JP5636698B2 - DC accident point inspection device - Google Patents

DC accident point inspection device Download PDF

Info

Publication number
JP5636698B2
JP5636698B2 JP2010046109A JP2010046109A JP5636698B2 JP 5636698 B2 JP5636698 B2 JP 5636698B2 JP 2010046109 A JP2010046109 A JP 2010046109A JP 2010046109 A JP2010046109 A JP 2010046109A JP 5636698 B2 JP5636698 B2 JP 5636698B2
Authority
JP
Japan
Prior art keywords
current
voltage
ground fault
circuit
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010046109A
Other languages
Japanese (ja)
Other versions
JP2011180053A (en
Inventor
辰之 川島
辰之 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010046109A priority Critical patent/JP5636698B2/en
Publication of JP2011180053A publication Critical patent/JP2011180053A/en
Application granted granted Critical
Publication of JP5636698B2 publication Critical patent/JP5636698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直流回路のいずれの箇所に事故が発生しているかを検査する直流事故点検査装置に関する。   The present invention relates to a DC fault point inspection apparatus for inspecting in which part of a DC circuit an accident has occurred.

例えば、変電所の機器を制御する制御回路には、直流電源から直流回路にて直流が制御電源として供給されている。直流回路は、直流電源からDC分電盤を介して並列接続された機器盤に直流電力を供給するように構成されており、機器盤は分岐回路を構成している。   For example, direct current is supplied as control power from a direct current power source to a control circuit that controls equipment in a substation. The direct current circuit is configured to supply direct current power from a direct current power source to an equipment panel connected in parallel via a DC distribution board, and the equipment board constitutes a branch circuit.

この直流回路の分岐回路のいずれかのプラス側に地絡が発生した場合、充電器内の直流地絡過電圧保護継電器が動作し制御所へ故障表示が発報される。プラス側だけに地絡が発生した段階では、機器運転上の支障は特段ないが、この状況でマイナス側にも直流地絡が発生した場合には直流回路の短絡へと移行する。そうすると、事故発生した分岐回路の直流回路が分電盤の開閉器(例えばNFB)にて遮断され、分岐回路である機器盤の制御電源の喪失に至り、機器操作不能や電力系統事故の保護が不能となる。これにより、配電系統が広範囲停電となることがある。   If a ground fault occurs on any plus side of the branch circuit of this DC circuit, the DC ground fault overvoltage protection relay in the charger operates and a fault indication is issued to the control station. At the stage where a ground fault occurs only on the positive side, there is no particular problem in operation of the device. However, if a DC ground fault occurs on the negative side in this situation, the process shifts to a short circuit of the DC circuit. Then, the DC circuit of the branch circuit where the accident occurred is interrupted by a switch (for example, NFB) of the distribution board, leading to the loss of the control power of the equipment panel that is the branch circuit, which prevents the operation of the equipment and protection of the power system accident. It becomes impossible. This can cause a wide-area power outage in the distribution system.

そこで、直流地絡過電圧保護継電器が動作したときは、直流事故点検査装置を用いて事故点を捜査するようにしている。図11は、従来の直流事故点検査装置を用いて直流回路の事故点を捜査する一例の説明図である。   Therefore, when the DC ground fault overvoltage protection relay operates, the fault point is investigated using the DC fault point inspection device. FIG. 11 is an explanatory diagram of an example of investigating an accident point of a DC circuit using a conventional DC fault point inspection device.

図11に示すように、直流回路は、直流電力を蓄電するバッテリ11と、バッテリ11に直流電力を充電する充電器盤12と、バッテリ11からの直流電力を複数の機器盤13a〜13nに分岐して供給するDC分電盤14とから構成される。機器盤13a〜13nには直流の負荷15a〜15nが接続され、DC分電盤14から開閉器16a〜16nを介して負荷15a〜15nに直流電力が供給される。この負荷15a〜15nには、並列に制御ケーブルの静電容量Ca〜Cnが等価的に接続された状態となっている。   As shown in FIG. 11, the DC circuit includes a battery 11 that stores DC power, a charger board 12 that charges the battery 11 with DC power, and a DC power from the battery 11 that branches to a plurality of equipment boards 13 a to 13 n. And a DC distribution board 14 to be supplied. DC loads 15a to 15n are connected to the device boards 13a to 13n, and DC power is supplied from the DC distribution board 14 to the loads 15a to 15n via the switches 16a to 16n. The loads 15a to 15n are equivalently connected in parallel with the capacitances Ca to Cn of the control cable in parallel.

充電器盤12のAC/DCコンバータ17は、図示省略の交流系統からの交流電力を直流電力に変換してバッテリ11に蓄電する。充電器盤12には直流地絡過電圧保護継電器18が設けられており、直流回路のいずれかのプラス側に地絡が発生した場合、充電器盤12内の直流地絡過電圧保護継電器18が動作し、図示省略の制御所へ故障表示が発報される。図11では、機器盤13aの分岐回路に地絡Fが発生した場合を示している。直流地絡過電圧保護継電器18が動作し制御所へ故障表示が発報されると、作業員は、直流事故点検査装置を用いて事故点を捜査することになる。   The AC / DC converter 17 of the charger panel 12 converts AC power from an AC system (not shown) into DC power and stores it in the battery 11. The charger panel 12 is provided with a DC ground fault overvoltage protection relay 18, and when a ground fault occurs on any plus side of the DC circuit, the DC ground fault overvoltage protection relay 18 in the charger panel 12 operates. Then, a failure display is issued to a control station (not shown). FIG. 11 shows a case where a ground fault F has occurred in the branch circuit of the equipment panel 13a. When the DC ground fault overvoltage protection relay 18 operates and a fault indication is issued to the control station, the worker searches for the fault point using the DC fault point inspection device.

事故点検査装置は、直流回路に事故点の検査用の交流電圧を印加する電圧電源装置19と、検査対象の分岐回路に流れる電流の電流波形を測定するためのクランプCT20と、このクランプCT20で測定された電流値を表示する電流計21とから構成される。   The accident point inspection apparatus includes a voltage power supply device 19 for applying an AC voltage for inspection of an accident point to a DC circuit, a clamp CT20 for measuring a current waveform of a current flowing in a branch circuit to be inspected, and the clamp CT20. And an ammeter 21 for displaying the measured current value.

事故点の捜査にあたっては、まず、直流事故点検査装置の電圧電源装置19の一方端を直流回路のプラス極の電源線に接続し他方端を接地する。また、検査対象の分岐回路13のDC分電盤14との接続線にクランプCT20を把持する。これにより、検査対象の機器盤13に流れる電流を検出する。   In investigating the accident point, first, one end of the voltage power supply device 19 of the DC accident point inspection apparatus is connected to the positive power line of the DC circuit and the other end is grounded. In addition, the clamp CT20 is held on a connection line to the DC distribution board 14 of the branch circuit 13 to be inspected. Thereby, the electric current which flows into the apparatus board 13 to be examined is detected.

例えば、検査対象が機器盤13aの分岐回路である場合、クランプCT20はDC分電盤14の開閉器16aの負荷15a側に設置され、この状態で電圧電源装置19から検査用交流電圧を印加する。この場合、検査対象の機器盤13aの分岐回路には地絡Fが発生しているので、検査用交流電圧により検査対象の機器盤13aの分岐回路に流れる電流は、地絡Fの地絡抵抗Rfと静電容量Caとの並列回路を流れる電流の和である。この電流は、クランプCT20で検出され電流計21に表示出力される。   For example, when the inspection target is a branch circuit of the equipment panel 13a, the clamp CT20 is installed on the load 15a side of the switch 16a of the DC distribution board 14, and an AC voltage for inspection is applied from the voltage power supply device 19 in this state. . In this case, since the ground fault F is generated in the branch circuit of the device board 13a to be inspected, the current flowing through the branch circuit of the device board 13a to be inspected by the AC voltage for inspection is the ground fault resistance of the ground fault F. This is the sum of currents flowing through the parallel circuit of Rf and capacitance Ca. This current is detected by the clamp CT20 and displayed on the ammeter 21.

一方、検査対象が機器盤13bの分岐回路である場合、クランプCT20はDC分電盤14の開閉器16bの負荷15b側に設置され、この状態で電圧電源装置19から検査用交流電圧を印加する。この場合、検査対象の機器盤13bの分岐回路には地絡Fが発生していないので、検査用交流電圧により検査対象の機器盤13bの分岐回路に流れる電流は、静電容量Cbを流れる電流となる。この電流は、クランプCT20で検出され電流計21に表示出力される。 On the other hand, when the inspection target is a branch circuit of the equipment panel 13b, the clamp CT20 is installed on the load 15b side of the switch 16b of the DC distribution board 14, and in this state, an AC voltage for inspection is applied from the voltage power supply device 19. . In this case, since the ground fault F does not occur in the branch circuit of the device board 13b to be inspected, the current flowing through the branch circuit of the device board 13b to be inspected by the AC voltage for inspection is the current flowing through the capacitance Cb. It becomes. This current is detected by the clamp CT20 and displayed on the ammeter 21.

このように、地絡Fが発生している機器盤13aの分岐回路に流れる電流と、地絡Fが発生していない機器盤13bの分岐回路に流れる電流とは、地絡抵抗Rfを流れる電流の有無により異なった電流値となるので、作業員は、電流計21に表示出力される電流値を監視して、検査対象の機器盤13aの分岐回路に地絡Fが発生しているか否かを判断している。   Thus, the current flowing through the branch circuit of the equipment panel 13a where the ground fault F is generated and the current flowing through the branch circuit of the equipment panel 13b where the ground fault F is not generated are the current flowing through the ground fault resistance Rf. Therefore, the operator monitors the current value displayed and output on the ammeter 21 to determine whether or not a ground fault F has occurred in the branch circuit of the device panel 13a to be inspected. Judging.

ここで、電気を通ずる電線又はケーブルの絶縁劣化が生じた領域を特定するものとして、交流電源装置からケーブルへの供給電圧Vを交流地絡電流変換器で測定し、測定した電圧信号と漏洩電流Iとの位相差θを検出して抵抗漏洩電流Irを求め、供給電圧Vを抵抗漏洩電流Irで割ることにより絶縁抵抗Rを検出するようにしたものがある(例えば、特許文献1参照)。   Here, the voltage V and the leakage current measured by measuring the supply voltage V from the AC power supply device to the cable with an AC ground fault current converter are used to specify the region where the insulation deterioration of the electric wire or cable that conducts electricity has occurred. There is one in which the resistance difference R is detected by detecting the phase difference θ with I, and the insulation resistance R is detected by dividing the supply voltage V by the resistance leakage current Ir (see, for example, Patent Document 1).

特開2005−62124号公報JP 2005-62124 A

しかし、特許文献1のものは、交流の配電系統の絶縁不良箇所を検出するものであり、並列接続された機器盤に直流電力を供給する直流回路の絶縁不良箇所を検出するものに適用することができない。   However, the thing of patent document 1 detects the insulation failure location of an alternating current distribution system, and applies it to what detects the insulation failure location of the DC circuit which supplies DC power to the apparatus panel connected in parallel. I can't.

また、図11に示した従来の直流事故点検査装置では、電流計21で検出される電流値は絶対値表示による判定であるので、故障電流と健全電流との判定ができないことがある。すなわち、地絡Fの地絡抵抗Rfが小さい場合には、検査対象の機器盤13aの分岐回路に地絡Fが発生していることを容易に判定できるが、地絡Fの地絡抵抗Rfが大きい場合には地絡抵抗Rfを流れる電流が小さいので、地絡抵抗Rfを流れる電流と静電容量Caを流れる電流との和の絶対値が、健全な機器盤13bの分岐回路の静電容量Cbを流れる電流の絶対値と識別できないことがある。   Further, in the conventional DC fault point inspection apparatus shown in FIG. 11, since the current value detected by the ammeter 21 is determined based on the absolute value display, it may not be possible to determine the failure current and the healthy current. That is, when the ground fault resistance Rf of the ground fault F is small, it can be easily determined that the ground fault F has occurred in the branch circuit of the device panel 13a to be inspected. Is large, the current flowing through the ground fault resistance Rf is small. Therefore, the absolute value of the sum of the current flowing through the ground fault resistance Rf and the current flowing through the capacitance Ca is the electrostatic capacitance of the branch circuit of the sound equipment panel 13b. The absolute value of the current flowing through the capacitor Cb may not be distinguished.

その原因として、近年の機器盤13の負荷15が例えばデジタルリレーの場合には、その電源回路にフィルタとしてコンデンサが取付けられているので、そのコンデンサの静電容量を流れる電流を無視できなくなっている。また、CVV−Sケーブルの標準化によりDC回路の静電容量が増加している。このことから、電圧電源装置19の交流電圧の印加による充電電流が増大しているので、健全な機器盤13bの分岐回路であっても電流計21の電流表示が大きな値となり、地絡Fが発生した機器盤13aの分岐回路を流れる電流との識別ができなくなっており、事故点を判断できないことがある。   As a cause, when the load 15 of the device panel 13 in recent years is, for example, a digital relay, a capacitor is attached as a filter to the power supply circuit, so the current flowing through the capacitance of the capacitor cannot be ignored. . In addition, the capacitance of DC circuits is increasing due to the standardization of CVV-S cables. From this, since the charging current due to the application of the AC voltage of the voltage power supply device 19 is increased, the current display of the ammeter 21 becomes a large value even in a healthy branch circuit of the equipment panel 13b, and the ground fault F is The generated current cannot be distinguished from the current flowing through the branch circuit of the equipment panel 13a, and the accident point may not be determined.

そこで、直流地絡過電圧保護継電器18が動作したときは、直流回路から制御電源を供給しているすべての主要機器を停止した上で、DC分電盤14にて各開閉器16a〜16nを順次開放していき、直流地絡過電圧保護継電器18が故障復帰したときに、その機器盤13の分岐回路に地絡Fが発生していると判定することも考えられる。しかし、そのようにした場合には、直流回路から制御電源を供給しているすべての主要機器を停止しなければならないので、配電系統に停電区間が生じる。   Therefore, when the DC ground fault overvoltage protection relay 18 is operated, all the main devices supplying the control power from the DC circuit are stopped, and the switches 16a to 16n are sequentially turned on the DC distribution board 14. It may be determined that a ground fault F has occurred in the branch circuit of the equipment panel 13 when the DC ground fault overvoltage protection relay 18 is recovered from failure after being opened. However, in such a case, since all the main devices that supply the control power from the DC circuit have to be stopped, a power outage section occurs in the distribution system.

本発明の目的は、直流電源から並列接続された分岐回路の負荷に直流電力を供給する直流回路の静電容量が大きい場合であっても事故点を精度よく検出できる直流事故点検査装置を提供することである。   An object of the present invention is to provide a DC fault point inspection device capable of accurately detecting an accident point even when the DC circuit supplying DC power to a load of a branch circuit connected in parallel from a DC power source has a large capacitance. It is to be.

請求項1の発明に係る直流事故点検査装置は、直流電源から並列接続された分岐回路の負荷に直流電力を供給する直流回路に事故点の検査用の交流電圧を印加する電圧電源装置と、前記電圧電源装置に直列に接続され検査用の基準電圧を発生させるための基準抵抗と、前記直流回路の分岐回路のうち事故点の検査対象の分岐回路に把持され前記直流回路の分岐回路に流れる電流の電流波形を測定するためのクランプCTと、前記クランプCTで測定された電流波形と前記基準抵抗で発生した基準電圧の電圧波形との位相に基づき、前記電流波形が前記基準電圧の電圧波形と同相であるときは、その検査対象の分岐回路に完全地絡が発生していると判定し、前記電流波形の位相が前記基準電圧の電圧波形の位相より遅れているときは、その検査対象の分岐回路に地絡が発生していると判定する事故点判定装置とを備えたことを特徴とする。 A DC fault point inspection device according to the invention of claim 1 is a voltage power supply device that applies an AC voltage for fault point inspection to a DC circuit that supplies DC power to a load of a branch circuit connected in parallel from a DC power source; A reference resistor connected in series to the voltage power supply device and generating a reference voltage for inspection and a branch circuit of the DC circuit that is gripped by the branch circuit to be inspected at the fault point and flows to the branch circuit of the DC circuit Based on the phase of the clamp CT for measuring the current waveform of the current and the current waveform measured by the clamp CT and the voltage waveform of the reference voltage generated by the reference resistor, the current waveform is the voltage waveform of the reference voltage. When the phase of the current waveform is delayed from the phase of the voltage waveform of the reference voltage, it is determined that a complete ground fault has occurred in the branch circuit to be inspected. Wherein the ground fault in the branch circuits elephant and a are the determining fault point determination device occurred.

請求項2の発明に係る直流事故点検査装置は、請求項1の発明において、前記クランプCTで測定された電流波形及び前記基準抵抗で発生した基準電圧の電圧波形を表示するベクトルマルチメータを設けたことを特徴とする。 According to a second aspect of the present invention, there is provided a DC fault point inspection apparatus according to the first aspect of the present invention, further comprising a vector multimeter that displays a current waveform measured by the clamp CT and a voltage waveform of a reference voltage generated by the reference resistance. characterized in that was.

請求項1の発明によれば、電圧電源装置に直列に基準抵抗を接続して、この基準抵抗により検査用の基準電圧を発生させ、直流回路の分岐回路のうち事故点の検査対象の分岐回路に流れる電流をクランプCTで測定し、事故点判定装置により、電流波形が基準電圧の電圧波形と同相であるときは、その検査対象の分岐回路に完全地絡が発生していると判定し、電流波形の位相が基準電圧の電圧波形の位相より遅れているときは、その検査対象の分岐回路に地絡が発生していると判定するので、検査対象の分岐回路に地絡が発生していることの検出が容易に行える。 According to the first aspect of the present invention, a reference resistor is connected in series to the voltage power supply device, a reference voltage for inspection is generated by the reference resistor, and a branch circuit to be inspected for an accident point among the branch circuits of the DC circuit. When the current waveform is in phase with the voltage waveform of the reference voltage by the accident point determination device, it is determined that a complete ground fault has occurred in the branch circuit to be inspected. When the phase of the current waveform is delayed from the phase of the voltage waveform of the reference voltage, it is determined that a ground fault has occurred in the branch circuit to be inspected. It can be easily detected.

請求項2の発明によれば、クランプCTで測定された電流波形及び基準抵抗で発生した基準電圧の電圧波形をベクトルマルチメータに表示するので、請求項1の発明の効果に加え、基準抵抗で発生した基準電圧の電圧波形とランプCTで測定された電流波形との位相を表示できる。従って、その位相関係から、例えば、電流波形の位相が基準電圧波形の位相より遅れているときは、その検査対象の分岐回路に事故が発生していると判定できる。 According to the invention of claim 2, since the current waveform measured by the clamp CT and the voltage waveform of the reference voltage generated by the reference resistance are displayed on the vector multimeter, in addition to the effect of the invention of claim 1, the reference resistance The phase between the voltage waveform of the generated reference voltage and the current waveform measured by the lamp CT can be displayed. Therefore, from the phase relationship, for example, when the phase of the current waveform is delayed from the phase of the reference voltage waveform, it can be determined that an accident has occurred in the branch circuit to be inspected .

本発明の実施の形態に係る実施例1の直流事故点検査装置を用いて直流回路の事故点の捜査に適用した構成図。The block diagram applied to the investigation of the fault point of a DC circuit using the DC fault point inspection apparatus of Example 1 which concerns on embodiment of this invention. 本発明の実施の形態に係る直流事故点検査装置の基準抵抗及び電源電圧装置を直流回路に接続した場合に直流回路に流れる電流の説明図。Explanatory drawing of the electric current which flows into a DC circuit when the reference resistance and power supply voltage apparatus of the DC fault point inspection apparatus which concern on embodiment of this invention are connected to a DC circuit. 本発明の実施の形態に係る直流事故点検査装置の電源電圧装置の交流電圧を直流回路に印加した場合の電源電圧装置の交流電圧E、基準抵抗の基準電圧V、全体電流I、分流電流I1〜Inのベクトル図。The AC voltage E of the power supply voltage device, the reference voltage V of the reference resistance, the overall current I, and the shunt current I1 when the AC voltage of the power supply voltage device of the DC fault point inspection device according to the embodiment of the present invention is applied to the DC circuit. ~ In vector diagram. 地絡抵抗が零の場合(完全地絡の場合)の基準抵抗の基準電圧Vと全体電流Iとのベクトル図。The vector diagram of the reference voltage V of the reference resistance and the total current I when the ground fault resistance is zero (in the case of a complete ground fault). 地絡が発生していない場合の基準電圧と健全な機器盤を流れる電流の波形図。The waveform figure of the electric current which flows through the reference voltage when a ground fault has not occurred, and the healthy equipment panel. 地絡抵抗が零である地絡が発生した場合の基準電圧と機器盤を流れる電流の波形図。The waveform diagram of the reference voltage and the current flowing through the equipment panel when a ground fault with a ground fault resistance of zero occurs. 地絡抵抗が零でない中抵抗値である地絡が発生した場合の基準電圧と機器盤を流れる電流の波形図。The waveform diagram of the reference voltage and the current flowing through the equipment panel when a ground fault with a medium resistance value where the ground fault resistance is not zero occurs. 地絡抵抗が零でない高抵抗値である地絡が発生した場合の基準電圧と機器盤を流れる電流の波形図。The waveform diagram of the reference voltage and the current flowing through the equipment panel when a ground fault having a high resistance value with non-zero ground fault occurs. 本発明の実施の形態に係る実施例2の直流事故点検査装置を用いて直流回路の事故点の捜査に適用した構成図。The block diagram applied to the investigation of the fault point of a DC circuit using the DC fault point inspection apparatus of Example 2 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例3の直流事故点検査装置を用いて直流回路の事故点の捜査に適用した構成図。The block diagram applied to the investigation of the fault point of a DC circuit using the DC fault point inspection apparatus of Example 3 which concerns on embodiment of this invention. 従来の直流事故点検査装置を用いて直流回路の事故点を捜査する一例の説明図。Explanatory drawing of an example which investigates the fault point of a DC circuit using the conventional DC fault point inspection apparatus.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係る実施例1の直流事故点検査装置を用いて直流回路の事故点の捜査に適用した構成図である。図11に示した従来例に対し、検査用の基準電圧Vを発生させるための基準抵抗22を電圧電源装置19に直列に接続し、電流計21に代えてベクトルマルチメータ23を設け、このベクトルマルチメータ23にクランプCT20で測定された電流波形及び基準抵抗22で発生した基準電圧Vの電圧波形を表示するようにしたものである。図1と同一要素には、同一符号を付し重複する説明は省略する。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram applied to the investigation of an accident point of a DC circuit using the DC accident point inspection apparatus of Example 1 according to the embodiment of the present invention. In contrast to the conventional example shown in FIG. 11, a reference resistor 22 for generating a test reference voltage V is connected in series to a voltage power supply device 19, and a vector multimeter 23 is provided in place of the ammeter 21. The current waveform measured by the clamp CT20 and the voltage waveform of the reference voltage V generated by the reference resistor 22 are displayed on the multimeter 23. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

電圧電源装置19は、直流回路に事故点の検査用の交流電圧を印加するものである。すなわち、電圧電源装置19は、充電器盤12内の直流地絡過電圧保護継電器18が動作したときに、一方端は直流回路のプラス極の電源線に接続され他方端は接地される。電圧電源装置19で発生する試験用の交流電圧は、例えば周波数が商用電源周波数(60Hz、50Hz)以下の32Hzで電圧レベルは42V以下の交流電圧である。   The voltage power supply device 19 applies an AC voltage for inspecting an accident point to a DC circuit. That is, when the DC ground fault overvoltage protection relay 18 in the charger panel 12 is operated, the voltage power supply device 19 is connected at one end to the positive power line of the DC circuit and grounded at the other end. The test AC voltage generated in the voltage power supply device 19 is an AC voltage having a frequency of 32 Hz and a voltage level of 42 V or less, for example, a frequency of commercial power frequency (60 Hz, 50 Hz) or less.

基準抵抗22は、直流のプラス極の電源線と電圧電源装置19との間に直列に接続され、電圧電源装置19から直流回路の分岐回路である機器盤13a〜13nに検査用の交流電圧が印加されたとき、検査用の基準電圧Vを発生させるものである。この基準抵抗22は、抵抗値を可変できる可変抵抗で構成されている。例えば、100Ω以下の範囲で抵抗値を調整できるものを使用する。これにより、基準抵抗22で発生する基準電圧Vの電圧レベルを調整できるようにしている。   The reference resistor 22 is connected in series between the DC positive electrode power line and the voltage power supply device 19, and an AC voltage for inspection is applied from the voltage power supply device 19 to the equipment panels 13 a to 13 n which are branch circuits of the DC circuit. When applied, it generates a reference voltage V for inspection. The reference resistor 22 is composed of a variable resistor whose resistance value can be varied. For example, a resistor whose resistance value can be adjusted within a range of 100Ω or less is used. Thereby, the voltage level of the reference voltage V generated by the reference resistor 22 can be adjusted.

検査用の交流電圧が直流回路に印加されると、地絡事故が発生していないときは、基準抵抗22と機器盤13a〜13nの静電容量Ca〜Cnを介し閉回路が形成される。また、地絡事故が発生しているときは、機器盤13a〜13nの静電容量Ca〜Cnに加え地絡抵抗を介して閉回路が形成される。その閉回路に流れる電流により基準抵抗22には基準電圧Vが発生する。前述したように、基準抵抗22は抵抗値を可変できる可変抵抗であるので、基準抵抗22の抵抗値を可変にすることにより閉回路に流れる電流が変化し、基準抵抗22で発生する基準電圧の電圧レベルを調整する。   When an AC voltage for inspection is applied to the DC circuit, when no ground fault has occurred, a closed circuit is formed through the reference resistor 22 and the capacitances Ca to Cn of the equipment panels 13a to 13n. Further, when a ground fault occurs, a closed circuit is formed through the ground fault resistance in addition to the capacitances Ca to Cn of the equipment panels 13a to 13n. The reference voltage V is generated in the reference resistor 22 by the current flowing in the closed circuit. As described above, since the reference resistor 22 is a variable resistor whose resistance value can be varied, the current flowing through the closed circuit is changed by changing the resistance value of the reference resistor 22, and the reference voltage generated by the reference resistor 22 is changed. Adjust the voltage level.

また、クランプCTは各々の機器盤13a〜13nに流れる電流波形を測定するものであり、検査用の交流電圧を直流回路に印加したときに各々の機器盤13a〜13nに形成される閉回路の電流を測定する。この場合、クランプCTは、DC分電盤14から分岐した各々の機器盤13a〜13n毎に、その分岐回路のプラス極の電源線とマイナス極の電源線とを把持し、その把持部分を順次付け替えて各々の機器盤13a〜13nに流れる電流を測定していく。各々の機器盤13a〜13nの分岐回路のプラス極の電源線とマイナス極の電源線とをともに把持するのは、直流回路に含まれる交流分の測定を相殺するためである。   The clamp CT is for measuring the waveform of the current flowing through each of the equipment boards 13a to 13n, and is a closed circuit formed on each of the equipment boards 13a to 13n when an AC voltage for inspection is applied to the DC circuit. Measure the current. In this case, the clamp CT holds the positive and negative power lines of the branch circuit for each of the equipment boards 13a to 13n branched from the DC distribution board 14, and sequentially holds the gripped portions. The current flowing through each of the equipment boards 13a to 13n is measured after changing. The reason why both the positive and negative power supply lines of the branch circuits of the device boards 13a to 13n are held is to cancel the measurement of the AC component included in the DC circuit.

ベクトルマルチメータ23は、クランプCT20で測定された電流波形及び基準抵抗22で発生した基準電圧Vの電圧波形を表示するものであり、機器盤13a〜13nの分岐回路に流れる電流波形及び基準電圧Vの電圧波形が表示されることから、これらの位相関係を容易に把握できる。この場合、基準抵抗22の抵抗値を可変にして、基準抵抗22で発生する基準電圧Vの電圧レベルを調整し、クランプCT20で測定された電流波形と基準電圧Vの電圧波形との位相関係を判別し易くする。   The vector multimeter 23 displays the current waveform measured by the clamp CT20 and the voltage waveform of the reference voltage V generated by the reference resistor 22, and the current waveform and the reference voltage V flowing through the branch circuits of the equipment panels 13a to 13n. Since these voltage waveforms are displayed, these phase relationships can be easily grasped. In this case, the resistance value of the reference resistor 22 is made variable, the voltage level of the reference voltage V generated by the reference resistor 22 is adjusted, and the phase relationship between the current waveform measured by the clamp CT20 and the voltage waveform of the reference voltage V is obtained. Make it easy to distinguish.

図2は、本発明の実施の形態に係る直流事故点検査装置の基準抵抗及び電源電圧装置を直流回路に接続した場合に直流回路に流れる電流の説明図である。図2では、機器盤13bに地絡Fが発生しており、その他の機器盤13a、13c〜13nは健全である場合を示している。直流回路に電源電圧装置19の交流電圧が印加されると、基準抵抗22には全体電流Iが流れ、各々の機器盤13a〜13nへの分岐回路には電流Iが分流して分流電流I1〜In(I=I1+I2+…In)が流れる。   FIG. 2 is an explanatory diagram of a current flowing through the DC circuit when the reference resistor and the power supply voltage device of the DC fault point inspection apparatus according to the embodiment of the present invention are connected to the DC circuit. In FIG. 2, the ground fault F has generate | occur | produced in the equipment board 13b, and the other equipment boards 13a and 13c-13n have shown the case where it is healthy. When the AC voltage of the power supply voltage device 19 is applied to the DC circuit, the entire current I flows through the reference resistor 22, and the current I is shunted to the branch circuit to each of the equipment panels 13a to 13n. In (I = I1 + I2 +... In) flows.

図3は、直流回路に電源電圧装置19の交流電圧を印加した場合の電源電圧装置19の交流電圧E、基準抵抗22の基準電圧V、全体電流I、分流電流I1〜Inのベクトル図である。図3(a)に示すように、健全な機器盤13a、13c〜13nに流れる分流電流I1、I3…Inは、静電容量Ca、Cc〜Cnを流れる電流であるので、電源電圧装置19の交流電圧Eより位相がπ/2だけ進んだ電流である。これに対し、地絡Fが発生した機器盤13bに流れる分流電流I2は、静電容量Cbを流れる電流Icと地絡抵抗Rgを流れる地絡電流Igとのベクトル和になる。   FIG. 3 is a vector diagram of the AC voltage E of the power supply voltage device 19 when the AC voltage of the power supply voltage device 19 is applied to the DC circuit, the reference voltage V of the reference resistor 22, the total current I, and the shunt currents I1 to In. . As shown in FIG. 3A, the shunt currents I1, I3,... In flowing through the sound equipment boards 13a, 13c to 13n are currents flowing through the capacitances Ca, Cc to Cn. This is a current whose phase is advanced by π / 2 from the AC voltage E. On the other hand, the shunt current I2 flowing through the equipment panel 13b in which the ground fault F has occurred is a vector sum of the current Ic flowing through the capacitance Cb and the ground fault current Ig flowing through the ground fault resistance Rg.

全体電流Iは、分流電流I1〜Inのベクトル和となり、基準抵抗22の基準電圧Vは全体電流Iと同相となる。図3(b)に示すように、健全な機器盤13i(iは地絡が発生した13bを除いたもの、i=a、c…n、以下同様)に流れる分流電流Iiは、静電容量Ciを流れる電流であるので、電源電圧装置19の交流電圧Eより位相がπ/2だけ進んだ電流であり、基準電圧Vの位相よりも進んだ電流となる。一方、地絡Fが発生した機器盤13bに流れる電流I2は、静電容量Cbを流れる電流Icと地絡抵抗Rgを流れる地絡電流Igとのベクトル和であるので、図3(c)に示すように基準電圧Vの位相よりも遅れた電流となる。   The total current I is a vector sum of the shunt currents I1 to In, and the reference voltage V of the reference resistor 22 is in phase with the total current I. As shown in FIG. 3 (b), the shunt current Ii flowing in the sound equipment panel 13i (i is the one excluding 13b in which the ground fault occurs, i = a, c... N, the same applies hereinafter) Since the current flows through Ci, it is a current whose phase is advanced by π / 2 from the AC voltage E of the power supply voltage device 19, and is a current that is further advanced than the phase of the reference voltage V. On the other hand, the current I2 flowing through the equipment panel 13b in which the ground fault F has occurred is a vector sum of the current Ic flowing through the capacitance Cb and the ground fault current Ig flowing through the ground fault resistance Rg, and therefore, as shown in FIG. As shown, the current is delayed from the phase of the reference voltage V.

また、地絡Fの地絡抵抗Rgが零の場合(完全地絡の場合)には、図4に示すように、全体電流Iは基準電圧Vと同相となる。完全地絡の場合には、地絡Fが発生した機器盤14bの地絡点に全体電流Iが流れることになるので、健全な機器盤14iにはほとんど分流電流Iiは流れない。   When the ground fault resistance Rg of the ground fault F is zero (in the case of a complete ground fault), the entire current I is in phase with the reference voltage V as shown in FIG. In the case of a complete ground fault, since the entire current I flows through the ground fault point of the equipment panel 14b where the ground fault F has occurred, the shunt current Ii hardly flows through the healthy equipment panel 14i.

このことから、地絡Fが発生していない場合には健全な機器盤13iを流れる電流Iiは、必ず基準電圧Vより位相が進むことになる。これに対し、地絡抵抗Rgが零でない地絡が発生した場合には、健全な機器盤13iを流れる電流Iiは、必ず基準電圧Vより位相が進むことになり、地絡Fが発生した機器盤13bの電流I2は、必ず基準電圧Vより遅れることになる。また、地絡抵抗Rgが零である地絡が発生した場合には、健全な機器盤13iを流れる電流Iiはほぼ零となり、地絡Fが発生した機器盤13bの電流I2は基準電圧Vと同相になる。これらの関係から、地絡Fが発生した機器盤13bを判別することができる。   For this reason, when the ground fault F is not generated, the phase of the current Ii flowing through the sound equipment panel 13i always advances from the reference voltage V. On the other hand, when a ground fault occurs in which the ground fault resistance Rg is not zero, the phase of the current Ii flowing through the healthy equipment panel 13i always advances from the reference voltage V, and the equipment in which the ground fault F has occurred. The current I2 of the panel 13b is always delayed from the reference voltage V. When a ground fault with a ground fault resistance Rg of zero occurs, the current Ii flowing through the sound equipment board 13i is almost zero, and the current I2 of the equipment board 13b where the ground fault F is generated is the reference voltage V. Become in phase. From these relationships, it is possible to determine the equipment panel 13b in which the ground fault F has occurred.

そこで、本発明の実施の形態では、クランプCT20で各々の機器盤13a〜13nの分岐回路を流れる電流I1〜Inを順次測定していき、ベクトルマルチメータ23には、その電流I1〜Inと基準抵抗22の基準電圧Vとを表示し、電流I1〜Inと基準電圧Vとの位相関係から地絡Fが発生した機器盤13bを判別することになる。   Therefore, in the embodiment of the present invention, the currents I1 to In flowing through the branch circuits of the respective instrument panels 13a to 13n are sequentially measured by the clamp CT20, and the currents I1 to In and the reference are supplied to the vector multimeter 23. The reference voltage V of the resistor 22 is displayed, and the equipment panel 13b where the ground fault F has occurred is determined from the phase relationship between the currents I1 to In and the reference voltage V.

次に、ベクトルマルチメータ23に表示出力された基準抵抗22の基準電圧Vと機器盤13iの分岐回路を流れる電流Iiについて説明する。   Next, the reference voltage V of the reference resistor 22 displayed on the vector multimeter 23 and the current Ii flowing through the branch circuit of the equipment panel 13i will be described.

図5は、地絡Fが発生していない場合の基準電圧Vと健全な機器盤13iを流れる電流Iiの波形図である。地絡Fが発生していない場合には、健全な機器盤13iを流れる電流Iiは基準電圧Vより位相がπ/2だけ進んだ波形となる。これにより、機器盤13iを流れる電流Iiが、基準電圧Vより位相がπ/2だけ進んだ波形であるときは、直流回路の各々の機器盤13a〜13nには地絡は発生していないと判断できる。   FIG. 5 is a waveform diagram of the reference voltage V and the current Ii flowing through the healthy equipment panel 13i when the ground fault F is not generated. When the ground fault F has not occurred, the current Ii flowing through the sound equipment panel 13i has a waveform whose phase is advanced by π / 2 from the reference voltage V. Thus, when the current Ii flowing through the equipment panel 13i has a waveform whose phase is advanced by π / 2 from the reference voltage V, it is assumed that no ground fault has occurred in each of the equipment boards 13a to 13n of the DC circuit. I can judge.

図6は地絡抵抗Rgが零である地絡が発生した場合の基準電圧Vと機器盤13j(j=a〜n)を流れる電流Ijの波形図であり、図6(a)は基準電圧Vと健全な機器盤13iを流れる電流Iiの波形図、図6(b)は基準電圧Vと地絡Fが発生した機器盤13bを流れる電流I2の波形図である。地絡抵抗Rgが零である地絡(完全地絡)である場合には、全体電流Iは地絡点を流れる。従って、健全な機器盤13iを流れる電流Iiは、図6(a)に示すように零となる。一方、地絡が発生した機器盤13bを流れる電流I2は、全体電流Iに等しいので、図6(b)に示すように、基準電圧Vと同相の電流となる。これにより、機器盤13jを流れる電流Ijが零であるときは、直流回路のいずれかの機器盤13jに故障が発生していると判断できる。そして、機器盤13jを流れる電流Ijが基準電圧Vと同相であるときは、その機器盤13jに完全地絡が発生していると判断できる。   FIG. 6 is a waveform diagram of the reference voltage V and the current Ij flowing through the equipment panel 13j (j = a to n) when a ground fault having a ground fault resistance Rg of zero occurs. FIG. FIG. 6B is a waveform diagram of the current I2 flowing through the device panel 13b where the reference voltage V and the ground fault F are generated. In the case of a ground fault (complete ground fault) in which the ground fault resistance Rg is zero, the entire current I flows through the ground fault point. Therefore, the current Ii flowing through the sound equipment panel 13i becomes zero as shown in FIG. On the other hand, the current I2 flowing through the equipment panel 13b in which the ground fault has occurred is equal to the total current I, and therefore has a current in phase with the reference voltage V as shown in FIG. Thus, when the current Ij flowing through the device board 13j is zero, it can be determined that a failure has occurred in any of the device boards 13j of the DC circuit. When the current Ij flowing through the equipment panel 13j is in phase with the reference voltage V, it can be determined that a complete ground fault has occurred in the equipment board 13j.

図7は地絡抵抗Rgが零でない中抵抗値である地絡が発生した場合の基準電圧Vと機器盤13jを流れる電流Ijの波形図であり、図7(a)は基準電圧Vと健全な機器盤13iを流れる電流Iiの波形図、図7(b)は基準電圧Vと地絡Fが発生した機器盤13bを流れる電流I2の波形図である。地絡抵抗Rgが零でない中抵抗値である地絡が発生した場合には、図2に示したように、健全な機器盤13iには静電容量Ciに電流Iiが流れ、地絡が発生した機器盤13bには静電容量Cbに流れる電流Icと地絡抵抗Rgに流れる電流Igとのベクトル和の電流I2が流れる。   FIG. 7 is a waveform diagram of the reference voltage V and the current Ij flowing through the equipment panel 13j when a ground fault having a medium resistance value where the ground fault resistance Rg is not zero occurs. FIG. FIG. 7B is a waveform diagram of the current I2 flowing through the equipment panel 13b in which the reference voltage V and the ground fault F are generated. When a ground fault having a medium resistance value with a non-zero ground fault resistance Rg occurs, as shown in FIG. 2, the current Ii flows through the electrostatic capacity Ci in the sound equipment panel 13i, and a ground fault occurs. A current I2 which is a vector sum of the current Ic flowing through the capacitance Cb and the current Ig flowing through the ground fault resistance Rg flows through the device board 13b.

健全な機器盤13iには静電容量Ciに流れる電流Iiは、図7(a)に示したように基準電圧Vより位相が進んだ電流となる。一方、地絡が発生した機器盤13bに流れる電流I2は、図7(b)に示すように、基準電圧Vより位相が遅れた電流となる。これにより、機器盤13jを流れる電流Ijが基準電圧Vより位相がπ/2未満の進んだ電流であるときは、直流回路のいずれかの機器盤13jに故障が発生しているが、その機器盤13jは健全な機器盤13iであると判断できる。そして、機器盤13jを流れる電流Ijが基準電圧Vより遅れているときは、その機器盤13jが地絡の発生している機器盤13bであると判断できる。   In the healthy equipment panel 13i, the current Ii flowing through the capacitance Ci is a current whose phase is advanced from the reference voltage V as shown in FIG. On the other hand, the current I2 flowing through the equipment panel 13b where the ground fault has occurred is a current whose phase is delayed from the reference voltage V as shown in FIG. As a result, when the current Ij flowing through the equipment panel 13j is a current whose phase is less than π / 2 from the reference voltage V, a fault has occurred in any equipment panel 13j of the DC circuit. It can be determined that the board 13j is a healthy equipment board 13i. When the current Ij flowing through the device panel 13j is delayed from the reference voltage V, it can be determined that the device panel 13j is the device panel 13b in which a ground fault has occurred.

図8は地絡抵抗Rgが零でない高抵抗値である地絡が発生した場合の基準電圧Vと機器盤13jを流れる電流Ijの波形図であり、図8(a)は基準電圧Vと健全な機器盤13iを流れる電流Iiの波形図、図8(b)は基準電圧Vと地絡Fが発生した機器盤13bを流れる電流I2の波形図である。地絡抵抗Rgが零でない高抵抗値である地絡が発生した場合には、図7に示した場合と同様に、健全な機器盤13iには静電容量Ciに流れる電流Iiは基準電圧Vより位相が進んだ電流となり、地絡が発生した機器盤13bに流れる電流I2は基準電圧Vより位相が遅れた電流となる。   FIG. 8 is a waveform diagram of the reference voltage V and the current Ij flowing through the equipment panel 13j when a ground fault having a high resistance value where the ground fault resistance Rg is not zero occurs. FIG. FIG. 8B is a waveform diagram of the current I2 flowing through the equipment panel 13b in which the reference voltage V and the ground fault F are generated. When a ground fault having a high resistance value with non-zero ground fault resistance Rg occurs, the current Ii flowing through the electrostatic capacity Ci in the sound equipment panel 13i is equal to the reference voltage V as in the case shown in FIG. The current is more advanced in phase, and the current I2 flowing through the equipment panel 13b in which the ground fault has occurred becomes a current delayed in phase from the reference voltage V.

この場合、地絡抵抗Rgが高抵抗値であることから、基準電圧Vと健全な機器盤13iを流れる電流Iiとの位相差は、図8(a)に示すように、図7(a)の中抵抗値である場合と比較して小さくなっている。同様に、基準電圧と地絡が発生した機器盤13bを流れる電流I2との位相差は、図8(b)に示すように、図7(b)の中抵抗値である場合と比較して小さくなっている。これにより、基準電圧Vと機器盤13jを流れる電流Ijとの位相差により地絡抵抗Rgの大きさをある程度判断できることになる。   In this case, since the ground fault resistance Rg has a high resistance value, the phase difference between the reference voltage V and the current Ii flowing through the healthy equipment panel 13i is as shown in FIG. It is smaller than the case of medium resistance value. Similarly, as shown in FIG. 8B, the phase difference between the reference voltage and the current I2 flowing through the equipment panel 13b in which the ground fault has occurred is compared with the case of the middle resistance value in FIG. 7B. It is getting smaller. Thereby, the magnitude of the ground fault resistance Rg can be determined to some extent from the phase difference between the reference voltage V and the current Ij flowing through the equipment panel 13j.

実施例1によれば、電圧電源装置に直列に基準抵抗22を接続して、この基準抵抗22により検査用の基準電圧Vを発生させ、直流回路の機器盤13a〜13nの分岐回路のうち事故点の検査対象の機器盤13jの分岐回路に流れる電流をクランプCT20で順次測定していき、クランプCT20で測定された電流波形及び基準抵抗22で発生した基準電圧Vの電圧波形をベクトルマルチメータ23に表示するので、ベクトルマルチメータ23に表示された基準電圧Vの電圧波形とランプCT20で測定された電流波形との位相を判断できる。これにより、その位相関係から、検査対象の分岐回路に事故が発生しているか否かを判定できる。   According to the first embodiment, a reference resistor 22 is connected in series to a voltage power supply device, and a reference voltage V for inspection is generated by the reference resistor 22, and an accident is detected among the branch circuits of the DC circuit boards 13a to 13n. The current flowing through the branch circuit of the device board 13j to be inspected is sequentially measured by the clamp CT20, and the current waveform measured by the clamp CT20 and the voltage waveform of the reference voltage V generated by the reference resistor 22 are measured by the vector multimeter 23. Therefore, the phase between the voltage waveform of the reference voltage V displayed on the vector multimeter 23 and the current waveform measured by the lamp CT20 can be determined. Thereby, it can be determined from the phase relationship whether or not an accident has occurred in the branch circuit to be inspected.

例えば、電流波形の電流値が零である場合には完全地絡である場合の健全回路であると判断でき、電流波形が基準電圧Vと同相であるときは完全地絡である場合の地絡回路であると判断でき、また、電流波形の位相が基準電圧波形の位相より遅れているときは、その検査対象の分岐回路に事故が発生していると判定できる。さらには、その位相差を判断することにより、地絡抵抗Rgの大きさをある程度判断できる。   For example, when the current value of the current waveform is zero, it can be determined that the sound circuit is a complete ground fault, and when the current waveform is in phase with the reference voltage V, the ground fault is a complete ground fault. When the phase of the current waveform is behind the phase of the reference voltage waveform, it can be determined that an accident has occurred in the branch circuit to be inspected. Furthermore, the magnitude of the ground fault resistance Rg can be determined to some extent by determining the phase difference.

次に、本発明の実施の形態に係る実施例2の直流事故点検査装置を説明する。図9は、本発明の実施の形態に係る実施例2の直流事故点検査装置を用いて直流回路の事故点の捜査に適用した構成図である。この実施例2は、図1に示した実施例1に対し、ベクトルマルチメータに追加して事故点判定装置24を設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   Next, a DC fault point inspection apparatus of Example 2 according to the embodiment of the present invention will be described. FIG. 9 is a configuration diagram applied to the investigation of the fault point of the DC circuit using the DC fault point inspection apparatus of Example 2 according to the embodiment of the present invention. In the second embodiment, an accident point determination device 24 is provided in addition to the vector multimeter with respect to the first embodiment shown in FIG. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

事故点判定装置24は、クランプCT20で測定された電流波形と基準電圧Vの電圧波形を入力しその位相差を判定する。電流波形の位相と基準電圧Vの電圧波形の位相とが同相であるときは、その検査対象の分岐回路に完全地絡が発生していると判定する。また、電流波形の位相が基準電圧Vの電圧波形の位相より遅れているときは、その検査対象の分岐回路に地絡が発生していると判定する。そして、これらの完全地絡や地絡を検出したときには外部にその旨を発報する。これにより、作業員は、検査対象の機器盤13jに地絡事故が発生しているか否かを容易に認識できる。   The accident point determination device 24 inputs the current waveform measured by the clamp CT 20 and the voltage waveform of the reference voltage V, and determines the phase difference. When the phase of the current waveform and the phase of the voltage waveform of the reference voltage V are in phase, it is determined that a complete ground fault has occurred in the branch circuit to be inspected. When the phase of the current waveform is delayed from the phase of the voltage waveform of the reference voltage V, it is determined that a ground fault has occurred in the branch circuit to be inspected. When these complete ground faults or ground faults are detected, the fact is reported to the outside. Thereby, the worker can easily recognize whether or not a ground fault has occurred in the equipment panel 13j to be inspected.

以上の説明では、ベクトルマルチメータに追加して事故点判定装置24を設けた場合について説明したが、ベクトルマルチメータに代えて事故点判定装置24を設けるようにしてもよい。   Although the case where the accident point determination device 24 is provided in addition to the vector multimeter has been described above, the accident point determination device 24 may be provided instead of the vector multimeter.

図10は、本発明の実施の形態に係る実施例3の直流事故点検査装置を用いて直流回路の事故点の捜査に適用した構成図である。この実施例3は、図1に示した実施例1に対し、予め各々の機器盤13a〜13nの分岐回路に流れる電流I1〜Inを測定するクランプCT20a〜20nを設置しておき、ベクトルマルチメータ23に代えて、クランプCT20a〜20nで検出された電流I1〜In及び基準抵抗22の基準電圧Vを記録するための記録装置25を設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   FIG. 10 is a configuration diagram applied to the investigation of the fault point of the DC circuit using the DC fault point inspection apparatus of Example 3 according to the embodiment of the present invention. In the third embodiment, in contrast to the first embodiment shown in FIG. 1, the clamps CT20a to 20n for measuring the currents I1 to In flowing in the branch circuits of the respective device boards 13a to 13n are installed in advance, and the vector multimeter In place of 23, a recording device 25 for recording the currents I1 to In detected by the clamps CT20a to 20n and the reference voltage V of the reference resistor 22 is provided. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図10に示すように、各々の機器盤13a〜13nには、それぞれクランプCT20a〜20nがそれぞれ設けられ、各々の機器盤13a〜13nに流れる電流I1〜Inが計測され記録装置25に入力される。一方、記録装置25には、基準抵抗22からの基準電圧Vも入力される。そして、記録装置25は、直流地絡過電圧保護継電器18が動作したときに、予め定められた所定期間のクランプCT20a〜20nで検出された電流I1〜Inの電流波形及び基準電圧Vの電圧波形を記録する。予め定められた所定期間は、記録された電流I1〜Inの電流波形及び基準電圧Vの電圧波形から地絡判定ができる程度の期間である。これにより、直流地絡過電圧保護継電器18が動作した後に、記録装置25に記録された電流I1〜Inの電流波形及び基準電圧Vの電圧波形から、いずれの機器盤13jに地絡が発生しているのかの判定ができる。   As shown in FIG. 10, clamps CT 20 a to 20 n are respectively provided on the respective equipment boards 13 a to 13 n, and currents I 1 to In flowing through the respective equipment boards 13 a to 13 n are measured and input to the recording device 25. . On the other hand, the reference voltage V from the reference resistor 22 is also input to the recording device 25. The recording device 25 then displays the current waveforms of the currents I1 to In and the voltage waveform of the reference voltage V detected by the clamps CT20a to 20n for a predetermined period when the DC ground fault overvoltage protection relay 18 operates. Record. The predetermined period is a period in which a ground fault can be determined from the recorded current waveforms of the currents I1 to In and the voltage waveform of the reference voltage V. Thereby, after the DC ground fault overvoltage protection relay 18 is operated, a ground fault occurs in any of the equipment panels 13j from the current waveforms of the currents I1 to In and the voltage waveform of the reference voltage V recorded in the recording device 25. You can determine if you are.

以上のように、本発明の実施の形態によれば、電圧電源装置19に直列に基準抵抗22を設け、機器盤13a〜13nの分岐回路に流れる電流I1〜Inの電流波形との位相測定のための基準電圧Vの電圧波形を取り込み、基準電圧Vの電圧波形と電流I1〜Inの電流波形との位相差を得ることができるので、この位相差により地絡事故を容易に判定できる。   As described above, according to the embodiment of the present invention, the reference resistor 22 is provided in series with the voltage power supply device 19, and the phase measurement with the current waveforms of the currents I1 to In flowing in the branch circuits of the equipment panels 13a to 13n is performed. The voltage waveform of the reference voltage V is taken in, and the phase difference between the voltage waveform of the reference voltage V and the current waveforms of the currents I1 to In can be obtained. Therefore, the ground fault can be easily determined based on this phase difference.

11…バッテリ、12…充電器盤、13…機器盤、14…DC分電盤、15…負荷、16…開閉器、17…AC/DCコンバータ、18…直流地絡過電圧保護継電器、19…電圧電源装置、20…クランプCT、21…電流計、22…基準抵抗、23…ベクトルマルチメータ、24…事故点判定装置、25…記録装置 DESCRIPTION OF SYMBOLS 11 ... Battery, 12 ... Charger panel, 13 ... Equipment panel, 14 ... DC distribution board, 15 ... Load, 16 ... Switch, 17 ... AC / DC converter, 18 ... DC ground fault overvoltage protection relay, 19 ... Voltage Power supply device, 20 ... Clamp CT, 21 ... Ammeter, 22 ... Reference resistance, 23 ... Vector multimeter, 24 ... Accident point determination device, 25 ... Recording device

Claims (2)

直流電源から並列接続された分岐回路の負荷に直流電力を供給する直流回路に事故点の検査用の交流電圧を印加する電圧電源装置と、
前記電圧電源装置に直列に接続され検査用の基準電圧を発生させるための基準抵抗と、
前記直流回路の分岐回路のうち事故点の検査対象の分岐回路に把持され前記直流回路の分岐回路に流れる電流の電流波形を測定するためのクランプCTと、
前記クランプCTで測定された電流波形と前記基準抵抗で発生した基準電圧の電圧波形との位相に基づき、前記電流波形が前記基準電圧の電圧波形と同相であるときは、その検査対象の分岐回路に完全地絡が発生していると判定し、前記電流波形の位相が前記基準電圧の電圧波形の位相より遅れているときは、その検査対象の分岐回路に地絡が発生していると判定する事故点判定装置とを備えたことを特徴とする直流事故点検査装置。
A voltage power supply device for applying an AC voltage for inspection of an accident point to a DC circuit that supplies DC power to a load of a branch circuit connected in parallel from a DC power supply;
A reference resistor connected in series to the voltage power supply device for generating a reference voltage for inspection;
Clamp CT for measuring the current waveform of the current that is gripped by the branch circuit to be inspected at the fault point among the branch circuits of the DC circuit and flows through the branch circuit of the DC circuit;
Based on the phase of the current waveform measured by the clamp CT and the voltage waveform of the reference voltage generated by the reference resistor, when the current waveform is in phase with the voltage waveform of the reference voltage, the branch circuit to be inspected When the phase of the current waveform is delayed from the phase of the voltage waveform of the reference voltage, it is determined that a ground fault has occurred in the branch circuit to be inspected. DC fault point testing apparatus is characterized in that a fault point determination apparatus.
前記クランプCTで測定された電流波形及び前記基準抵抗で発生した基準電圧の電圧波形を表示するベクトルマルチメータを設けたことを特徴とする請求項1記載の直流事故点検査装置。 The DC fault point inspection apparatus according to claim 1, further comprising a vector multimeter for displaying a current waveform measured by the clamp CT and a voltage waveform of a reference voltage generated by the reference resistor .
JP2010046109A 2010-03-03 2010-03-03 DC accident point inspection device Active JP5636698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046109A JP5636698B2 (en) 2010-03-03 2010-03-03 DC accident point inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046109A JP5636698B2 (en) 2010-03-03 2010-03-03 DC accident point inspection device

Publications (2)

Publication Number Publication Date
JP2011180053A JP2011180053A (en) 2011-09-15
JP5636698B2 true JP5636698B2 (en) 2014-12-10

Family

ID=44691697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046109A Active JP5636698B2 (en) 2010-03-03 2010-03-03 DC accident point inspection device

Country Status (1)

Country Link
JP (1) JP5636698B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647089A (en) * 2012-05-14 2012-08-22 洪珍 15V direct current booster device of pointer multimeter
CN111856317A (en) * 2019-04-19 2020-10-30 株式会社京滨 Abnormal grounding detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134850A (en) * 1975-05-19 1976-11-22 Toray Ind Inc D.c. earth protective relay
JP4398198B2 (en) * 2003-08-20 2010-01-13 中国電力株式会社 Insulation degradation region diagnosis system and method for electric wire or cable
JP4425648B2 (en) * 2004-01-23 2010-03-03 テンパール工業株式会社 Ground fault detection device
JP4470221B2 (en) * 2005-07-11 2010-06-02 三菱化学株式会社 Ground fault detection method and apparatus
JP4993727B2 (en) * 2007-08-31 2012-08-08 日置電機株式会社 Leakage current measuring instrument

Also Published As

Publication number Publication date
JP2011180053A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
US7791351B2 (en) Method for detecting electrical ground faults
JP5349036B2 (en) Insulation diagnostic system
KR101269131B1 (en) Leakage current detect apparatus and method using smart multi channel watt-hour meter
JP5743296B1 (en) Leakage location exploration method and apparatus
JP2011015504A (en) Method, device, and program for setting tap of arc-suppressing reactor
KR101179062B1 (en) On-line cable monitoring system
KR101490770B1 (en) Ground fault detecting apparatus
JP5636698B2 (en) DC accident point inspection device
JP5444122B2 (en) Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method
KR101916362B1 (en) Intelligent power facility failure prediction system and method using three-phase leakage current measurement method by insulation deterioration
CN117590161A (en) Electrical device and method for measuring the insulation state of a load on a plurality of sockets
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
Zhou et al. Characterization of EMI/RFI in commercial and industrial electrical systems
JP2014202686A (en) Non-outage insulation diagnostic device and non-outage insulation diagnostic method
JP5452972B2 (en) Wiring connection inspection method and inspection device for integrated watt-hour meter
Wei et al. Identifying ground fault location in high resistance grounded systems for adjustable speed drive at low speed
JP4489395B2 (en) Equipment for measuring electrostatic capacitance of power system to ground
JP5428030B1 (en) Insulation monitoring device
JP6969079B2 (en) Forced installation device, ground fault investigation device and method using it
JP3894346B2 (en) Protection relay control circuit test equipment
KR101138735B1 (en) An identification method and device of the leakage switchgear and controlgear using the current of earthing busbar
JP2010044621A (en) Earth fault detection device of reactive power compensator
JP2543646B2 (en) Wiring condition inspection jig for power outlet with grounding electrode
JP4469763B2 (en) High voltage power cable insulation diagnosis and monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350