JP4398198B2 - Insulation degradation region diagnosis system and method for electric wire or cable - Google Patents

Insulation degradation region diagnosis system and method for electric wire or cable Download PDF

Info

Publication number
JP4398198B2
JP4398198B2 JP2003296134A JP2003296134A JP4398198B2 JP 4398198 B2 JP4398198 B2 JP 4398198B2 JP 2003296134 A JP2003296134 A JP 2003296134A JP 2003296134 A JP2003296134 A JP 2003296134A JP 4398198 B2 JP4398198 B2 JP 4398198B2
Authority
JP
Japan
Prior art keywords
cable
insulation
voltage
electric wire
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003296134A
Other languages
Japanese (ja)
Other versions
JP2005062124A (en
Inventor
功 四郎丸
孝徳 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Tempearl Industrial Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Tempearl Industrial Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2003296134A priority Critical patent/JP4398198B2/en
Publication of JP2005062124A publication Critical patent/JP2005062124A/en
Application granted granted Critical
Publication of JP4398198B2 publication Critical patent/JP4398198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Measuring Phase Differences (AREA)

Description

本発明は、電気を通ずる電線又はケーブルの絶縁劣化を診断するためのシステム及び方法に係り、特に、電線又はケーブルの絶縁劣化が発生した領域を特定するうえで好適なシステム及び方法に関する。   The present invention relates to a system and method for diagnosing insulation deterioration of an electric wire or cable that conducts electricity, and more particularly, to a system and method suitable for specifying a region where insulation deterioration of an electric wire or cable has occurred.

送電用の電線やケーブルは、絶縁体の経時変化あるいは悪環境のために絶縁劣化が発生することがある。そこで、そのような絶縁劣化による事故を未然に防止すべく、従来より、電線やケーブルの絶縁劣化を判定するため種々の手法が用いられている。例えば、特許文献1及び2に開示される手法では、電線又はケーブルに交流電圧を供給して大地への漏洩電流を測定し、その漏洩電流に基づいて絶縁劣化を判定している。その他、電線やケーブルの絶縁劣化の判定手法としては、絶縁メガーを用いる方法や、残留電荷測定法等がある。
特許第3034651号公報 特開平06−186275公報
An electric wire or cable for power transmission may be deteriorated in insulation due to a temporal change of an insulator or a bad environment. In order to prevent such an accident due to insulation deterioration, various methods have been conventionally used to determine insulation deterioration of electric wires and cables. For example, in the methods disclosed in Patent Documents 1 and 2, an AC voltage is supplied to an electric wire or cable, a leakage current to the ground is measured, and insulation deterioration is determined based on the leakage current. In addition, as a method for determining insulation deterioration of electric wires and cables, there are a method using an insulation megar, a residual charge measurement method, and the like.
Japanese Patent No. 3034651 Japanese Patent Laid-Open No. 06-186275

ところで、電線やケーブルの補修コストを抑えるうえでは、電線又はケーブルの絶縁劣化が起きた部分のみを修理することが望ましい。そのためには、一本の電線又はケーブルのうち、どの点あるいはどの領域で絶縁劣化が生じているかを特定することが必要である。しかしながら、上述した従来の絶縁劣化判定手法は、何れも、一本の電線またはケーブル全体についての劣化を診断するものであり、絶縁劣化が生じた箇所を特定することはできない。また、長距離の送電線の事故点検出装置としてフォルトロケーターがあるが、数百メートル以下の電線やケーブルへの適用は難しい。   By the way, in order to reduce the repair cost of electric wires and cables, it is desirable to repair only the portion where the insulation deterioration of the electric wires or cables has occurred. For that purpose, it is necessary to specify at which point or in which region the insulation deterioration has occurred in one electric wire or cable. However, any of the conventional insulation deterioration determination methods described above diagnoses deterioration of a single electric wire or the entire cable, and it is impossible to specify a location where insulation deterioration has occurred. In addition, although there is a fault locator as an accident point detection device for long-distance transmission lines, it is difficult to apply to electric wires and cables of several hundred meters or less.

このように、従来は、数百メートル以下の電線やケーブルの絶縁劣化領域を特定する手法が存在しなかったため、絶縁劣化が発生したことが判定された場合には、電線又はケーブル全体を取り替えざるを得ず、多額の費用が必要となっていた。   As described above, conventionally, there has been no method for identifying an insulation deterioration region of an electric wire or cable of several hundred meters or less, and when it is determined that insulation deterioration has occurred, the entire electric wire or cable must be replaced. A large amount of money was necessary.

本発明は、かかる問題点を解決するため創案されたものであり、電気を通ずる電線又はケーブルの絶縁劣化が生じた領域を特定できるようにすることを目的とする。   The present invention has been made to solve such a problem, and an object thereof is to be able to specify a region where insulation deterioration of an electric wire or cable that conducts electricity has occurred.

上記の目的を達成するため、請求項1に記載された発明は、
電気を通ずる電線又はケーブルの絶縁劣化領域を診断するためのシステムであって、
停電状態の前記電線又はケーブルの導体と大地との間に設けられた単相の交流電圧供給源と、
前記交流電流供給源を接地する抵抗器と、該抵抗器に生ずる電圧を検出する電圧検出器とを有する交流地絡電流変換器と、
前記電線又はケーブルの漏洩電流を検出する変流器と、該検出された電流信号と前記交流地絡電流変換器により検出された電圧信号との位相差を求める位相判定部と、該求められた位相差と前記検出された電流信号とに基づいて抵抗漏洩電流を求める抵抗漏洩電流判定部と、該求められた抵抗漏洩電流と前記交流電圧供給源の供給電圧とに基づいて前記電線またはケーブルの絶縁抵抗を測定する抵抗判定部とを有する絶縁抵抗測定器と、
前記電線又はケーブルの複数の地点において前記絶縁抵抗測定器により測定された絶縁抵抗値と、各測定点の前記電線又はケーブルの長さ方向に沿った位置との相関関係を求める相関関係判定部と、
前記求めた相関関係における勾配が既定値を越えた領域が存在する場合に、当該領域を絶縁劣化領域と判定する絶縁劣化判定部と、
を備えることを特徴とする
In order to achieve the above object, the invention described in claim 1
A system for diagnosing an insulation deterioration area of an electric wire or cable that conducts electricity,
A single-phase AC voltage source provided between the conductor of the electric wire or cable in a power failure state and the ground, and
An AC ground fault current converter having a resistor for grounding the AC current supply source, and a voltage detector for detecting a voltage generated in the resistor;
A current transformer for detecting leakage current of the electric wire or cable, a phase determination unit for obtaining a phase difference between the detected current signal and a voltage signal detected by the AC ground fault current converter, and the obtained A resistance leakage current determination unit that obtains a resistance leakage current based on the phase difference and the detected current signal, and the electric wire or cable based on the obtained resistance leakage current and the supply voltage of the AC voltage supply source. An insulation resistance measuring instrument having a resistance determination unit for measuring insulation resistance;
A correlation determination unit for obtaining a correlation between an insulation resistance value measured by the insulation resistance measuring instrument at a plurality of points of the electric wire or cable and a position along the length direction of the electric wire or cable at each measurement point; ,
When there is a region where the gradient in the calculated correlation exceeds a predetermined value, an insulation deterioration determination unit that determines the region as an insulation deterioration region;
Characterized by comprising

また、請求項に記載された発明は、請求項記載の電線又はケーブルの絶縁劣化領域診断システムにおいて、前記交流地絡電流変換器で検出された電圧信号を、有線又は無線により前記絶縁抵抗測定器へ送信し、前記絶縁抵抗測定器の前記位相判定部は、前記送信されてきた電圧信号に基づいて前記位相差を求めることを特徴とする Further, the invention described in claim 2, wherein the insulation resistance in the insulation deterioration region diagnosis system of the electric wire or cable according to claim 1, a voltage signal detected by the AC ground fault current converter, a wired or wireless The phase determination unit of the insulation resistance measurement device obtains the phase difference based on the transmitted voltage signal.

また、請求項に記載された発明は、請求項記載の電線又はケーブルの絶縁劣化領域診断システムにおいて、前記絶縁抵抗測定器及び前記交流供地絡電流変換器の双方が互いに同期した周期信号の発生手段を有し、前記絶縁抵抗測定器の前記位相検出部は、前記周期信号に基づいて前記位相差を求めることを特徴とする。 Further, the invention described in claim 3 is the periodic signal in which both the insulation resistance measuring instrument and the AC ground fault current converter are synchronized with each other in the insulation deterioration region diagnosis system for the electric wire or cable according to claim 1. And the phase detection unit of the insulation resistance measuring device obtains the phase difference based on the periodic signal.

また、請求項に記載された発明は、電気を通ずる電線又はケーブルの絶縁劣化領域を診断するための方法であって、
停電状態の前記電線又はケーブルの導体と大地との間に、単相の交流電源供給源により交流電圧を供給し、
前記交流電流供給源を抵抗器で接地して、該抵抗器に生ずる電圧を電圧検出器により検出し、
前記電線又はケーブルの漏洩電流を変流器により検出し、
前記検出した漏洩電流と、前記検出した電圧信号との位相差を求め、
該求めた位相差と前記検出された電流信号とに基づいて抵抗漏洩電流を求め、
該求めた抵抗漏洩電流と前記交流電圧供給源の供給電圧とに基づいて前記電線またはケーブルの絶縁抵抗値を測定し、
前記電線又はケーブルの複数の地点において前記絶縁抵抗測定器により測定された絶縁抵抗値と、各測定点の前記電線又はケーブルの長さ方向に沿った位置との相関関係を求め、
前記求めた相関関係における勾配が既定値を越えた領域が存在する場合に、当該領域を絶縁劣化領域と判定することを特徴とする。
The invention described in claim 4 is a method for diagnosing an insulation deterioration region of an electric wire or cable that conducts electricity,
AC voltage is supplied by a single-phase AC power supply source between the conductor of the wire or cable in a power failure state and the ground,
The AC current supply source is grounded by a resistor, and a voltage generated in the resistor is detected by a voltage detector,
Detect the leakage current of the wire or cable with a current transformer,
Obtaining a phase difference between the detected leakage current and the detected voltage signal;
A resistance leakage current is obtained based on the obtained phase difference and the detected current signal,
Measure the insulation resistance value of the wire or cable based on the obtained resistance leakage current and the supply voltage of the AC voltage supply source,
Obtaining the correlation between the insulation resistance value measured by the insulation resistance measuring instrument at a plurality of points of the wire or cable and the position along the length direction of the wire or cable at each measurement point,
When there is a region where the gradient in the obtained correlation exceeds a predetermined value, the region is determined as an insulation deterioration region.

本発明によれば、電気を通ずる電線又はケーブルの絶縁劣化が生じた領域を特定することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to specify the area | region where the insulation deterioration of the electric wire or cable which conducts electricity has arisen.

以下、添付図面を参照して、本発明の実施の形態を説明する。添付図面において、図1は本発明の第1の実施形態を示すシステム全体構成図であり、図2はケーブル長(抵抗測定点)と絶縁抵抗値の相関関係の一例を示す図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the accompanying drawings, FIG. 1 is an overall system configuration diagram showing a first embodiment of the present invention, and FIG. 2 is a diagram showing an example of a correlation between a cable length (resistance measurement point) and an insulation resistance value.

先ず、本発明の第1の実施形態におけるケーブル絶縁劣化診断の概要を述べる。本実施形態では、送電用のケーブル2の絶縁劣化領域を診断するものとして、ケーブル2の電源端子及び負荷端子を切り離してケーブル2を停電状態にした後、ケーブル2の導体を接地することにより電荷を完全に放電させておく。しかる後に、図1に示すように、ケーブル2の導体の一端に、本発明の電圧供給源としての交流電源装置1を接続すると共に、マンホール等を利用してクランプ型変流器13及び携帯型の交流電路地絡点検出器4によりケーブル2の抵抗漏洩電流Irを測定し、その電流値から絶縁抵抗値を測定する。   First, the outline of the cable insulation deterioration diagnosis in the first embodiment of the present invention will be described. In the present embodiment, as a diagnosis of the insulation deterioration region of the cable 2 for power transmission, the power supply terminal and the load terminal of the cable 2 are disconnected, the cable 2 is brought into a power failure state, and then the charge is obtained by grounding the conductor of the cable 2 Keep fully discharged. Thereafter, as shown in FIG. 1, the AC power supply device 1 as the voltage supply source of the present invention is connected to one end of the conductor of the cable 2, and the clamp type current transformer 13 and the portable type are utilized using a manhole or the like. The resistance leakage current Ir of the cable 2 is measured by the AC circuit ground fault detector 4 and the insulation resistance value is measured from the current value.

ケーブルに絶縁劣化が生じていない場合には、図2に破線で示すように、絶縁抵抗測定値Rはケーブル長(電圧供給点からのケーブル長)に対してほぼ一様な勾配で変化する。一方、局所的に絶縁劣化が生ずると、図2に実線で示すように、絶縁劣化箇所を含む領域(同図中、ケーブルAの領域I、ケーブルBの領域II)で、絶縁抵抗値の勾配が大きくなる。その理由は、図3に模式的に示すように、電圧供給点Pからのケーブル長がLである測定点Qで測定される抵抗漏洩電流Irは、測定点Qからケーブル2の他端Rまでの範囲でケーブル2から大地へ流れる電流の総和となり、絶縁抵抗測定値Rはケーブル2のQR間全体の絶縁抵抗を表すことになるからである。例えば、図2のケーブルAのようにB点とC点との間で絶縁劣化が生じた場合、C点で測定した絶縁抵抗値にはその絶縁劣化の影響は表れないが、B点では、BC間の絶縁劣化(すなわち絶縁抵抗値の低下)した分だけ絶縁抵抗測定値が低下することで、BC間(領域I)で勾配が増大している。   When the cable is not deteriorated in insulation, the insulation resistance measurement value R changes with a substantially uniform gradient with respect to the cable length (cable length from the voltage supply point) as shown by a broken line in FIG. On the other hand, when insulation deterioration occurs locally, as shown by the solid line in FIG. 2, the gradient of the insulation resistance value in the region including the insulation deterioration location (region A of cable A and region II of cable B in the figure). Becomes larger. The reason for this is that, as schematically shown in FIG. 3, the resistance leakage current Ir measured at the measurement point Q where the cable length from the voltage supply point P is L is from the measurement point Q to the other end R of the cable 2. This is because the total resistance of the current flowing from the cable 2 to the ground in the range of ## EQU2 ## and the measured insulation resistance value R represents the overall insulation resistance between the QRs of the cable 2. For example, when the insulation deterioration occurs between the point B and the point C as in the cable A of FIG. 2, the influence of the insulation deterioration does not appear in the insulation resistance value measured at the point C. The measured value of the insulation resistance decreases by the amount of insulation deterioration between BCs (that is, the decrease of the insulation resistance value), so that the gradient increases between BCs (region I).

そこで、本実施形態では、ケーブル2の絶縁抵抗値を適宜な間隔で複数の点で測定し、その測定点と絶縁抵抗測定値との相関関係を求めて、その勾配の変化から絶縁劣化領域を判定することとする。   Therefore, in this embodiment, the insulation resistance value of the cable 2 is measured at a plurality of points at appropriate intervals, the correlation between the measurement point and the insulation resistance measurement value is obtained, and the insulation deterioration region is determined from the change in the gradient. Judgment is made.

本発明の第1の実施形態では、電流供給源として単相の交流電源装置1を用いて、この交流電源装置1からケーブル2への供給電圧Vを交流地絡電流変換器3で測定する。こうして測定した電圧信号と漏洩電流Iとの位相差θを検出して、抵抗漏洩電流Irを求め、供給電圧Vを抵抗漏洩電流Irで割ることにより絶縁抵抗Rを検出する。   In the first embodiment of the present invention, a single-phase AC power supply device 1 is used as a current supply source, and the supply voltage V from the AC power supply device 1 to the cable 2 is measured by the AC ground fault current converter 3. By detecting the phase difference θ between the voltage signal thus measured and the leakage current I, the resistance leakage current Ir is obtained, and the insulation resistance R is detected by dividing the supply voltage V by the resistance leakage current Ir.

すなわち、図4に示すように、漏洩電流Iは、抵抗漏洩電流Irと静電容量漏洩電流Icに分解することができ、このうち抵抗漏洩電流Irと供給電圧Vの位相が一致する。したがって、漏洩電流Iと供給電圧Vの位相差θを用いて、
Ir=I・cosθ
により抵抗漏洩電流Irが求められる。そして、この抵抗漏洩電流Irを用いて
R=V/Ir
により絶縁抵抗値Rが求められる。
That is, as shown in FIG. 4, the leakage current I can be decomposed into a resistance leakage current Ir and a capacitance leakage current Ic, and the phase of the resistance leakage current Ir and the supply voltage V coincide with each other. Therefore, using the phase difference θ between the leakage current I and the supply voltage V,
Ir = I · cos θ
Thus, the resistance leakage current Ir is obtained. Then, using this resistance leakage current Ir, R = V / Ir
Thus, the insulation resistance value R is obtained.

なお、本実施形態では、地中や海底等に設置されるケーブル2について絶縁劣化領域の診断を行うものとして説明するが、地上や空中に設置される電線についても全く同様にして絶縁劣化領域を診断することができる。   In this embodiment, the cable 2 installed on the ground or the seabed is described as being diagnosed for the insulation degradation region. However, the insulation degradation region is also exactly the same for the wires installed on the ground or in the air. Can be diagnosed.

以下、本実施形態のケーブル絶縁劣化領域診断システムについて、より詳細に説明する。   Hereinafter, the cable insulation deterioration region diagnosis system of the present embodiment will be described in more detail.

図1に示す如く、交流電源装置1は、交流地絡電流変換器3を介して接地されている。なお、上述のように、予めケーブル2を停電状態にして、ケーブル2の導体を接地することにより電荷を完全に放電させた後、交流電源装置1及び交流地絡電流変換器3を接続するものとする。   As shown in FIG. 1, the AC power supply device 1 is grounded via an AC ground fault current converter 3. As described above, after the cable 2 is in a power failure state in advance and the conductor of the cable 2 is grounded to completely discharge the electric charge, the AC power supply device 1 and the AC ground fault current converter 3 are connected. And

交流地絡電流変換器3は、可変抵抗器31と、可変抵抗器31に流れる電流を検出して表示する電流計32と、可変抵抗器31の両端の電圧を検出してその検出電圧に応じた信号を出力する電圧検出器33とにより構成されている。作業者は電流計32の表示に基づいて可変抵抗器31を操作することにより交流電源装置1から流れる地絡電流を調整することができる。また、電圧検出器33による検出信号は、交流電源装置1の供給電圧Vを表すことになる。   The AC ground fault current converter 3 detects a variable resistor 31, an ammeter 32 that detects and displays the current flowing through the variable resistor 31, and detects a voltage at both ends of the variable resistor 31 and responds to the detected voltage. And a voltage detector 33 for outputting the received signal. The operator can adjust the ground fault current flowing from the AC power supply device 1 by operating the variable resistor 31 based on the display of the ammeter 32. Further, the detection signal from the voltage detector 33 represents the supply voltage V of the AC power supply device 1.

ケーブル2には、クランプ型変流器13が設けられている。クランプ型変流器13は、本発明の絶縁抵抗測定器としての交流電路地絡点検出器4に接続されており、ケーブル2から大地側へ流れる漏洩電流Iを検出して、この交流電路地絡点検出器4へ供給する。交流電路地絡点検出器4は交流地絡電流変換器3と有線又は無線で接続されており、交流地絡電流変換器3で検出された供給電圧Vの検出信号が交流電路地絡点検出器4へ供給されるようになっている。   The cable 2 is provided with a clamp type current transformer 13. The clamp type current transformer 13 is connected to an AC electric circuit ground fault detector 4 as an insulation resistance measuring device of the present invention, detects a leakage current I flowing from the cable 2 to the ground side, and detects this AC electric circuit ground. Supply to the tangential point detector 4. The AC circuit ground fault detector 4 is connected to the AC ground fault current converter 3 by wire or wirelessly, and the detection signal of the supply voltage V detected by the AC ground fault current converter 3 is detected as an AC circuit ground fault point. Is supplied to the container 4.

交流電路地絡点検出器4は、信号増幅器41、ノイズフィルター42、位相分析器43、抵抗測定部44、抵抗表示部45等を備えている。信号増幅器41は、クランプ型変流器13からの漏洩電流Iを増幅し、ノイズフィルター42は交流電源装置1の供給電源Vの周波数以外のノイズ成分を除去する。位相分析器43は、ノイズ成分が除去された漏洩電流Iと、交流地絡電流変換器3から供給された電圧信号Vとの間の位相差θを検出し、抵抗測定部44は、上述したように、位相差θを用いて漏洩電流Iから抵抗漏洩電流IrをIr=I・cosθにより求め、更に、R=V/Irにより絶縁抵抗値Rを求める。こうして測定された絶縁抵抗値Rは抵抗表示部45に表示される。なお、好ましくは、絶縁抵抗値Rの測定精度として、例えば、静電容量が1μF以上で100KΩ以上の絶縁抵抗を測定できることが望ましい。   The AC circuit ground fault detector 4 includes a signal amplifier 41, a noise filter 42, a phase analyzer 43, a resistance measurement unit 44, a resistance display unit 45, and the like. The signal amplifier 41 amplifies the leakage current I from the clamp type current transformer 13, and the noise filter 42 removes noise components other than the frequency of the power supply V of the AC power supply device 1. The phase analyzer 43 detects the phase difference θ between the leakage current I from which the noise component has been removed and the voltage signal V supplied from the AC ground fault current converter 3, and the resistance measurement unit 44 is described above. Thus, using the phase difference θ, the resistance leakage current Ir is obtained from the leakage current I by Ir = I · cos θ, and further, the insulation resistance value R is obtained by R = V / Ir. The insulation resistance value R thus measured is displayed on the resistance display section 45. Preferably, as the measurement accuracy of the insulation resistance value R, for example, it is desirable that an insulation resistance with a capacitance of 1 μF or more and 100 KΩ or more can be measured.

以上の説明では、交流地絡電流変換器3で検出された供給電圧Vの検出信号が有線又は無線で交流電路地絡点検出器4へ供給されるものとしたが、洞道での使用や、装置の容易な持ち運び等を考慮して、交流電路地絡点検出器4及び交流地絡電流変換器3の双方に互いに正確に同期した周期的なクロック信号を発生する時刻発生器を設けることにより、交流地絡電流変換器3と交流電路地絡点検出器4とを接続することなく、交流電路地絡点検出器4において上記クロック信号に基づいて位相差θを検出できるようにしてもよい。ただし、時刻発生器が発生するクロック信号の周期には誤差があるので、例えば数時間置きに誤差修正を行うことが必要である。なお、2つの装置に互いに同期した周期信号を発生させるための技術については、例えば、特開平5−273291号公報を参照。   In the above description, the detection signal of the supply voltage V detected by the AC ground fault current converter 3 is supplied to the AC electric circuit ground fault detector 4 by wire or wirelessly. In consideration of easy carrying of the device, the AC circuit ground fault point detector 4 and the AC ground fault current converter 3 are each provided with a time generator that generates periodic clock signals that are accurately synchronized with each other. Thus, the AC circuit ground fault detector 4 can detect the phase difference θ based on the clock signal without connecting the AC ground fault current converter 3 and the AC circuit ground fault detector 4. Good. However, since there is an error in the cycle of the clock signal generated by the time generator, it is necessary to correct the error every few hours, for example. For a technique for generating two periodic signals synchronized with each other, see, for example, Japanese Patent Laid-Open No. 5-273291.

図1に示すように、交流電路地絡点検出器4には、例えば携帯電話機等の送信装置5が接続されており、交流電路地絡点検出器4で測定した絶縁抵抗値Rと、測定対象であるケーブル2を特定するためのケーブル特定情報と、ケーブル2の測定点を特定するための測定点特定情報とが、サーバー12側の受信装置6へ送信される。ここで、絶縁抵抗値Rは測定作業者が抵抗表示部45に表示される抵抗値を手入力するようにしてもよいし、測定値が直接送信されるようにしてもよい。また、測定点特定情報として、例えば、マンホール番号等を測定作業者が入力することができる。なお、絶縁抵抗値Rのほか、漏洩電流I、抵抗漏洩電流Ir、静電容量漏洩電流Ic、供給電圧Vもサーバー12へ送信してデータ管理に用いることとしてもよい。   As shown in FIG. 1, a transmission device 5 such as a mobile phone is connected to the AC electric circuit ground fault point detector 4, and the insulation resistance value R measured by the AC electric circuit ground fault point detector 4 and the measurement Cable specifying information for specifying the target cable 2 and measurement point specifying information for specifying the measurement point of the cable 2 are transmitted to the receiving device 6 on the server 12 side. Here, as the insulation resistance value R, the measurement operator may manually input the resistance value displayed on the resistance display unit 45, or the measurement value may be directly transmitted. Further, for example, a measurement operator can input a manhole number or the like as the measurement point specifying information. In addition to the insulation resistance value R, the leakage current I, the resistance leakage current Ir, the capacitance leakage current Ic, and the supply voltage V may be transmitted to the server 12 and used for data management.

サーバー12は相関関係判定部121を備えており、この相関関係判定部121により、絶縁抵抗値Rの測定点(具体的には、交流電源装置1から電圧を供給した側の端部からのケーブル長)と絶縁抵抗の測定値との相関関係を作成し、上記図2に示すようなグラフとして表示したり、また、相関関係を表す情報をデータベース7に記録したりする。なお、測定地点特定情報として、例えばマンホール番号を用いる場合には、各ケーブルについてマンホール番号と測定ケーブル長との関係を示すテーブルをサーバー12上に保持しておき、このテーブルを参照して測定点のケーブル長を求めるものとする。   The server 12 includes a correlation determination unit 121, and by the correlation determination unit 121, a measurement point of the insulation resistance value R (specifically, a cable from an end portion on the side where a voltage is supplied from the AC power supply device 1 2) and a measured value of insulation resistance are created and displayed as a graph as shown in FIG. 2, or information representing the correlation is recorded in the database 7. For example, when a manhole number is used as the measurement point specifying information, a table indicating the relationship between the manhole number and the measurement cable length is held on the server 12 for each cable, and the measurement point is referred to by referring to this table. The cable length is to be determined.

なお、ケーブルの絶縁抵抗値は、気温、湿度、電線、ケーブルの材質、型式等の影響を受ける。そこで、本実施形態では、データベース7に各種ケーブルについて様々な条件での絶縁抵抗値のデータを蓄積すると共に、サーバー12にデータ解析部122を設け、このデータ解析部122によりデータマイニング等の数学処理に基づくクラスタリングを行なって、絶縁抵抗の測定値を気温、温度等に応じて補正することにより、絶縁劣化領域の特定の精度を向上させることができる。   The insulation resistance value of the cable is affected by temperature, humidity, electric wire, cable material, model, and the like. Therefore, in the present embodiment, the data of the insulation resistance value under various conditions for various cables are stored in the database 7 and the data analysis unit 122 is provided in the server 12, and the data analysis unit 122 performs mathematical processing such as data mining. By performing the clustering based on the above and correcting the measurement value of the insulation resistance according to the air temperature, the temperature, etc., the specific accuracy of the insulation deterioration region can be improved.

また、本実施形態では、サーバー12に送信装置9を設け、相関関係判定部121が作成した上記相関関係を表す情報を管理者11側の受信装置10へ送信している。そして、受信装置10において上記相関関係を例えば上記図2に示すようにグラフ表示することで、管理者11は、表示されたグラフを観察して、上記図2におけるケーブルAの区間IやケーブルBの区間IIのように勾配が大きくなった区間に絶縁劣化が生じていると判断できる。本実施形態では、サーバー12から管理者11側の受信装置10へデータを送信することにより、管理者11はケーブル2の絶縁劣化領域を速やかに判定することができる。したがって、例えば、管理者11が作業者に対して即座に絶縁劣化が発生した領域内をより細かく測定すべきことを指示するなどして、絶縁劣化の発生箇所をより正確に特定することが可能であり、また、ケーブル交換作業の指示を即座に出すこともできるなど、作業者と管理者との間の相互判断を迅速に行うことができる。   In the present embodiment, the transmission device 9 is provided in the server 12 and information representing the correlation created by the correlation determination unit 121 is transmitted to the reception device 10 on the manager 11 side. Then, the manager 11 observes the displayed graph by displaying the correlation in the receiving apparatus 10 as shown in FIG. 2, for example, and the section I of the cable A and the cable B in FIG. It can be determined that the insulation deterioration has occurred in the section where the gradient is large as in section II. In the present embodiment, by transmitting data from the server 12 to the receiving device 10 on the manager 11 side, the manager 11 can quickly determine the insulation degradation area of the cable 2. Therefore, for example, the manager 11 can instruct the worker to measure the area in which the insulation degradation has occurred immediately more finely, and can specify the location where the insulation degradation has occurred more accurately. In addition, it is possible to promptly give mutual judgment between the operator and the manager, such as being able to issue an instruction for cable replacement work immediately.

なお、上記の説明では、サーバー12の相関関係判定部121が、抵抗測定点と絶縁抵抗値Rとの相関関係を作成して、この相関関係から人が絶縁劣化の発生箇所を判断するものとしたが、これに限らず、相関関係判定部121が上記相関関係の勾配の変化度合いから絶縁劣化の発生箇所を自動判定するようにしてもよい。この場合、絶縁劣化が判定された場合に、その領域を示す警報信号を送信装置9から受信装置10へ送信することにより、管理者に対して絶縁劣化の発生領域をより速やかに報知することができる。   In the above description, the correlation determination unit 121 of the server 12 creates a correlation between the resistance measurement point and the insulation resistance value R, and a person determines the location where the insulation deterioration has occurred from this correlation. However, the present invention is not limited to this, and the correlation determination unit 121 may automatically determine the location where the insulation deterioration has occurred from the degree of change in the correlation gradient. In this case, when the insulation deterioration is determined, an alarm signal indicating the region is transmitted from the transmission device 9 to the reception device 10 so that the administrator can be notified of the insulation deterioration occurrence region more quickly. it can.

また、上記の説明では、携帯型の交流電路地絡点検出器4を作業者が携帯してマンホール等を利用してケーブルの各点での絶縁抵抗を測定するものとしたが、これに限らず、複数の交流電路地絡点検出器4を常設し、それら複数の交流電路地絡点検出器4で検出した絶縁抵抗値に基づいて絶縁劣化の発生箇所を特定できるようにしてもよい。この構成は、例えば、海底ケーブルのように日常的な測定作業が困難な場合に好適である。また、近い将来に絶縁劣化の発生が予想される領域がある場合には、その領域を挟む地点に交流電路地絡点検出器4を常設して、絶縁劣化の発生を常時判定できるようにしてもよい。変流器をケーブルの新設時から常設する場合には、クランプ型に限らず、他の形式の変流器を用いることができる。   In the above description, the portable AC circuit ground fault detector 4 is carried by an operator and the insulation resistance at each point of the cable is measured using a manhole or the like. Alternatively, a plurality of AC electric circuit ground fault detectors 4 may be provided permanently so that the location where the insulation deterioration occurs can be specified based on the insulation resistance values detected by the plurality of AC electric circuit ground fault detectors 4. This configuration is suitable when, for example, a daily measurement operation is difficult like a submarine cable. In addition, if there is a region where insulation degradation is expected in the near future, an AC circuit ground fault detector 4 is permanently installed at a point across the region so that the occurrence of insulation degradation can be determined at all times. Also good. When the current transformer is permanently installed from the time of the new installation of the cable, not only the clamp type but also other types of current transformers can be used.

次に、本発明の第2の実施形態について説明する。
図5は、本発明の第2の実施形態を示す全体構成図である。なお、図5において上記第1実施形態の図1と同様の構成部分には同一の符号を付している。図5に示すように、本実施形態では、上記第1の実施形態の交流電源装置1に代えて直流電源装置100を設け、クランプ型変流器13に代えてクランプ型直流変流器130を設け、交流電路地絡点検出器4に代えて直流電路地絡点検出器400を設けている。また、直流電源装置100の正極はケーブル2の導体に接続し、負極は直接、大地に接続している。なお、本実施形態でも、ケーブル2の診断に先だって、ケーブル2を停電状態にして、ケーブル2の電荷を完全に放電させた後に直流電源装置100をケーブル2に接続するものとする。
Next, a second embodiment of the present invention will be described.
FIG. 5 is an overall configuration diagram showing a second embodiment of the present invention. In FIG. 5, the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals. As shown in FIG. 5, in this embodiment, a DC power supply device 100 is provided instead of the AC power supply device 1 of the first embodiment, and a clamp type DC current transformer 130 is provided instead of the clamp type current transformer 13. In place of the AC circuit ground fault detector 4, a DC circuit ground fault detector 400 is provided. Moreover, the positive electrode of the DC power supply device 100 is connected to the conductor of the cable 2, and the negative electrode is directly connected to the ground. Also in this embodiment, prior to diagnosis of the cable 2, the DC power supply 100 is connected to the cable 2 after the cable 2 is in a power failure state and the electric charge of the cable 2 is completely discharged.

クランプ型直流変流器130は、ケーブル2の直流の抵抗漏洩電流Idを検出する機能を有する変流器である。したがって、本実施形態では、絶縁抵抗値Rの測定にあたり供給電圧Vとの位相差を求めることは不要であり、直流電路地絡点検出器400の抵抗測定部404は、R=V/Idの関係式を用いて、漏洩電流Idから直接、絶縁抵抗値Rを測定することができる。絶縁抵抗値Rの測定精度として、例えば100KΩ以上の絶縁抵抗を測定できることが好ましい。なお、送信装置5、サーバー12、送信装置9、受信装置10の構成及び機能は上記第1実施形態と同様であるので説明を省略する。   The clamp type DC current transformer 130 is a current transformer having a function of detecting a DC resistance leakage current Id of the cable 2. Therefore, in this embodiment, it is not necessary to obtain the phase difference from the supply voltage V when measuring the insulation resistance value R, and the resistance measurement unit 404 of the DC circuit ground fault detector 400 has the relationship of R = V / Id. Using the equation, the insulation resistance value R can be measured directly from the leakage current Id. As measurement accuracy of the insulation resistance value R, for example, it is preferable that an insulation resistance of 100 KΩ or more can be measured. Note that the configurations and functions of the transmission device 5, the server 12, the transmission device 9, and the reception device 10 are the same as those in the first embodiment, and a description thereof will be omitted.

上述のように、本発明の第2実施形態では、クランプ型直流変流器130を用いて漏洩電流を検出することにより、供給電圧Vとの位相差を求めることが不要となるので、装置構成を簡単にできる。   As described above, in the second embodiment of the present invention, it is not necessary to obtain the phase difference from the supply voltage V by detecting the leakage current using the clamp type DC current transformer 130. Can be easy.

本発明の第1の実施形態を示す全体構成図である。1 is an overall configuration diagram showing a first embodiment of the present invention. ケーブル長と絶縁抵抗値との相関関係の一例を示す図である。It is a figure which shows an example of correlation with a cable length and an insulation resistance value. ケーブルの漏洩電流測定位置と絶縁抵抗測定値の関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the leakage current measurement position of a cable, and an insulation resistance measured value. 漏洩電流Iと、抵抗漏洩電流Ir及び静電容量漏洩電流Icとの関係を示す図である。It is a figure which shows the relationship between the leakage current I, the resistance leakage current Ir, and the electrostatic capacitance leakage current Ic. 本発明の第2の実施形態を示す全体構成図である。It is a whole block diagram which shows the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 交流電源装置
2 ケーブル
3 交流地絡電流変換器
4,400 交流電路地絡点検出器
43 位相分析部
44,405 抵抗測定部
5,9 送信装置
6,10 受信装置
7 記録データベース
11 管理者
12 サーバー
121 相関関係判定部
122 データ解析部
100 直流電源装置
13 クランプ型変流器
130 クランプ型直流変流器
DESCRIPTION OF SYMBOLS 1 AC power supply device 2 Cable 3 AC ground fault current converter 4,400 AC electric circuit ground fault point detector 43 Phase analysis part 44,405 Resistance measurement part 5,9 Transmitter 6,10 Receiver 7 Recording database 11 Manager 12 Server 121 Correlation determination unit 122 Data analysis unit 100 DC power supply device 13 Clamp type current transformer 130 Clamp type DC current transformer

Claims (4)

電気を通ずる電線又はケーブルの絶縁劣化領域を診断するためのシステムであって、
停電状態の前記電線又はケーブルの導体と大地との間に設けられた単相の交流電圧供給源と、
前記交流電流供給源を接地する抵抗器と、該抵抗器に生ずる電圧を検出する電圧検出器とを有する交流地絡電流変換器と、
前記電線又はケーブルの漏洩電流を検出する変流器と、該検出された電流信号と前記交流地絡電流変換器により検出された電圧信号との位相差を求める位相判定部と、該求められた位相差と前記検出された電流信号とに基づいて抵抗漏洩電流を求める抵抗漏洩電流判定部と、該求められた抵抗漏洩電流と前記交流電圧供給源の供給電圧とに基づいて前記電線またはケーブルの絶縁抵抗を測定する抵抗判定部とを有する絶縁抵抗測定器と、
前記電線又はケーブルの複数の地点において前記絶縁抵抗測定器により測定された絶縁抵抗値と、各測定点の前記電線又はケーブルの長さ方向に沿った位置との相関関係を求める相関関係判定部と、
前記求めた相関関係における勾配が既定値を越えた領域が存在する場合に、当該領域を絶縁劣化領域と判定する絶縁劣化判定部と、
を備えることを特徴とする電線又はケーブルの絶縁劣化領域診断システム
A system for diagnosing an insulation deterioration area of an electric wire or cable that conducts electricity,
A single-phase AC voltage source provided between the conductor of the electric wire or cable in a power failure state and the ground, and
An AC ground fault current converter having a resistor for grounding the AC current supply source, and a voltage detector for detecting a voltage generated in the resistor;
A current transformer for detecting leakage current of the electric wire or cable, a phase determination unit for obtaining a phase difference between the detected current signal and a voltage signal detected by the AC ground fault current converter, and the obtained A resistance leakage current determination unit that obtains a resistance leakage current based on the phase difference and the detected current signal, and the electric wire or cable based on the obtained resistance leakage current and the supply voltage of the AC voltage supply source. An insulation resistance measuring instrument having a resistance determination unit for measuring insulation resistance;
A correlation determination unit for obtaining a correlation between an insulation resistance value measured by the insulation resistance measuring instrument at a plurality of points of the electric wire or cable and a position along the length direction of the electric wire or cable at each measurement point; ,
When there is a region where the gradient in the calculated correlation exceeds a predetermined value, an insulation deterioration determination unit that determines the region as an insulation deterioration region;
An insulation deterioration region diagnosis system for an electric wire or a cable, comprising:
前記交流地絡電流変換器で検出された電圧信号を、有線又は無線により前記絶縁抵抗測定器へ送信し、前記絶縁抵抗測定器の前記位相判定部は、前記送信されてきた電圧信号に基づいて前記位相差を求めることを特徴とする請求項記載の電線又はケーブルの絶縁劣化領域診断システム。 The voltage signal detected by the AC ground fault current converter is transmitted to the insulation resistance measuring device by wire or wirelessly, and the phase determination unit of the insulation resistance measuring device is based on the transmitted voltage signal. wire or cable insulation degradation region diagnosis system according to claim 1, wherein the determining the phase difference. 前記絶縁抵抗測定器及び前記交流供地絡電流変換器の双方が互いに同期した周期信号の発生手段を有し、前記絶縁抵抗測定器の前記位相検出部は、前記周期信号に基づいて前記位相差を求めることを特徴とする請求項記載の電線又はケーブルの絶縁劣化領域診断システム。 Both the insulation resistance measuring instrument and the AC ground fault current converter have a periodic signal generating means synchronized with each other, and the phase detection unit of the insulation resistance measuring instrument is configured to output the phase difference based on the periodic signal. The insulation deterioration region diagnosis system for an electric wire or cable according to claim 1, wherein: 電気を通ずる電線又はケーブルの絶縁劣化領域を診断するための方法であって、
停電状態の前記電線又はケーブルの導体と大地との間に、単相の交流電源供給源により交流電圧を供給し、
前記交流電流供給源を抵抗器で接地して、該抵抗器に生ずる電圧を電圧検出器により検出し、
前記電線又はケーブルの漏洩電流を変流器により検出し、
前記検出した漏洩電流と、前記検出した電圧信号との位相差を求め、
該求めた位相差と前記検出された電流信号とに基づいて抵抗漏洩電流を求め、
該求めた抵抗漏洩電流と前記交流電圧供給源の供給電圧とに基づいて前記電線またはケーブルの絶縁抵抗値を測定し、
前記電線又はケーブルの複数の地点において前記絶縁抵抗測定器により測定された絶縁抵抗値と、各測定点の前記電線又はケーブルの長さ方向に沿った位置との相関関係を求め、
前記求めた相関関係における勾配が既定値を越えた領域が存在する場合に、当該領域を絶縁劣化領域と判定することを特徴とする電線又はケーブルの絶縁劣化領域診断方法。
A method for diagnosing an insulation deterioration region of an electric wire or cable that conducts electricity,
AC voltage is supplied by a single-phase AC power supply source between the conductor of the wire or cable in a power failure state and the ground,
The AC current supply source is grounded by a resistor, and a voltage generated in the resistor is detected by a voltage detector,
Detect the leakage current of the wire or cable with a current transformer,
Obtaining a phase difference between the detected leakage current and the detected voltage signal;
A resistance leakage current is obtained based on the obtained phase difference and the detected current signal,
Measure the insulation resistance value of the wire or cable based on the obtained resistance leakage current and the supply voltage of the AC voltage supply source,
Obtaining the correlation between the insulation resistance value measured by the insulation resistance measuring instrument at a plurality of points of the wire or cable and the position along the length direction of the wire or cable at each measurement point,
An insulation degradation region diagnosis method for an electric wire or a cable, wherein when there is a region where the gradient in the obtained correlation exceeds a predetermined value, the region is determined as an insulation degradation region.
JP2003296134A 2003-08-20 2003-08-20 Insulation degradation region diagnosis system and method for electric wire or cable Expired - Fee Related JP4398198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296134A JP4398198B2 (en) 2003-08-20 2003-08-20 Insulation degradation region diagnosis system and method for electric wire or cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003296134A JP4398198B2 (en) 2003-08-20 2003-08-20 Insulation degradation region diagnosis system and method for electric wire or cable

Publications (2)

Publication Number Publication Date
JP2005062124A JP2005062124A (en) 2005-03-10
JP4398198B2 true JP4398198B2 (en) 2010-01-13

Family

ID=34372143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296134A Expired - Fee Related JP4398198B2 (en) 2003-08-20 2003-08-20 Insulation degradation region diagnosis system and method for electric wire or cable

Country Status (1)

Country Link
JP (1) JP4398198B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229063A (en) * 2010-11-29 2013-07-31 吉坤日矿日石能源株式会社 Ground fault detection device, ground fault detection method, solar energy generator system, and ground fault detection program
CN103592586A (en) * 2013-11-27 2014-02-19 国家电网公司 Power cable insulation monitoring system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004698A1 (en) * 2005-07-06 2007-01-11 Sbc Corporation Leakage current detection apparatus and leakage current detection method
WO2008072287A1 (en) * 2006-12-08 2008-06-19 Ohno, Takemi Leakage current determining apparatus and leakage current determining method
GB0921632D0 (en) * 2009-12-10 2010-01-27 Viper Subsea Ltd Line monitoring device
JP5636698B2 (en) * 2010-03-03 2014-12-10 東京電力株式会社 DC accident point inspection device
CN102508136A (en) * 2011-12-09 2012-06-20 江苏镇安电力设备有限公司 Insulation monitoring method for IT (Isolation Terre) electric system with neutral conductor
GB201212868D0 (en) 2012-07-20 2012-09-05 Viper Subsea Technology Ltd Subsea deployed line insulation monitor
KR101984432B1 (en) * 2017-12-05 2019-05-30 전명수 Diagnosis device for monitoring degradation of cable and diagnosis method thereof
CN113125949B (en) * 2021-04-08 2023-03-21 国网江苏省电力有限公司检修分公司 High-voltage circuit breaker insulation monitoring method and system based on electric field
CN113514734A (en) * 2021-04-16 2021-10-19 西安热工研究院有限公司 Fault diagnosis method and system for long-distance high-voltage submarine cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229063A (en) * 2010-11-29 2013-07-31 吉坤日矿日石能源株式会社 Ground fault detection device, ground fault detection method, solar energy generator system, and ground fault detection program
CN103592586A (en) * 2013-11-27 2014-02-19 国家电网公司 Power cable insulation monitoring system

Also Published As

Publication number Publication date
JP2005062124A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
EP3469387B1 (en) A method and system for dynamic fault detection in an electric grid
KR101272130B1 (en) Method of and device for insulation monitoring
KR101874286B1 (en) Monitoring and diagnosis system for Power devices
US20090177420A1 (en) Detection, localization and interpretation of partial discharge
JP2004004003A (en) Device for detecting partial discharge from power apparatus utilizing radiated electronic waves
KR101846195B1 (en) Motor status monitoring system and method thereof
US9304159B2 (en) Detection and location of electrical connections having a micro-interface abnormality in an electrical system
CA2836938A1 (en) On-line monitoring system of insulation losses for underground power cables
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
KR102148618B1 (en) Device and system for diagnosing power cable, and method for diagnosing power calbe using the same
JP6633006B2 (en) Partial discharge monitoring device and partial discharge monitoring method
CN109855710B (en) Truck scale weighing state monitoring system and detection method
KR20130112306A (en) System and method for diagnosing sound of power device
CN105699866B (en) The method for detecting rail traffic insulating element using UV corona technology
KR20190030831A (en) The method and apparatus for detecting DC insulation resistance
KR101406135B1 (en) System for detecting defect of ultrasonic sound scan apparatus having electricity equipment
KR100536516B1 (en) Method and system for monitoring power system using power line communication
JP5020508B2 (en) Ground fault direction detector
KR100473084B1 (en) Deterioration daiagnosis measuring apparatus for lightning arrester according by using leakage current wave height analysis
KR20120012103A (en) Apparatus for automatically displaying partial discharge localization in GIS
KR20100037375A (en) Apparatus for measuring earth resistance
CN108369254B (en) Method of locating a fault in a power transmission medium
US20040130327A1 (en) Ground circuit impedance measurement apparatus and method
KR101763347B1 (en) Device for detection of fault location
KR20000037145A (en) A new diagnostic technique and equipment for lightning arrester by leakage current harmonic analysis on power service

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees