and detached from the support column 600, for example, the existing sensor can be opened and closed at a time when a ground fault occurs or at a point where a ground fault occurs frequently. The construction switch 800 can be installed in addition to the vessel, and even when the length of the distribution line 200 is long, it is possible to realize the ground fault point positioning system 100 that can flexibly deal with it. This makes it possible to detect the cause of the ground fault at an early stage.

尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。 It should be noted that the above embodiment is for facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof.

100 地絡点標定システム
200 配電系統
310 電流センサ
320 電圧センサ
400(400A、400B) 計測端末
500 地絡点標定装置
600 支柱
700 GPS衛星
800 工事用開閉器
810 本体
100 Ground fault point locating system 200 Distribution system 310 Current sensor 320 Voltage sensor 400 (400A, 400B) Measuring terminal 500 Ground fault locating device 600 Prop 700 GPS satellite 800 Construction switch 810 Main unit

Claims (1)

箱状の本体を有し、配電線路が架設される支柱に対して着脱自在に設置され、前記配電線路を接続又は切断する工事用開閉器と、
前記本体に収容され、前記配電線路に流れる電流を検出する電流センサと、
前記本体に収容され、前記配電線路に現れる電圧を検出する電圧センサと、
前記支柱に対して前記工事用開閉器とともに設置される計測端末と、
前記計測端末から出力される情報に基づいて、前記配電線路の地絡点を標定する地絡点標定装置と、
を備えたことを特徴とする地絡点標定システム。
A construction switch that has a box-shaped main body and is detachably installed on a support column on which a distribution line is erected to connect or disconnect the distribution line.
A current sensor housed in the main body and detecting a current flowing through the distribution line,
A voltage sensor housed in the main body and detecting a voltage appearing on the distribution line,
A measurement terminal installed with the construction switch on the support column,
Based on the information output from the measurement terminal, a ground fault point locating device for locating the ground fault point of the distribution line, and
A ground fault point positioning system characterized by being equipped with.
JP2019189256A 2019-10-16 2019-10-16 Earth fault point locating system Pending JP2021063750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019189256A JP2021063750A (en) 2019-10-16 2019-10-16 Earth fault point locating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019189256A JP2021063750A (en) 2019-10-16 2019-10-16 Earth fault point locating system

Publications (1)

Publication Number Publication Date
JP2021063750A true JP2021063750A (en) 2021-04-22

Family

ID=75486128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019189256A Pending JP2021063750A (en) 2019-10-16 2019-10-16 Earth fault point locating system

Country Status (1)

Country Link
JP (1) JP2021063750A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555936U (en) * 1978-10-12 1980-04-16
JPS5558026U (en) * 1978-10-12 1980-04-19
JPS6298426U (en) * 1985-12-10 1987-06-23
JPH0312567A (en) * 1989-06-08 1991-01-21 Kyushu Electric Power Co Inc Accident point locating system for distribution line and accident section detaching system
JPH03259755A (en) * 1990-03-09 1991-11-19 Hitachi Ltd Specifying device for accident aspect of electric power system
JPH10132890A (en) * 1996-10-31 1998-05-22 Hitachi Ltd Method and device for locating failure point
JP2003222650A (en) * 2002-01-30 2003-08-08 Tohoku Electric Power Co Inc Method and system for locating wiring failure point
JP2004101352A (en) * 2002-09-09 2004-04-02 San'eisha Mfg Co Ltd Portable ground fault detection sensor and trouble location search system
JP2006258485A (en) * 2005-03-15 2006-09-28 Hokuriku Electric Power Co Inc:The System for localizing ground fault section
JP2012065389A (en) * 2010-09-14 2012-03-29 Daihen Corp Accident time waveform data collection method of power distribution system and switch sub-station used for implementation thereof
JP2015165225A (en) * 2014-02-04 2015-09-17 東京電力株式会社 Fault point locating device
JP2016189292A (en) * 2015-03-30 2016-11-04 中国電力株式会社 Switch for construction
WO2017141328A1 (en) * 2016-02-15 2017-08-24 中国電力株式会社 Ground fault point locating system, control method for ground fault point locating device, and program
JP2017173212A (en) * 2016-03-25 2017-09-28 中国電力株式会社 Sensor for current detection and ground fault locating system
WO2019092850A1 (en) * 2017-11-10 2019-05-16 中国電力株式会社 Ground fault point locating system and ground fault point locating method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555936U (en) * 1978-10-12 1980-04-16
JPS5558026U (en) * 1978-10-12 1980-04-19
JPS6331316Y2 (en) * 1978-10-12 1988-08-22
JPS6298426U (en) * 1985-12-10 1987-06-23
JPH0312567A (en) * 1989-06-08 1991-01-21 Kyushu Electric Power Co Inc Accident point locating system for distribution line and accident section detaching system
JPH03259755A (en) * 1990-03-09 1991-11-19 Hitachi Ltd Specifying device for accident aspect of electric power system
JPH10132890A (en) * 1996-10-31 1998-05-22 Hitachi Ltd Method and device for locating failure point
JP2003222650A (en) * 2002-01-30 2003-08-08 Tohoku Electric Power Co Inc Method and system for locating wiring failure point
JP2004101352A (en) * 2002-09-09 2004-04-02 San'eisha Mfg Co Ltd Portable ground fault detection sensor and trouble location search system
JP2006258485A (en) * 2005-03-15 2006-09-28 Hokuriku Electric Power Co Inc:The System for localizing ground fault section
JP2012065389A (en) * 2010-09-14 2012-03-29 Daihen Corp Accident time waveform data collection method of power distribution system and switch sub-station used for implementation thereof
JP2015165225A (en) * 2014-02-04 2015-09-17 東京電力株式会社 Fault point locating device
JP2016189292A (en) * 2015-03-30 2016-11-04 中国電力株式会社 Switch for construction
WO2017141328A1 (en) * 2016-02-15 2017-08-24 中国電力株式会社 Ground fault point locating system, control method for ground fault point locating device, and program
JP2017173212A (en) * 2016-03-25 2017-09-28 中国電力株式会社 Sensor for current detection and ground fault locating system
WO2019092850A1 (en) * 2017-11-10 2019-05-16 中国電力株式会社 Ground fault point locating system and ground fault point locating method

Similar Documents

Publication Publication Date Title
JP6560731B2 (en) Continuous non-stop AC grounding system for power system protection
US6584417B1 (en) Method and directional element for fault direction determination in a capacitance-compensated line
KR101334312B1 (en) Distribution board, motor control panel and cabinet panel with function of controlling approch distance in accordance with arc flash energy
JP5201449B2 (en) Ground wire branch terminal and distribution board
KR101440492B1 (en) Switchgear having a function of electrical fire prevention and overload blocking
KR101449706B1 (en) Distributing board for realtime segmented sensing fault, harmonic wave and grounding resistance of power line and having a brocking and recovering function
KR101037729B1 (en) The Automatic Insulation Detecting system for power line
US20190348216A1 (en) Real-time detection/recovery system of power line failure in power distribution system and construction method therefor
GB2578339A (en) Open PEN detection and shut down system
JPS60255012A (en) Protecting relay
KR101490770B1 (en) Ground fault detecting apparatus
JP5640255B2 (en) Grounding system connection status confirmation system
JP2021063750A (en) Earth fault point locating system
EP1906190B1 (en) Control/protection device for electrical distribution networks
KR102381071B1 (en) Switch Gear having the System for Preventing Electric Shock
KR20200021862A (en) Smart distribution board
JP4215656B2 (en) Ground fault detection device and ground fault detection method
JP6994416B2 (en) Weighing device
JP5312833B2 (en) Circuit breaker
JP2610191B2 (en) Low pressure bypass switch
JP2012257384A (en) Short circuit distance relay, and system protection system using the same
CN208782469U (en) A kind of Intelligent arc extinguishing and overvoltage protection
JP6765459B2 (en) probe
Jullien The IT earthing system (unearthed neutral) in LV
US20150162740A1 (en) Safe Service Mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003