WO2017141328A1 - Ground fault point locating system, control method for ground fault point locating device, and program - Google Patents

Ground fault point locating system, control method for ground fault point locating device, and program Download PDF

Info

Publication number
WO2017141328A1
WO2017141328A1 PCT/JP2016/054326 JP2016054326W WO2017141328A1 WO 2017141328 A1 WO2017141328 A1 WO 2017141328A1 JP 2016054326 W JP2016054326 W JP 2016054326W WO 2017141328 A1 WO2017141328 A1 WO 2017141328A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
fault location
measurement
value
measurement value
Prior art date
Application number
PCT/JP2016/054326
Other languages
French (fr)
Japanese (ja)
Inventor
大原 久征
秀行 瀧澤
和博 小林
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2016/054326 priority Critical patent/WO2017141328A1/en
Priority to JP2016540074A priority patent/JP6057035B1/en
Publication of WO2017141328A1 publication Critical patent/WO2017141328A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the present invention relates to a ground fault location system and a ground fault location device control method and program.
  • This ground fault location system is used to measure the current and voltage of distribution lines, measuring equipment installed at each location of the distribution system, and the ground fault location from the measurement results sent from the measuring equipment at each location. And an entanglement point locating device.
  • the measuring device is a device that measures the voltage and current in the live distribution line, it is difficult to check the internal sensors and electronic circuits safely unless a power failure occurs.
  • the present invention has been made in view of the above problems, and an object thereof is to perform an internal inspection of a measuring device used in a ground fault location system safely without power failure of the distribution line.
  • a ground fault location system is a ground fault location system for locating a ground fault point in a distribution system, wherein sensors installed at a plurality of locations in the distribution system and attached to a distribution line are provided. And measuring the physical quantity that varies according to the power state of the power distribution system, and locating the ground fault point based on the measured values of the physical quantity respectively measured by the measuring apparatus at the plurality of locations.
  • a ground fault point locating device, and the ground fault point locating device determines that the measurement device has deteriorated when the measurement value acquired from the measurement device deviates from a predetermined range.
  • the present invention it is possible to safely check the inside of the measuring device used in the ground fault location system without powering the distribution line.
  • FIG. 1 shows the overall configuration of a ground fault location system 1000 according to an embodiment of the present invention.
  • the ground fault location system 1000 is a device for locating a location where a ground fault has occurred (ground fault point P) when a ground fault occurs in the distribution system.
  • the ground fault location system 1000 includes a measurement device 10 and a ground fault location device 300.
  • the measuring device 10 is a device that measures a physical quantity that varies depending on the power state of the distribution system, using sensors 150 that are installed at a plurality of locations in the distribution system and attached to the distribution line 500. Further, the ground fault location device 300 is a device that determines the ground fault point based on the measured values of the physical quantities respectively measured by the measurement devices 10 at a plurality of locations.
  • the measuring device 10 includes a sensor box 100 that houses the sensor 150, and a measuring terminal 200 that transmits a measurement result of the sensor 150 to the ground fault location device 300.
  • the sensor 150 measures a physical quantity that varies depending on the power state of the distribution system including the current or voltage of the distribution line 500.
  • the physical quantity measured by the sensor 150 may include a power factor and a frequency.
  • each measurement terminal 10 is described as having one sensor box 100, but as shown in FIG. 2, each phase of the distribution line 500 has a sensor box 100. Yes.
  • the sensor box 100 is attached to the distribution line 500, and a sensor 150 that measures a physical quantity that varies depending on the power state of the distribution system from the distribution line 500, a metal outer box 110 that covers the sensor 150, and an outer box 110, and a mounting bracket 120 for fixing the 110 to the arm metal 620 of the utility pole 600.
  • the sensor box 100 of each phase is fixed to the arm metal 620 on the ground first, and the whole is integrated, and the arm metal 620 is lifted to a predetermined mounting position on the pole. Then, it may be fixed to the utility pole 600 by the armrest mounting tool 610. For this reason, the installation work of the sensor box 100 can also be easily performed.
  • the measurement terminal 200 is a device that transmits the measurement value of the physical quantity measured by the sensor 150 of each phase of the distribution line 500 to the ground fault location device 300 via the communication path 400.
  • the measurement terminal 200 uses the physical quantity value (direct measurement value) of each phase of the distribution line 500 that is directly measured by the sensor 150, and the value of another physical quantity that varies depending on the power state of the distribution system (indirect). Measurement value) can be calculated and transmitted to the ground fault location device 300.
  • the measurement terminal 200 acquires a current value (direct measurement value) of each phase of the distribution line 500 from the sensor box 100, and calculates a zero-phase current (indirect measurement value) by combining these current values. It can be transmitted to the ground fault location device 300.
  • the measurement terminal 200 acquires the voltage value (direct measurement value) of each phase of the distribution line 500 from the sensor box 100, and calculates the zero-phase voltage (indirect measurement value) by combining these voltage values. It can be transmitted to the ground fault location device 300.
  • the configuration of the measurement terminal 200 is shown in FIG.
  • the measurement terminal 200 includes a GPS (Global Positioning System) reception unit 210, a sensor signal acquisition unit 220, a sensor signal synthesis unit 230, a data storage unit 240, and a data communication unit 250.
  • GPS Global Positioning System
  • the GPS receiving unit 210 acquires the current time from the GPS satellite 2000. Then, the GPS satellite receiving unit 210 writes the current time in the data storage unit 240. In the present embodiment, the GPS satellite receiving unit 210 writes the current time in the data storage unit 240 one by one every second.
  • the sensor signal acquisition unit 220 acquires measurement values (direct measurement values) from the sensors 150 installed in various places of the distribution system from the respective sensor boxes 100. Then, the sensor signal acquisition unit 220 writes these measurement values in the data storage unit 240. In the present embodiment, the sensor signal acquisition unit 220 writes the measurement value acquired from the sensor box 100 every second to the data storage unit 240 in accordance with the timing at which the GPS reception unit 210 writes the current time in the data storage unit 240. .
  • the sensor signal synthesis unit 230 calculates an indirect measurement value using the direct measurement value acquired by the sensor signal acquisition unit 220. Then, the sensor signal synthesis unit 230 writes these indirect measurement values in the data storage unit 240. In the present embodiment, the sensor signal synthesis unit 230 calculates an indirect measurement value every second and writes it in the data storage unit 240 in accordance with the timing when the GPS reception unit 210 writes the current time in the data storage unit 240.
  • FIG. 4 and FIG. 5 show how the current time, direct measurement values, and indirect measurement values are recorded in the data storage unit 240.
  • FIG. 4 shows voltage values (directly measured values) of respective phases (referred to as A-phase, B-phase, and C-phase) of the distribution line 500 measured by the sensor 150 of the measuring device 10 installed at a place where a distribution system is present.
  • FIG. 6 is a diagram illustrating a voltage table 241 in which zero-phase voltage values (indirect measurement values) calculated from these voltage values are recorded every second in association with current time information.
  • FIG. 5 shows the current values (directly measured values) of each phase of the distribution line 500 measured by the sensor 150 of the measuring device 10 installed in a place where the distribution system is present, and the zero phase calculated from these current values. It is a figure which shows the electric current table 242 which matched current value (indirect measurement value) with the present time information, and was recorded for every second.
  • the data communication unit 250 transmits the measurement values stored in the data storage unit 240 to the ground fault location device 300 at a predetermined cycle (for example, a cycle of 5 minutes).
  • a predetermined cycle for example, a cycle of 5 minutes.
  • the data communication unit 250 receives a command (transmission command) from the ground fault location device 300, the data communication unit 250 corresponds to the command for the most recent predetermined time among the data stored in the data storage unit 240. (For example, the data for the latest 60 seconds) is transmitted to the ground fault location device 300.
  • the ground fault point locating device 300 is a device for locating the ground fault point P based on the respective measured values measured by the measuring devices 10 installed at a plurality of locations in the distribution system.
  • the ground fault location device 300 includes a ground fault location unit 310 and a state monitoring unit 320.
  • the ground fault location unit 310 uses the measurement values (data recorded in the voltage table 241 and the current table 242) respectively measured by the measurement devices 10 installed at a plurality of locations in the distribution system. Receiving from the data communication unit 250, the ground fault point P is determined.
  • the ground fault locating device 300 is based on the zero-phase current and the zero-phase voltage transmitted from the measurement terminals 200 in each region. By specifying the arrival time of the surge current and surge voltage in the measurement terminal 200, the ground fault point P is determined.
  • the state monitoring unit 320 transmits the measurement values (data recorded in the voltage table 241 and the current table 242) respectively measured by the measurement devices 10 installed at a plurality of locations in the distribution system to the data communication of each measurement terminal 200.
  • the state monitoring unit 320 determines the deterioration state of the measurement device 10 according to the result of comparison between the received measurement value and a predetermined determination value. For example, the state monitoring unit 320 determines that the measurement device 10 is abnormal or normal.
  • the ground fault location device 300 in this manner allows the internal inspection of the measuring device 10 used in the ground fault location system 1000 to be performed without power failure of the distribution line 500. It can be done safely.
  • the ground fault location apparatus 300 transmits a measurement value transmission command to the measurement terminal 200 of the measurement apparatus 10. Then, the ground fault location device 300 receives the measurement value transmitted from the measurement terminal 200 in response to the transmission command, acquires the measurement value, and compares the measurement value with a predetermined determination value. In response to this, the state of the measuring apparatus 10 is determined.
  • the ground fault location device 300 can safely perform an internal inspection of the measuring device 10 used in the ground fault location system 1000 without power failure of the distribution line 500. Is possible.
  • the ground fault location device 300 transmits this transmission command to the measurement terminal 200 of the measurement device 10 every predetermined time (for example, every 10 days).
  • the ground fault location device 300 can capture the change in the state of the power distribution system every predetermined time (every 10 days). For this reason, for example, it is possible to grasp the progress of deterioration of the electronic devices of the distribution line 500, the sensor 150, or the measurement terminal 200, and to detect a failure in advance.
  • the ground fault location device 300 may be configured to transmit the transmission command to all the measurement terminals 200 every time. Only a transmission command may be transmitted. In the latter case, all the measurement devices 10 may be divided into a plurality of groups, and a transmission command may be transmitted to the measurement terminals 200 in each group in order so that each group is visited.
  • the ground fault location device 300 includes a CPU (Central (Processing Unit) 301, a memory 302, a communication circuit 303, a storage device 304, an input device 305, an output device 306, and a recording.
  • the computer includes a medium reading device 307.
  • the CPU 301 is responsible for overall control of the ground fault location device 300, and reads out a control program 700 composed of codes for performing various operations according to the present embodiment stored in the storage device 304 to the memory 302. By executing, various functions as the ground fault location device 300 are realized.
  • control program 700 is executed by the CPU 301 and cooperates with hardware devices such as the memory 302, the communication circuit 303, and the storage device 304, so that the ground fault location unit 310 and the state monitoring unit 320 shown in FIG. Is realized.
  • the memory 302 can be constituted by a semiconductor memory device, for example.
  • the communication circuit 303 is a network interface such as a network card.
  • the communication circuit 303 receives data from another computer via a network such as the Internet or a LAN (Local Area Network), and stores the received data in the storage device 304 or the memory 302.
  • the communication circuit 303 transmits data stored in the storage device 304 or the memory 302 to another computer via the network.
  • the communication circuit 303 also controls the exchange of various measurement values and various commands with the measurement terminal 200 performed via the communication path 400.
  • the communication path 400 is realized by the Internet network, telephone line network, or dedicated line network, and may be wired or wireless.
  • the input device 305 is a device such as an operation switch, a keyboard, a mouse, or a microphone, and is a device for receiving input of information by an operator of the ground fault location device 300.
  • the output device 306 is a device for outputting information, such as an LCD (Liquid Crystal Display), a display lamp, various display meters, a printer, and a speaker.
  • LCD Liquid Crystal Display
  • the storage device 304 can be configured by, for example, a hard disk device or a semiconductor storage device.
  • the storage device 304 is a device that provides a storage area for storing various programs, data, tables, and the like.
  • FIG. 8 shows a state where the control program 700 and the state detection table 710 are stored in the storage device 304.
  • the control program 700 and the state detection table 710 are read from the recording medium (various optical disks, magnetic disks, semiconductor memories, etc.) 800 to the storage device 304 by using the recording medium reader 307, so that the ground fault location device. It is also possible to store in the ground fault location device 300 by obtaining from the input device 305 or from another computer that is communicably connected via the communication circuit 303. It can also be done.
  • the recording medium various optical disks, magnetic disks, semiconductor memories, etc.
  • the state detection table 710 is a table used when the ground fault location device 300 determines the deterioration state of the measuring device 10, and is to be compared with measured values acquired from the measuring device 10 every predetermined time (for example, every 10 days). The judgment value is recorded.
  • FIG. 9 shows a state detection table 710 according to this embodiment.
  • twelve determination conditions (1) to (12) are listed.
  • these are merely examples for explaining the present embodiment, and other determination conditions are included. These determination conditions may not be included.
  • the state detection table 710 includes a “determination condition” column and a “determination result” column.
  • the “determination condition” column a determination value to be compared with a measurement value acquired from the measurement apparatus 10 every predetermined time (for example, every 10 days) is recorded.
  • the determination result when the ground fault location device 300 matches the determination condition as a result of comparing the measured value and the determination value is described.
  • the ground fault location device 300 determines that the A-phase sensor 150 is abnormal as a deterioration state of the measuring device 10.
  • the ground fault location device 300 determines that the state of the measuring device 10 is an A-phase voltage abnormality.
  • the ground fault location device 300 determines whether the phase A of the distribution line 500 has a ground fault or the sensor 150 of the phase A has failed by considering the determination result for the other measurement devices 10. Can do. For example, if the voltage value of the A phase of the other measuring device 10 is also below the lower limit value, it can be determined that the A phase has a ground fault, and the A phase of the other measuring device 10 can be determined. If the voltage value is not below the lower limit value, it can be determined that the sensor 150 has failed.
  • the ground fault location device 300 does not apply to the determination conditions (1) to (6) (all the direct measurement values are within the allowable range).
  • the sensor signal synthesis unit 230 that calculates the indirect measurement value using the direct measurement value. Can be determined to be abnormal.
  • the ground fault location device 300 determines the measurement device 10 according to the result of comparison with the determination value for the direct measurement value and the result of comparison with the determination value for the indirect measurement value. It is also possible to determine the deterioration state of. By such an aspect, it is also possible to find an abnormality in a device such as an electronic circuit inside the measuring apparatus 10.
  • the ground fault location device 300 compares the result of comparison with the direct measurement value of the determination condition (2) and the result of comparison with the indirect measurement value of the determination condition (7). Depending on the above, it is possible to determine the deterioration state of the measuring apparatus 10.
  • the ground fault location device 300 when the determination condition (9) in FIG. Since the absolute value of (indirect measurement value) exceeds the upper limit value, it can be determined that the A phase is grounded.
  • the ground fault location device 300 is more reliable. It is also possible to discover the presence or absence of abnormalities.
  • the ground fault location device 300 cannot correctly read the date and time from the voltage table 241 or the current table 242, or cannot identify the date and time from the read information. Can estimate that the GPS receiving unit 210 has not correctly obtained the current time from the GPS satellite 2000, and can determine that the GPS receiving unit 210 is abnormal as a deterioration state of the measuring device 10.
  • the ground fault location device 300 when no data can be read from the voltage table 241 or the current table 242, the ground fault location device 300 has an abnormality in the data storage unit 240. It can also be determined that the user is doing.
  • the measuring device 10 is installed on the armor 620 of the utility pole 600 of the distribution line 500, it continues to operate in units of several decades thereafter, but as described above, the internal inspection of the measuring device 10 is in the vicinity. It is difficult from the viewpoint of safety unless a power failure occurs. This is even more acute the higher the distribution line 500 is.
  • the measurement value transmitted from the measurement device 10 to the ground fault location device 300 every predetermined time (for example, every 5 minutes described above) and the predetermined determination value.
  • a measurement value transmission command is transmitted from the ground fault location device 300 to the measurement device 10 every predetermined time (for example, every 10 days or every month described above), and the measurement device according to the transmission command.
  • the measuring device can be determined without causing the power distribution line 500 to be interrupted by determining the state of the measuring device 10 according to the result of the comparison between the measured value transmitted from 10 and the predetermined determination value. Ten abnormalities can be detected.
  • ground fault location system 1000 according to the present embodiment is applied to a 22 kV extra high voltage distribution system.
  • the ground fault location device 300 stands by until a predetermined time arrives (S1000).
  • the predetermined time is determined, for example, every 5 minutes or every 10 days, every month, as in the example described above.
  • the ground fault location device 300 acquires a measurement value from the measurement device 10 (S1010).
  • the measurement value acquired by the ground fault location device 300 from the measurement device 10 may include an indirect measurement value in addition to the direct measurement value as described above.
  • the ground fault location device 300 refers to the state detection table 710 and compares the acquired measurement value with a predetermined determination value. And the ground fault location apparatus 300 determines the deterioration state of the measuring apparatus 10 according to the comparison result (S1020).
  • the ground fault location device 300 outputs the determination result to the output device 306.
  • the ground fault location device 300 can also visually display the determination result on, for example, a predetermined LCD (Liquid Crystal Display). If an abnormality is detected in the measuring device 10, the speaker is blown. You can also
  • the ground fault location device 300 can quickly transmit the deterioration state of the measuring device 10 to the operator of the ground fault location system 1000 or an operator such as a maintenance staff.
  • the operator can either replace the measuring device 10 or develop a replacement plan. It is also possible to start.
  • the ground fault location system 1000 As described above, the ground fault location system 1000, the control method of the ground fault location device 100, and the control program 700 according to the present embodiment have been described. However, according to the present embodiment, the measurement device used in the ground fault location system 1000 is described. 10 can be safely inspected without power failure of the distribution line 500.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

Provided is a ground fault point locating system for locating a ground fault point in a distribution system, said system being characterized by being provided with measurement devices that are respectively disposed at a plurality of locations in the distribution system and measure a physical quantity, which fluctuates in accordance with the power state of the distribution system, using a sensor mounted to a distribution line, and a ground fault point locating device that locates the ground fault point on the basis of the measured values of the physical quantity respectively measured by the measurement devices at the plurality of locations, and said system being further characterized in that if the measured value acquired from a measurement device has deviated from a predetermined range, the ground fault point locating device determines that the measurement device has deteriorated.

Description

地絡点標定システム及び地絡点標定装置の制御方法及びプログラムGround fault location system and control method and program for ground fault location device
 本発明は、地絡点標定システム及び地絡点標定装置の制御方法及びプログラムに関する。 The present invention relates to a ground fault location system and a ground fault location device control method and program.
 配電系統に地絡事故が発生した場合に地絡地点をいち早く特定することは、地絡事故からの復旧を迅速化する上で極めて重要である。そのため、地絡事故発生時に配電線に生じる電流や電圧の変化を捉え、この電流や電圧の変化から地絡地点を特定する地絡点標定システムが開発されている(例えば特許文献1参照)。 When a ground fault occurs in the power distribution system, it is extremely important to quickly identify the ground fault point in order to speed up recovery from the ground fault. Therefore, a ground fault location system has been developed that captures changes in current and voltage that occur in a distribution line when a ground fault occurs and identifies a ground fault point based on changes in the current and voltage (see, for example, Patent Document 1).
特開2004-061142号公報JP 2004-0661142 A
 この地絡点標定システムは、配電線の電流や電圧を計測するために配電系統の各所に設置される計測装置と、各所の計測装置から送られてくる計測結果から地絡点を標定する地絡点標定装置とを有して構成される。 This ground fault location system is used to measure the current and voltage of distribution lines, measuring equipment installed at each location of the distribution system, and the ground fault location from the measurement results sent from the measuring equipment at each location. And an entanglement point locating device.
 しかしながら、計測装置は、活線状態の配電線における電圧や電流を計測する装置であるため、停電させない限り、内部のセンサや電子回路の点検を安全に行うことは困難である。 However, since the measuring device is a device that measures the voltage and current in the live distribution line, it is difficult to check the internal sensors and electronic circuits safely unless a power failure occurs.
 本発明は上記課題を鑑みてなされたものであり、地絡点標定システムに用いられる計測装置の内部の点検を、配電線を停電することなく安全に行うことを一つの目的とする。 The present invention has been made in view of the above problems, and an object thereof is to perform an internal inspection of a measuring device used in a ground fault location system safely without power failure of the distribution line.
 一つの側面に係る地絡点標定システムは、配電系統における地絡点を標定する地絡点標定システムであって、前記配電系統における複数の箇所にそれぞれ設置され、配電線に装着されたセンサを用いて前記配電系統の電力の状態に応じて変動する物理量を計測する計測装置と、前記複数の箇所の前記計測装置によってそれぞれ計測された前記物理量の計測値に基づいて、前記地絡点を標定する地絡点標定装置と、を備え、前記地絡点標定装置は、前記計測装置から取得した前記計測値が所定範囲から逸脱している場合に、前記計測装置が劣化したと判定する。 A ground fault location system according to one aspect is a ground fault location system for locating a ground fault point in a distribution system, wherein sensors installed at a plurality of locations in the distribution system and attached to a distribution line are provided. And measuring the physical quantity that varies according to the power state of the power distribution system, and locating the ground fault point based on the measured values of the physical quantity respectively measured by the measuring apparatus at the plurality of locations A ground fault point locating device, and the ground fault point locating device determines that the measurement device has deteriorated when the measurement value acquired from the measurement device deviates from a predetermined range.
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄の記載、及び図面の記載等により明らかにされる。 The other problems disclosed by the present application and the solutions thereof will be clarified by the description in the column of the embodiment for carrying out the invention and the description of the drawings.
 本発明によれば、地絡点標定システムに用いられる計測装置の内部の点検を、配電線を停電することなく安全に行うことが可能となる。 According to the present invention, it is possible to safely check the inside of the measuring device used in the ground fault location system without powering the distribution line.
本実施形態に係る地絡点標定システムを示す図である。It is a figure which shows the ground fault location system which concerns on this embodiment. 本実施形態に係るセンサ箱を示す図である。It is a figure which shows the sensor box which concerns on this embodiment. 本実施形態に係る計測端末を示す図である。It is a figure which shows the measuring terminal which concerns on this embodiment. 本実施形態に係る電圧テーブルを示す図である。It is a figure which shows the voltage table which concerns on this embodiment. 本実施形態に係る電流テーブルを示す図である。It is a figure which shows the electric current table which concerns on this embodiment. 本実施形態に係る地絡点標定装置を示す図である。It is a figure which shows the ground fault location apparatus which concerns on this embodiment. 本実施形態に係る地絡点標定装置を示す図である。It is a figure which shows the ground fault location apparatus which concerns on this embodiment. 本実施形態に係る記憶装置を示す図である。It is a figure which shows the memory | storage device which concerns on this embodiment. 本実施形態に係る状態検知テーブルを示す図である。It is a figure which shows the state detection table which concerns on this embodiment. 本実施形態に係る処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process which concerns on this embodiment.
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。 At least the following matters will become clear from the description of this specification and the accompanying drawings.
 図1に、本発明の実施形態に係る地絡点標定システム1000の全体構成を示す。 FIG. 1 shows the overall configuration of a ground fault location system 1000 according to an embodiment of the present invention.
 地絡点標定システム1000は、配電系統において地絡が発生した場合に、地絡が発生した箇所(地絡点P)を標定するための装置である。 The ground fault location system 1000 is a device for locating a location where a ground fault has occurred (ground fault point P) when a ground fault occurs in the distribution system.
 図1に示すように、地絡点標定システム1000は、計測装置10及び地絡点標定装置300を備えて構成される。 As shown in FIG. 1, the ground fault location system 1000 includes a measurement device 10 and a ground fault location device 300.
 計測装置10は、配電系統における複数の箇所にそれぞれ設置され、配電線500に装着されたセンサ150を用いて、配電系統の電力の状態に応じて変動する物理量を計測する装置である。また地絡点標定装置300は、複数の箇所の計測装置10によってそれぞれ計測された物理量の計測値に基づいて地絡点を標定する装置である。 The measuring device 10 is a device that measures a physical quantity that varies depending on the power state of the distribution system, using sensors 150 that are installed at a plurality of locations in the distribution system and attached to the distribution line 500. Further, the ground fault location device 300 is a device that determines the ground fault point based on the measured values of the physical quantities respectively measured by the measurement devices 10 at a plurality of locations.
 計測装置10は、センサ150を収容するセンサ箱100と、センサ150による計測結果を地絡点標定装置300に送信する計測端末200と、を有して構成される。 The measuring device 10 includes a sensor box 100 that houses the sensor 150, and a measuring terminal 200 that transmits a measurement result of the sensor 150 to the ground fault location device 300.
 センサ150は、配電線500の電流あるいは電圧を含む配電系統の電力の状態に応じて変動する物理量を計測する。センサ150が計測する物理量は、その他、力率や周波数などを含んでいても良い。 The sensor 150 measures a physical quantity that varies depending on the power state of the distribution system including the current or voltage of the distribution line 500. In addition, the physical quantity measured by the sensor 150 may include a power factor and a frequency.
 なお配電線500は3相であることが多いが、図1には、記載の簡略化のために配電線500を1本のみ記載している。そのため、図1には、各計測端末10は、一つのセンサ箱100を有するように記載されているが、図2に示すように、配電線500の各相にそれぞれセンサ箱100を有している。 Although the distribution line 500 is often three-phase, only one distribution line 500 is shown in FIG. 1 for simplicity of description. Therefore, in FIG. 1, each measurement terminal 10 is described as having one sensor box 100, but as shown in FIG. 2, each phase of the distribution line 500 has a sensor box 100. Yes.
 センサ箱100は、配電線500に装着されて、配電系統の電力の状態に応じて変動する物理量を配電線500から計測するセンサ150と、センサ150を覆う金属製の外箱110と、外箱110を電柱600の腕金620に固定するための装柱金具120と、を有して構成される。 The sensor box 100 is attached to the distribution line 500, and a sensor 150 that measures a physical quantity that varies depending on the power state of the distribution system from the distribution line 500, a metal outer box 110 that covers the sensor 150, and an outer box 110, and a mounting bracket 120 for fixing the 110 to the arm metal 620 of the utility pole 600.
 センサ箱100を電柱600に設置する場合は、先に地上で各相のセンサ箱100を腕金620に固定して全体を一体化しておき、腕金620ごと柱上の所定の装着位置に持ち上げて、腕金装着具610によって電柱600に固定するようにすればよい。このため、センサ箱100の設置工事も容易に行うことができる。 When the sensor box 100 is installed on the power pole 600, the sensor box 100 of each phase is fixed to the arm metal 620 on the ground first, and the whole is integrated, and the arm metal 620 is lifted to a predetermined mounting position on the pole. Then, it may be fixed to the utility pole 600 by the armrest mounting tool 610. For this reason, the installation work of the sensor box 100 can also be easily performed.
 計測端末200は、配電線500の各相のセンサ150によって計測された物理量の計測値を、通信路400を介して地絡点標定装置300に送信する装置である。 The measurement terminal 200 is a device that transmits the measurement value of the physical quantity measured by the sensor 150 of each phase of the distribution line 500 to the ground fault location device 300 via the communication path 400.
 また計測端末200は、センサ150によって直接計測された配電線500の各相の物理量の値(直接計測値)を用いて、配電系統の電力の状態に応じて変動する他の物理量の値(間接計測値)を算出して、地絡点標定装置300に送信することもできる。 In addition, the measurement terminal 200 uses the physical quantity value (direct measurement value) of each phase of the distribution line 500 that is directly measured by the sensor 150, and the value of another physical quantity that varies depending on the power state of the distribution system (indirect). Measurement value) can be calculated and transmitted to the ground fault location device 300.
 例えば計測端末200は、センサ箱100から配電線500の各相の電流値(直接計測値)を取得して、これらの電流値を合成することで零相電流(間接計測値)を算出し、地絡点標定装置300に送信するようにすることができる。あるいは計測端末200は、センサ箱100から配電線500の各相の電圧値(直接計測値)を取得して、これらの電圧値を合成することで零相電圧(間接計測値)を算出し、地絡点標定装置300に送信するようにすることができる。 For example, the measurement terminal 200 acquires a current value (direct measurement value) of each phase of the distribution line 500 from the sensor box 100, and calculates a zero-phase current (indirect measurement value) by combining these current values. It can be transmitted to the ground fault location device 300. Alternatively, the measurement terminal 200 acquires the voltage value (direct measurement value) of each phase of the distribution line 500 from the sensor box 100, and calculates the zero-phase voltage (indirect measurement value) by combining these voltage values. It can be transmitted to the ground fault location device 300.
 計測端末200の構成を図3に示す。 The configuration of the measurement terminal 200 is shown in FIG.
 計測端末200は、GPS(Global Positioning System)受信部210と、センサ信号取得部220と、センサ信号合成部230と、データ記憶部240と、データ通信部250と、を有して構成される。 The measurement terminal 200 includes a GPS (Global Positioning System) reception unit 210, a sensor signal acquisition unit 220, a sensor signal synthesis unit 230, a data storage unit 240, and a data communication unit 250.
 GPS受信部210は、GPS衛星2000から現在時刻を取得する。そしてGPS衛星受信部210は、現在時刻をデータ記憶部240に書き込む。本実施形態では、GPS衛星受信部210は1秒ごとに現在時刻をデータ記憶部240に次々に書き込んでいく。 The GPS receiving unit 210 acquires the current time from the GPS satellite 2000. Then, the GPS satellite receiving unit 210 writes the current time in the data storage unit 240. In the present embodiment, the GPS satellite receiving unit 210 writes the current time in the data storage unit 240 one by one every second.
 センサ信号取得部220は、配電系統の各所に設置されているセンサ150による計測値(直接計測値)をそれぞれのセンサ箱100から取得する。そしてセンサ信号取得部220は、これらの計測値をデータ記憶部240に書き込む。本実施形態では、センサ信号取得部220は、GPS受信部210が現在時刻をデータ記憶部240に書き込むタイミングに合わせて、1秒毎にセンサ箱100から取得した計測値をデータ記憶部240に書き込む。 The sensor signal acquisition unit 220 acquires measurement values (direct measurement values) from the sensors 150 installed in various places of the distribution system from the respective sensor boxes 100. Then, the sensor signal acquisition unit 220 writes these measurement values in the data storage unit 240. In the present embodiment, the sensor signal acquisition unit 220 writes the measurement value acquired from the sensor box 100 every second to the data storage unit 240 in accordance with the timing at which the GPS reception unit 210 writes the current time in the data storage unit 240. .
 センサ信号合成部230は、センサ信号取得部220が取得した直接計測値を用いて、間接計測値を算出する。そしてセンサ信号合成部230は、これらの間接計測値をデータ記憶部240に書き込む。本実施形態では、センサ信号合成部230は、GPS受信部210が現在時刻をデータ記憶部240に書き込むタイミングに合わせて、1秒ごとに間接計測値を算出してデータ記憶部240に書き込む。 The sensor signal synthesis unit 230 calculates an indirect measurement value using the direct measurement value acquired by the sensor signal acquisition unit 220. Then, the sensor signal synthesis unit 230 writes these indirect measurement values in the data storage unit 240. In the present embodiment, the sensor signal synthesis unit 230 calculates an indirect measurement value every second and writes it in the data storage unit 240 in accordance with the timing when the GPS reception unit 210 writes the current time in the data storage unit 240.
 データ記憶部240に現在時刻、直接計測値、間接計測値が記録されている様子を図4及び図5に示す。 FIG. 4 and FIG. 5 show how the current time, direct measurement values, and indirect measurement values are recorded in the data storage unit 240.
 図4は、配電系統のある場所に設置されている計測装置10のセンサ150によって計測された配電線500の各相(A相、B相、C相と称する)の電圧値(直接計測値)と、これらの電圧値から算出された零相電圧値(間接計測値)と、を現在時刻情報と対応付けて1秒ごとに記録した電圧テーブル241を示す図である。 FIG. 4 shows voltage values (directly measured values) of respective phases (referred to as A-phase, B-phase, and C-phase) of the distribution line 500 measured by the sensor 150 of the measuring device 10 installed at a place where a distribution system is present. FIG. 6 is a diagram illustrating a voltage table 241 in which zero-phase voltage values (indirect measurement values) calculated from these voltage values are recorded every second in association with current time information.
 図5は、配電系統のある場所に設置されている計測装置10のセンサ150によって計測された配電線500の各相の電流値(直接計測値)と、これらの電流値から算出された零相電流値(間接計測値)と、を現在時刻情報と対応付けて1秒ごとに記録した電流テーブル242を示す図である。 FIG. 5 shows the current values (directly measured values) of each phase of the distribution line 500 measured by the sensor 150 of the measuring device 10 installed in a place where the distribution system is present, and the zero phase calculated from these current values. It is a figure which shows the electric current table 242 which matched current value (indirect measurement value) with the present time information, and was recorded for every second.
 図3に戻って、データ通信部250は、データ記憶部240に記憶されている計測値を所定周期(例えば5分周期)で地絡点標定装置300に送信する。またデータ通信部250は、地絡点標定装置300からコマンド(送信命令)を受信した場合には、このコマンドに応じて、データ記憶部240に記憶されているデータの内、直近の所定時間分(例えば直近の60秒分のデータ)を地絡点標定装置300に送信する。 Returning to FIG. 3, the data communication unit 250 transmits the measurement values stored in the data storage unit 240 to the ground fault location device 300 at a predetermined cycle (for example, a cycle of 5 minutes). In addition, when the data communication unit 250 receives a command (transmission command) from the ground fault location device 300, the data communication unit 250 corresponds to the command for the most recent predetermined time among the data stored in the data storage unit 240. (For example, the data for the latest 60 seconds) is transmitted to the ground fault location device 300.
 次に、地絡点標定装置300について説明する。地絡点標定装置300は、配電系統における複数の箇所に設置されている計測装置10によって計測されたそれぞれの計測値に基づいて、地絡点Pを標定する装置である。 Next, the ground fault location device 300 will be described. The ground fault point locating device 300 is a device for locating the ground fault point P based on the respective measured values measured by the measuring devices 10 installed at a plurality of locations in the distribution system.
 図6に示すように、地絡点標定装置300は、地絡点標定部310と、状態監視部320と、を有して構成される。 As illustrated in FIG. 6, the ground fault location device 300 includes a ground fault location unit 310 and a state monitoring unit 320.
 地絡点標定部310は、配電系統における複数の箇所に設置されている計測装置10によってそれぞれ計測された計測値(電圧テーブル241、電流テーブル242に記録されたデータ)をそれぞれの計測端末200のデータ通信部250から受信して、地絡点Pを標定する。 The ground fault location unit 310 uses the measurement values (data recorded in the voltage table 241 and the current table 242) respectively measured by the measurement devices 10 installed at a plurality of locations in the distribution system. Receiving from the data communication unit 250, the ground fault point P is determined.
 地絡点Pを標定する方法としては様々な方法が開発されているが、例えば地絡点標定装置300は、各地の計測端末200から送信されてくる零相電流及び零相電圧から、各地の計測端末200におけるサージ電流及びサージ電圧の到達時刻を特定することにより、地絡点Pを標定する。 Various methods have been developed as a method for locating the ground fault point P. For example, the ground fault locating device 300 is based on the zero-phase current and the zero-phase voltage transmitted from the measurement terminals 200 in each region. By specifying the arrival time of the surge current and surge voltage in the measurement terminal 200, the ground fault point P is determined.
 状態監視部320は、配電系統における複数の箇所に設置されている計測装置10によってそれぞれ計測された計測値(電圧テーブル241、電流テーブル242に記録されたデータ)をそれぞれの計測端末200のデータ通信部250から受信して、受信した計測値が所定範囲から逸脱している場合に、計測装置10が劣化したと判定する。具体的には、状態監視部320は、受信した計測値と所定の判定値との比較の結果に応じて、計測装置10の劣化状態を判定する。例えば状態監視部320は、計測装置10が異常である、あるいは正常である、と判定する。 The state monitoring unit 320 transmits the measurement values (data recorded in the voltage table 241 and the current table 242) respectively measured by the measurement devices 10 installed at a plurality of locations in the distribution system to the data communication of each measurement terminal 200. When the measured value received from the unit 250 deviates from the predetermined range, it is determined that the measuring device 10 has deteriorated. Specifically, the state monitoring unit 320 determines the deterioration state of the measurement device 10 according to the result of comparison between the received measurement value and a predetermined determination value. For example, the state monitoring unit 320 determines that the measurement device 10 is abnormal or normal.
 詳細は後述するが、このような態様によって本実施形態に係る地絡点標定装置300は、地絡点標定システム1000に用いられる計測装置10の内部の点検を、配電線500を停電することなく安全に行うことが可能となる。 Although details will be described later, the ground fault location device 300 according to the present embodiment in this manner allows the internal inspection of the measuring device 10 used in the ground fault location system 1000 to be performed without power failure of the distribution line 500. It can be done safely.
 また本実施形態に係る地絡点標定装置300は、計測装置10の計測端末200に対して計測値の送信命令を送信する。そして地絡点標定装置300は、この送信命令に応じて計測端末200から送信されてくる計測値を受信することで計測値を取得して、この計測値と所定の判定値との比較の結果に応じて、計測装置10の状態を判定する。 Also, the ground fault location apparatus 300 according to the present embodiment transmits a measurement value transmission command to the measurement terminal 200 of the measurement apparatus 10. Then, the ground fault location device 300 receives the measurement value transmitted from the measurement terminal 200 in response to the transmission command, acquires the measurement value, and compares the measurement value with a predetermined determination value. In response to this, the state of the measuring apparatus 10 is determined.
 このような態様によっても、本実施形態に係る地絡点標定装置300は、地絡点標定システム1000に用いられる計測装置10の内部の点検を、配電線500を停電することなく安全に行うことが可能となる。 Also in such an aspect, the ground fault location device 300 according to the present embodiment can safely perform an internal inspection of the measuring device 10 used in the ground fault location system 1000 without power failure of the distribution line 500. Is possible.
 なお本実施形態では、地絡点標定装置300は、この送信命令を所定時間毎に(例えば10日毎に)計測装置10の計測端末200に対して送信する。 In the present embodiment, the ground fault location device 300 transmits this transmission command to the measurement terminal 200 of the measurement device 10 every predetermined time (for example, every 10 days).
 このような態様によって、地絡点標定装置300は、所定時間毎(10日毎)の配電系統の状態の変化を捉えることが可能となる。このため、例えば、配電線500やセンサ150、あるいは計測端末200の電子機器の劣化の進行状況を把握し、故障を未然に検知することも可能となる。 In this manner, the ground fault location device 300 can capture the change in the state of the power distribution system every predetermined time (every 10 days). For this reason, for example, it is possible to grasp the progress of deterioration of the electronic devices of the distribution line 500, the sensor 150, or the measurement terminal 200, and to detect a failure in advance.
 なお、地絡点標定装置300は、計測端末200に送信命令を送信する際に、毎回全ての計測端末200に送信命令を送信するようにしても良いし、一部の計測端末200に対してのみ送信命令を送信するようにしても良い。また後者の場合は、全ての計測装置10を複数のグループに分け、各グループを巡回するように、順番に各グループの計測端末200に対して送信命令を送信するようにしても良い。 In addition, when transmitting a transmission command to the measurement terminal 200, the ground fault location device 300 may be configured to transmit the transmission command to all the measurement terminals 200 every time. Only a transmission command may be transmitted. In the latter case, all the measurement devices 10 may be divided into a plurality of groups, and a transmission command may be transmitted to the measurement terminals 200 in each group in order so that each group is visited.
 毎回すべての計測端末200に送信命令を送信する場合には、毎回全ての計測装置10の劣化状態を検査することが可能となる。また一部の計測端末200に対してのみ送信命令を送信する場合には、例えば故障時の影響の大きな計測装置10に対して重点的に劣化状態の検査を行うことで、効率的な劣化状態の検査が可能となる。また毎回異なるグループの計測端末200に送信命令を送信する場合には、地絡点標定装置300の負担を軽減しつつ、全ての計測装置10の劣化状態を検査することが可能となる。 When transmitting a transmission command to all the measuring terminals 200 every time, it becomes possible to inspect the deterioration state of all the measuring devices 10 every time. Further, when transmitting a transmission command only to a part of the measurement terminals 200, for example, an efficient deterioration state can be obtained by intensively inspecting the deterioration state with respect to the measurement device 10 having a large influence at the time of failure Can be inspected. Moreover, when transmitting a transmission command to the measurement terminal 200 of a different group each time, it becomes possible to test | inspect the degradation state of all the measuring devices 10, reducing the burden of the ground fault point location apparatus 300. FIG.
 なお、本実施形態に係る地絡点標定装置300は、図7に示すように、CPU(Central Processing Unit)301、メモリ302、通信回路303、記憶装置304、入力装置305、出力装置306及び記録媒体読取装置307を有して構成されるコンピュータである。 As shown in FIG. 7, the ground fault location device 300 according to the present embodiment includes a CPU (Central (Processing Unit) 301, a memory 302, a communication circuit 303, a storage device 304, an input device 305, an output device 306, and a recording. The computer includes a medium reading device 307.
 CPU301は地絡点標定装置300の全体の制御を司るもので、記憶装置304に記憶される本実施形態に係る各種の動作を行うためのコードから構成される制御プログラム700をメモリ302に読み出して実行することにより、地絡点標定装置300としての各種機能を実現する。 The CPU 301 is responsible for overall control of the ground fault location device 300, and reads out a control program 700 composed of codes for performing various operations according to the present embodiment stored in the storage device 304 to the memory 302. By executing, various functions as the ground fault location device 300 are realized.
 例えば、CPU301により制御プログラム700が実行され、メモリ302や通信回路303、記憶装置304等のハードウェア機器と協働することにより、図6に示した地絡点標定部310や状態監視部320などが実現される。 For example, the control program 700 is executed by the CPU 301 and cooperates with hardware devices such as the memory 302, the communication circuit 303, and the storage device 304, so that the ground fault location unit 310 and the state monitoring unit 320 shown in FIG. Is realized.
 メモリ302は例えば半導体記憶装置により構成することができる。 The memory 302 can be constituted by a semiconductor memory device, for example.
 通信回路303は、ネットワークカードなどのネットワークインタフェースである。通信回路303は、インターネットやLAN(Local Area Network)などのネットワークを介して他のコンピュータからデータを受信し、受信したデータを記憶装置304やメモリ302に記憶する。また通信回路303は、記憶装置304やメモリ302に記憶されているデータを、ネットワークを介して他のコンピュータへ送信する。 The communication circuit 303 is a network interface such as a network card. The communication circuit 303 receives data from another computer via a network such as the Internet or a LAN (Local Area Network), and stores the received data in the storage device 304 or the memory 302. The communication circuit 303 transmits data stored in the storage device 304 or the memory 302 to another computer via the network.
 もちろん通信回路303は、通信路400を介して行われる計測端末200との各種計測値や各種コマンドの授受も制御する。 Of course, the communication circuit 303 also controls the exchange of various measurement values and various commands with the measurement terminal 200 performed via the communication path 400.
 なお通信路400は、インターネット網や電話回線網、専用回線網により実現され、有線であっても無線であっても良い。 Note that the communication path 400 is realized by the Internet network, telephone line network, or dedicated line network, and may be wired or wireless.
 入力装置305は、操作スイッチやキーボード、マウス、マイク等の装置であり、地絡点標定装置300の操作者による情報の入力を受け付けるための装置である。出力装置306は、LCD(Liquid Crystal Display)や表示ランプ、各種表示メータ、プリンタ、スピーカ等の装置であり、情報を出力するための装置である。 The input device 305 is a device such as an operation switch, a keyboard, a mouse, or a microphone, and is a device for receiving input of information by an operator of the ground fault location device 300. The output device 306 is a device for outputting information, such as an LCD (Liquid Crystal Display), a display lamp, various display meters, a printer, and a speaker.
 記憶装置304は、例えばハードディスク装置や半導体記憶装置等により構成することができる。記憶装置304は、各種プログラムやデータ、テーブル等を記憶するための記憶領域を提供する装置である。図8に、記憶装置304に制御プログラム700、状態検知テーブル710が記憶されている様子を示す。 The storage device 304 can be configured by, for example, a hard disk device or a semiconductor storage device. The storage device 304 is a device that provides a storage area for storing various programs, data, tables, and the like. FIG. 8 shows a state where the control program 700 and the state detection table 710 are stored in the storage device 304.
 なお、制御プログラム700や状態検知テーブル710は、記録媒体読取装置307を用いて、記録媒体(各種の光ディスクや磁気ディスク、半導体メモリ等)800から記憶装置304に読み出すことで、地絡点標定装置300に格納されるようにすることもできるし、入力装置305から、あるいは通信回路303を介して通信可能に接続される他のコンピュータから取得することで、地絡点標定装置300に格納されるようにすることもできる。 The control program 700 and the state detection table 710 are read from the recording medium (various optical disks, magnetic disks, semiconductor memories, etc.) 800 to the storage device 304 by using the recording medium reader 307, so that the ground fault location device. It is also possible to store in the ground fault location device 300 by obtaining from the input device 305 or from another computer that is communicably connected via the communication circuit 303. It can also be done.
 状態検知テーブル710は、地絡点標定装置300が計測装置10の劣化状態を判定する際に用いるテーブルであり、計測装置10から所定時間毎(例えば10日毎)に取得する計測値と比較するための判定値が記録されている。 The state detection table 710 is a table used when the ground fault location device 300 determines the deterioration state of the measuring device 10, and is to be compared with measured values acquired from the measuring device 10 every predetermined time (for example, every 10 days). The judgment value is recorded.
 本実施形態に係る状態検知テーブル710を図9に示す。なお、図9には(1)~(12)までの12個の判定条件が列記されているが、もちろんこれらは本実施形態の説明のための一例にすぎず、これら以外の判定条件が含まれていても良いし、逆にこれらの判定条件が含まれていなくても良い。 FIG. 9 shows a state detection table 710 according to this embodiment. In FIG. 9, twelve determination conditions (1) to (12) are listed. Of course, these are merely examples for explaining the present embodiment, and other determination conditions are included. These determination conditions may not be included.
 図9に示すように、状態検知テーブル710は、”判定条件”欄と、”判定結果”欄と、を有して構成されている。 As shown in FIG. 9, the state detection table 710 includes a “determination condition” column and a “determination result” column.
 ”判定条件”欄には、計測装置10から所定時間毎(例えば10日毎)に取得する計測値と比較する判定値が記録されている。 In the “determination condition” column, a determination value to be compared with a measurement value acquired from the measurement apparatus 10 every predetermined time (for example, every 10 days) is recorded.
 ”判定結果”欄には、地絡点標定装置300が計測値と判定値とを比較した結果、判定条件にあてはまる場合の判定結果が記載されている。 In the “determination result” column, the determination result when the ground fault location device 300 matches the determination condition as a result of comparing the measured value and the determination value is described.
 例えば図9に示す例では、判定条件(1)で示すように、A相の電圧値(直接計測値)を所定の上限値と比較する際に、この電圧値が上限値を超えている場合には、地絡点標定装置300は、計測装置10の劣化状態として、A相のセンサ150が異常であると判定する。 For example, in the example shown in FIG. 9, when the voltage value of the A phase (direct measurement value) is compared with a predetermined upper limit value as shown in the determination condition (1), the voltage value exceeds the upper limit value. The ground fault location device 300 determines that the A-phase sensor 150 is abnormal as a deterioration state of the measuring device 10.
 なお図9の判定条件(2)のように、A相の電圧値が下限値を下回っている場合には、配電線500のA相が地絡した可能性と、A相のセンサ150が故障した可能性の両方が考えられるため、この時点では地絡点標定装置300は、計測装置10の状態として、A相の電圧異常であるとの判定に留める。 In addition, when the voltage value of the A phase is below the lower limit as in the determination condition (2) of FIG. 9, the possibility that the A phase of the distribution line 500 is grounded and the A phase sensor 150 is broken. Therefore, at this point in time, the ground fault location device 300 determines that the state of the measuring device 10 is an A-phase voltage abnormality.
 この場合、地絡点標定装置300は、他の計測装置10に対する判定結果を考慮することで、配電線500のA相が地絡したのか、A相のセンサ150が故障したのかを特定することができる。例えば、もし、他の計測装置10のA相の電圧値も同様に下限値を下回っている場合には、A相が地絡したと判定することができ、他の計測装置10のA相の電圧値は下限値を下回っていない場合には、センサ150が故障したと判定することができる。 In this case, the ground fault location device 300 determines whether the phase A of the distribution line 500 has a ground fault or the sensor 150 of the phase A has failed by considering the determination result for the other measurement devices 10. Can do. For example, if the voltage value of the A phase of the other measuring device 10 is also below the lower limit value, it can be determined that the A phase has a ground fault, and the A phase of the other measuring device 10 can be determined. If the voltage value is not below the lower limit value, it can be determined that the sensor 150 has failed.
 また図9の判定条件(8)に示すように、地絡点標定装置300は、判定条件(1)~判定条件(6)にはあてはまらない(直接計測値は全て許容範囲内)にもかかわらず、判定条件(7)の零相電圧(間接計測値)が上限値を超えている(許容範囲内でない)場合には、直接計測値を用いて間接計測値を算出するセンサ信号合成部230の算出回路が異常であると判定できる。 Further, as shown in the determination condition (8) in FIG. 9, the ground fault location device 300 does not apply to the determination conditions (1) to (6) (all the direct measurement values are within the allowable range). First, when the zero-phase voltage (indirect measurement value) of the determination condition (7) exceeds the upper limit value (not within the allowable range), the sensor signal synthesis unit 230 that calculates the indirect measurement value using the direct measurement value. Can be determined to be abnormal.
 このように、本実施形態に係る地絡点標定装置300は、直接計測値に対する判定値との比較の結果と、間接計測値に対する判定値との比較の結果と、に応じて、計測装置10の劣化状態を判定することもできる。このような態様により、計測装置10の内部の電子回路等の機器の異常を発見することも可能となる。 As described above, the ground fault location device 300 according to the present embodiment determines the measurement device 10 according to the result of comparison with the determination value for the direct measurement value and the result of comparison with the determination value for the indirect measurement value. It is also possible to determine the deterioration state of. By such an aspect, it is also possible to find an abnormality in a device such as an electronic circuit inside the measuring apparatus 10.
 また図9の判定条件(9)に示すように、地絡点標定装置300は、判定条件(2)の直接計測値に対する比較の結果と、判定条件(7)の間接計測値に対する比較の結果と、に応じて、計測装置10の劣化状態を判定するようにすることもできる。 Further, as shown in the determination condition (9) of FIG. 9, the ground fault location device 300 compares the result of comparison with the direct measurement value of the determination condition (2) and the result of comparison with the indirect measurement value of the determination condition (7). Depending on the above, it is possible to determine the deterioration state of the measuring apparatus 10.
 具体的には、地絡点標定装置300は、図9の判定条件(9)が当てはまる場合は、A相の電圧値(直接計測値)が下限値を下回っており、かつ、零相電圧値(間接計測値)の絶対値が上限値を上回っていることから、A相が地絡していると判定することができる。 Specifically, in the ground fault location device 300, when the determination condition (9) in FIG. Since the absolute value of (indirect measurement value) exceeds the upper limit value, it can be determined that the A phase is grounded.
 このように、直接計測値に対する判定値との比較の結果と、間接計測値に対する判定値との比較の結果と、を組み合わせることによって、本実施形態に係る地絡点標定装置300は、より確実に異常の有無を発見することも可能となる。 Thus, by combining the result of comparison with the determination value for the direct measurement value and the result of comparison with the determination value for the indirect measurement value, the ground fault location device 300 according to the present embodiment is more reliable. It is also possible to discover the presence or absence of abnormalities.
 また図9の判定条件(12)に示すように、地絡点標定装置300は、電圧テーブル241や電流テーブル242から日時を正しく読み出せない場合や読み出した情報から日時が特定できないような場合には、GPS受信部210がGPS衛星2000から正しく現在時刻を取得できていないと推定し、計測装置10の劣化状態として、GPS受信部210が異常であると判定することができる。 Further, as shown in the determination condition (12) of FIG. 9, the ground fault location device 300 cannot correctly read the date and time from the voltage table 241 or the current table 242, or cannot identify the date and time from the read information. Can estimate that the GPS receiving unit 210 has not correctly obtained the current time from the GPS satellite 2000, and can determine that the GPS receiving unit 210 is abnormal as a deterioration state of the measuring device 10.
 また図9には記載していないが、例えば、電圧テーブル241や電流テーブル242からデータが何も読み出せない様な場合には、地絡点標定装置300は、データ記憶部240に異常が発生していると判定するようにすることもできる。 Although not shown in FIG. 9, for example, when no data can be read from the voltage table 241 or the current table 242, the ground fault location device 300 has an abnormality in the data storage unit 240. It can also be determined that the user is doing.
 計測装置10は、配電線500の電柱600の腕金620の上に一度設置されると、その後数十年の単位で稼働し続けるが、上述したように、計測装置10の内部の点検は付近停電させない限り安全上の観点から困難である。このことは、配電線500が高圧であるほどより一層切実である。 Once the measuring device 10 is installed on the armor 620 of the utility pole 600 of the distribution line 500, it continues to operate in units of several decades thereafter, but as described above, the internal inspection of the measuring device 10 is in the vicinity. It is difficult from the viewpoint of safety unless a power failure occurs. This is even more acute the higher the distribution line 500 is.
 そのため本実施形態のように、計測装置10から地絡点標定装置300に所定時間毎(例えば上述した5分毎)に送信されてくる計測値と所定の判定値との比較の結果に応じて計測装置10の劣化状態を判定するようにすることで、配電線500を停電させることなく、計測装置10の異常を検知することができるようになる。 Therefore, as in the present embodiment, according to the result of comparison between the measurement value transmitted from the measurement device 10 to the ground fault location device 300 every predetermined time (for example, every 5 minutes described above) and the predetermined determination value. By determining the deterioration state of the measuring device 10, it is possible to detect an abnormality in the measuring device 10 without causing the power distribution line 500 to fail.
 あるいは、地絡点標定装置300から計測装置10に対して所定時間毎(例えば上述した10日毎、あるいは1か月ごと)に計測値の送信命令を送信して、この送信命令に応じて計測装置10から送信されてくる計測値と所定の判定値との比較の結果に応じて計測装置10の状態を判定するようにするようにすることによっても、配電線500を停電させることなく、計測装置10の異常を検知することができるようになる。 Alternatively, a measurement value transmission command is transmitted from the ground fault location device 300 to the measurement device 10 every predetermined time (for example, every 10 days or every month described above), and the measurement device according to the transmission command. The measuring device can be determined without causing the power distribution line 500 to be interrupted by determining the state of the measuring device 10 according to the result of the comparison between the measured value transmitted from 10 and the predetermined determination value. Ten abnormalities can be detected.
 またこれらの効果は、例えば22kVの特別高圧の配電系統に本実施形態に係る地絡点標定システム1000を適用したような場合に、より顕著なものとなる。 These effects become more prominent when, for example, the ground fault location system 1000 according to the present embodiment is applied to a 22 kV extra high voltage distribution system.
 次に、図10を参照しながら、本実施形態に係る地絡点標定装置300の処理の流れを説明する。 Next, the processing flow of the ground fault location device 300 according to the present embodiment will be described with reference to FIG.
 まず地絡点標定装置300は、所定時刻が到来するまで待機している(S1000)。所定時刻は、上述した例のように、例えば5分毎あるいは10日毎、1か月ごとのように定められる。 First, the ground fault location device 300 stands by until a predetermined time arrives (S1000). The predetermined time is determined, for example, every 5 minutes or every 10 days, every month, as in the example described above.
 そして所定時刻が到来すると、地絡点標定装置300は、計測装置10から計測値を取得する(S1010)。ここで地絡点標定装置300が計測装置10から取得する計測値は、上述したように直接計測値の他に、間接計測値が含まれていても良い。 When the predetermined time arrives, the ground fault location device 300 acquires a measurement value from the measurement device 10 (S1010). Here, the measurement value acquired by the ground fault location device 300 from the measurement device 10 may include an indirect measurement value in addition to the direct measurement value as described above.
 そして地絡点標定装置300は、状態検知テーブル710を参照し、取得した計測値と所定の判定値とを比較する。そして地絡点標定装置300は、比較の結果に応じて計測装置10の劣化状態を判定する(S1020)。 Then, the ground fault location device 300 refers to the state detection table 710 and compares the acquired measurement value with a predetermined determination value. And the ground fault location apparatus 300 determines the deterioration state of the measuring apparatus 10 according to the comparison result (S1020).
 そして地絡点標定装置300は、判定の結果を出力装置306に出力する。地絡点標定装置300は、判定結果を例えば所定のLCD(Liquid Crystal Display)に視覚的に表示することもできるし、計測装置10に異常が検出された場合には、スピーカを吹鳴させるようにすることもできる。 The ground fault location device 300 outputs the determination result to the output device 306. The ground fault location device 300 can also visually display the determination result on, for example, a predetermined LCD (Liquid Crystal Display). If an abnormality is detected in the measuring device 10, the speaker is blown. You can also
 このような態様によって、地絡点標定装置300は、地絡点標定システム1000の操作者や保守員等の運用者に対して、計測装置10の劣化状態をいち早く伝達することができる。そして計測装置10に異常が発見された場合や、計測装置10の劣化が進行していることが判明したような場合には、運用者は、計測装置10の交換作業あるいは、取り換え計画の策定を開始することも可能となる。 In such a manner, the ground fault location device 300 can quickly transmit the deterioration state of the measuring device 10 to the operator of the ground fault location system 1000 or an operator such as a maintenance staff. When an abnormality is found in the measuring device 10 or when it is found that the measuring device 10 has been deteriorated, the operator can either replace the measuring device 10 or develop a replacement plan. It is also possible to start.
 以上、本実施形態に係る地絡点標定システム1000、地絡点標定装置100の制御方法及び制御プログラム700について説明したが、本実施形態によれば、地絡点標定システム1000に用いられる計測装置10の内部の点検を、配電線500を停電することなく安全に行うことが可能となる。 As described above, the ground fault location system 1000, the control method of the ground fault location device 100, and the control program 700 according to the present embodiment have been described. However, according to the present embodiment, the measurement device used in the ground fault location system 1000 is described. 10 can be safely inspected without power failure of the distribution line 500.
 なお上述した実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。 The above-described embodiment is for facilitating understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.
10   計測装置
100  センサ箱
110  外箱
120  装柱金具
150  センサ
200  計測端末
210  GPS受信部
220  センサ信号取得部
230  センサ信号合成部
240  データ記憶部
241  電圧テーブル
242  電流テーブル
250  データ通信部
300  地絡点標定装置
301  CPU
302  メモリ
303  通信回路
304  記憶装置
305  入力装置
306  出力装置
307  記録媒体読取装置
310  地絡点標定部
320  状態監視部
400  通信路
500  配電線
600  電柱
610  腕金装着具
620  腕金
700  制御プログラム
710  状態検知テーブル
800  記録媒体
1000 地絡点標定システム
2000 GPS衛星
DESCRIPTION OF SYMBOLS 10 Measuring apparatus 100 Sensor box 110 Outer box 120 Pillar fitting 150 Sensor 200 Measuring terminal 210 GPS receiving part 220 Sensor signal acquisition part 230 Sensor signal synthetic | combination part 240 Data storage part 241 Voltage table 242 Current table 250 Data communication part 300 Ground fault point Orientation device 301 CPU
302 Memory 303 Communication circuit 304 Storage device 305 Input device 306 Output device 307 Recording medium reader 310 Ground fault location unit 320 Status monitoring unit 400 Communication path 500 Power distribution line 600 Power pole 610 Armor fitting 620 Armor 700 Control program 710 State Detection table 800 Recording medium 1000 Ground fault location system 2000 GPS satellite

Claims (10)

  1.  配電系統における地絡点を標定する地絡点標定システムであって、
     前記配電系統における複数の箇所にそれぞれ設置され、配電線に装着されたセンサを用いて前記配電系統の電力の状態に応じて変動する物理量を計測する計測装置と、
     前記複数の箇所の前記計測装置によってそれぞれ計測された前記物理量の計測値に基づいて、前記地絡点を標定する地絡点標定装置と、
    を備え、
     前記地絡点標定装置は、前記計測装置から取得した前記計測値が所定範囲から逸脱している場合に、前記計測装置が劣化したと判定する
    ことを特徴とする地絡点標定システム。
    A ground fault location system for locating ground faults in a distribution system,
    A measuring device that is installed at each of a plurality of locations in the power distribution system and measures a physical quantity that varies according to the power state of the power distribution system using sensors attached to the power distribution line;
    A ground fault point locating device for locating the ground fault point based on the measured values of the physical quantities respectively measured by the measurement devices of the plurality of locations;
    With
    The ground fault point locating device determines that the measuring device has deteriorated when the measured value acquired from the measuring device deviates from a predetermined range.
  2.  請求項1に記載の地絡点標定システムであって、
     前記地絡点標定装置は、前記計測値の送信命令を前記計測装置に送信し、前記送信命令に応じて前記計測装置から送信されてくる前記計測値を受信することにより、前記計測値を取得する
    ことを特徴とする地絡点標定システム。
    The ground fault location system according to claim 1,
    The ground fault location device acquires the measurement value by transmitting the measurement value transmission command to the measurement device and receiving the measurement value transmitted from the measurement device in response to the transmission command. A ground fault location system characterized by
  3.  請求項1又は2に記載の地絡点標定システムであって、
     前記地絡点標定装置が取得する前記計測値には、前記センサによって直接計測される直接計測値と、前記直接計測値を用いて前記計測装置によって算出される間接計測値と、が含まれ、
     前記地絡点標定装置は、前記直接計測値と所定の判定値との比較の結果と、前記間接計測値と所定の判定値との比較の結果と、に応じて、前記計測装置の劣化状態を判定する
    ことを特徴とする地絡点標定システム。
    The ground fault location system according to claim 1 or 2,
    The measurement value acquired by the ground fault location device includes a direct measurement value directly measured by the sensor and an indirect measurement value calculated by the measurement device using the direct measurement value,
    The ground fault point locating device is a deterioration state of the measuring device according to a result of comparison between the direct measurement value and a predetermined determination value and a result of comparison between the indirect measurement value and a predetermined determination value. A ground fault location system characterized by determining
  4.  請求項3に記載の地絡点標定システムであって、
     前記直接計測値には、前記配電線の各相の電流値が含まれ、
     前記間接計測値には、前記配電線の零相電流値が含まれる
    ことを特徴とする地絡点標定システム。
    The ground fault location system according to claim 3,
    The directly measured value includes a current value of each phase of the distribution line,
    The ground fault location system, wherein the indirect measurement value includes a zero-phase current value of the distribution line.
  5.  請求項3又は4に記載の地絡点標定システムであって、
     前記直接計測値には、前記配電線の各相の電圧値が含まれ、
     前記間接計測値には、前記配電線の零相電圧値が含まれる
    ことを特徴とする地絡点標定システム。
    The ground fault location system according to claim 3 or 4,
    The directly measured value includes a voltage value of each phase of the distribution line,
    The ground fault location system characterized in that the indirect measurement value includes a zero-phase voltage value of the distribution line.
  6.  請求項3~5のいずれかに記載の地絡点標定システムであって、
     前記地絡点標定装置は、前記直接計測値が所定の許容範囲内である時に、前記間接計測値が所定の許容範囲内でない場合には、前記計測装置が有する前記間接計測値の算出回路が異常であると判定する
    ことを特徴とする地絡点標定システム。
    A ground fault location system according to any one of claims 3 to 5,
    When the direct measurement value is within a predetermined allowable range and the indirect measurement value is not within the predetermined allowable range, the ground fault point locating device has a circuit for calculating the indirect measurement value included in the measurement device. A ground fault location system characterized in that it is determined to be abnormal.
  7.  請求項1~6のいずれかに記載の地絡点標定システムであって、
     前記配電系統は、22kVの特別高圧配電系統である
    ことを特徴とする地絡点標定システム。
    A ground fault location system according to any one of claims 1 to 6,
    The ground distribution point locating system, wherein the distribution system is a 22 kV special high voltage distribution system.
  8.  請求項1~8のいずれかに記載の地絡点標定システムであって、
     前記計測装置は、電柱の腕金に装着される
    ことを特徴とする地絡点標定システム。
    A ground fault location system according to any one of claims 1 to 8,
    The ground fault location system, wherein the measuring device is attached to a brace of a utility pole.
  9.  配電系統における複数の箇所にそれぞれ設置され、配電線に装着されたセンサを用いて前記配電系統の電力の状態に応じて変動する物理量を計測する計測装置と、前記複数の箇所の前記計測装置によってそれぞれ計測された前記物理量の計測値に基づいて前記地絡点を標定する地絡点標定装置と、を有する地絡点標定システムにおける前記地絡点標定装置の制御方法であって、
     前記地絡点標定装置は、前記計測装置から前記計測値を取得し、
     前記地絡点標定装置は、前記計測値が所定範囲から逸脱している場合に、前記計測装置が劣化したと判定する
    ことを特徴とする地絡点標定装置の制御方法。
    A measuring device that is installed at each of a plurality of locations in a power distribution system and that measures a physical quantity that varies according to the power state of the power distribution system using sensors attached to the power distribution line, and the measurement devices at the plurality of locations. A ground fault point locating device for locating the ground fault point based on the measured values of the measured physical quantities, respectively, and a control method of the ground fault point locating device in a ground fault point locating system,
    The ground fault location device acquires the measurement value from the measurement device,
    The ground fault point locating apparatus determines that the measurement apparatus has deteriorated when the measured value deviates from a predetermined range.
  10.  配電系統における複数の箇所にそれぞれ設置され、配電線に装着されたセンサを用いて前記配電系統の電力の状態に応じて変動する物理量を計測する計測装置と、前記複数の箇所の前記計測装置によってそれぞれ計測された前記物理量の計測値に基づいて前記地絡点を標定するコンピュータからなる地絡点標定装置と、を有する地絡点標定システムにおける前記地絡点標定装置に、
     前記計測装置から前記計測値を取得する手順と、
     前記計測値が所定範囲から逸脱している場合に、前記計測装置が劣化したと判定する手順と、
    を実行させるためのプログラム。
    A measuring device that is installed at each of a plurality of locations in a power distribution system and that measures a physical quantity that varies according to the power state of the power distribution system using sensors attached to the power distribution line, and the measurement devices at the plurality of locations. A ground fault point locating device comprising a computer for locating the ground fault point based on the measured values of the measured physical quantities, respectively.
    A procedure for obtaining the measurement value from the measurement device;
    A procedure for determining that the measurement device has deteriorated when the measurement value deviates from a predetermined range;
    A program for running
PCT/JP2016/054326 2016-02-15 2016-02-15 Ground fault point locating system, control method for ground fault point locating device, and program WO2017141328A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/054326 WO2017141328A1 (en) 2016-02-15 2016-02-15 Ground fault point locating system, control method for ground fault point locating device, and program
JP2016540074A JP6057035B1 (en) 2016-02-15 2016-02-15 Ground fault location system and control method and program for ground fault location device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054326 WO2017141328A1 (en) 2016-02-15 2016-02-15 Ground fault point locating system, control method for ground fault point locating device, and program

Publications (1)

Publication Number Publication Date
WO2017141328A1 true WO2017141328A1 (en) 2017-08-24

Family

ID=57756150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054326 WO2017141328A1 (en) 2016-02-15 2016-02-15 Ground fault point locating system, control method for ground fault point locating device, and program

Country Status (2)

Country Link
JP (1) JP6057035B1 (en)
WO (1) WO2017141328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063750A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Earth fault point locating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884466B (en) * 2019-03-04 2020-06-26 中国矿业大学 Distribution network grounding line selection method for identifying double negative sequence current vector relation characteristics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125542U (en) * 1989-03-25 1990-10-16
JPH04320976A (en) * 1991-04-19 1992-11-11 Hitachi Ltd Accident point orientation method, accident point orientation device and accident detector
JP2003222650A (en) * 2002-01-30 2003-08-08 Tohoku Electric Power Co Inc Method and system for locating wiring failure point
JP2015222205A (en) * 2014-05-22 2015-12-10 株式会社東芝 Insulation deterioration position identification device and voltage measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125542U (en) * 1989-03-25 1990-10-16
JPH04320976A (en) * 1991-04-19 1992-11-11 Hitachi Ltd Accident point orientation method, accident point orientation device and accident detector
JP2003222650A (en) * 2002-01-30 2003-08-08 Tohoku Electric Power Co Inc Method and system for locating wiring failure point
JP2015222205A (en) * 2014-05-22 2015-12-10 株式会社東芝 Insulation deterioration position identification device and voltage measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063750A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Earth fault point locating system

Also Published As

Publication number Publication date
JPWO2017141328A1 (en) 2018-02-22
JP6057035B1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6896375B2 (en) Integrated transformer health monitoring architecture
RU2741281C2 (en) Method and system for dynamic fault detection in electric network
CA3011985C (en) Systems and methods for monitoring and diagnosing transformer health
US9874593B2 (en) Decision support system for outage management and automated crew dispatch
ES2439279T3 (en) Method and apparatus for transformer diagnosis
US8396677B2 (en) Method for monitoring the shaft current and/or the insulation of the shaft of electric machines and device for performing the method
US20140049285A1 (en) Method For Monitoring Demagnetization
US20210208185A1 (en) Volt-var device monitor
US20150276823A1 (en) Method For Detecting A Fault Condition In An Electrical Machine
JP5607017B2 (en) Fault location detection system and fault location detection method
Zhao et al. Experimental evaluation of transformer internal fault detection based on V–I characteristics
JP5418219B2 (en) High voltage insulation monitoring device
JP6057035B1 (en) Ground fault location system and control method and program for ground fault location device
US20230144327A1 (en) Distribution transformer system and methods thereof
JP2016114437A (en) Leakage spot survey method, and device therefor
ES2358876T3 (en) ADAPTIVE SUPPLY OF FUNCTION REGULATIONS FOR THE PROTECTION OF ELECTRICAL MACHINES.
JPWO2017158921A1 (en) Disconnection detector
JP2020530754A (en) Ranking grid assets based on downstream events and measurements
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
KR102029745B1 (en) System and method for insulation deterioration monitoring analysis of transformer bushing with bushing tap
Stirl et al. On-line condition monitoring and diagnosis for power transformers their bushings, tap changer and insulation system
KR20110075597A (en) Vibrometer of suddenpressure relay in power transformer and controlling method thereof
JP2002090395A (en) Leakage current detecting device
Mousavi et al. A feasibility study on application of positioning sensors to online detect of the transformer winding axial displacement
JP7341070B2 (en) Ground fault location system and method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016540074

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890471

Country of ref document: EP

Kind code of ref document: A1