JP5679480B2 - Indirect AC megger measuring instrument and insulation resistance measuring method - Google Patents

Indirect AC megger measuring instrument and insulation resistance measuring method Download PDF

Info

Publication number
JP5679480B2
JP5679480B2 JP2013088978A JP2013088978A JP5679480B2 JP 5679480 B2 JP5679480 B2 JP 5679480B2 JP 2013088978 A JP2013088978 A JP 2013088978A JP 2013088978 A JP2013088978 A JP 2013088978A JP 5679480 B2 JP5679480 B2 JP 5679480B2
Authority
JP
Japan
Prior art keywords
current
insulation resistance
transformer
voltage
indirect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013088978A
Other languages
Japanese (ja)
Other versions
JP2014211400A (en
Inventor
秀樹 友国
秀樹 友国
満洋 野々上
満洋 野々上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2013088978A priority Critical patent/JP5679480B2/en
Publication of JP2014211400A publication Critical patent/JP2014211400A/en
Application granted granted Critical
Publication of JP5679480B2 publication Critical patent/JP5679480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

本発明は、間接交流メガー測定器および絶縁抵抗測定方法に関し、特に、特別高圧の変圧器の絶縁抵抗測定に用いるのに好適な間接交流メガー測定器および絶縁抵抗測定方法に関する。   The present invention relates to an indirect AC megger measuring device and an insulation resistance measuring method, and more particularly to an indirect AC megger measuring device and an insulation resistance measuring method suitable for use in measuring an insulation resistance of an extra high voltage transformer.

電力会社の発変電部門における特別高圧の変圧器の定期点検項目の一つとして行われる絶縁抵抗測定(メガー測定)では、変圧器に接地機器である接地形計器用変圧器(以下、「GPT」と称する。)が直接接続されている場合には、変圧器回路がGPTを通して接地状態にあることから、そのままでは絶縁抵抗測定ができないため、GPT主回路を切り離して絶縁抵抗測定を行っている。また、GPT主回路の切離しができない設備構成の場合には、GPTの1次側接地端子を取り外して絶縁抵抗測定を行っている。   Insulation resistance measurement (Megger measurement), which is one of the regular inspection items for extra high voltage transformers in the power generation and substation departments of electric power companies, is a grounded instrument transformer (hereinafter referred to as "GPT"), which is a grounding device. Is directly connected, since the transformer circuit is in the grounded state through the GPT, the insulation resistance measurement cannot be performed as it is, so the insulation resistance measurement is performed by separating the GPT main circuit. Further, in the case of an equipment configuration in which the GPT main circuit cannot be disconnected, the insulation resistance measurement is performed by removing the GPT primary side ground terminal.

なお、下記の特許文献1には、高圧電路の絶縁抵抗測定時のGPTの1次側接地端子の接地線の取外しおよび取付け作業を不要にするために、GPTの1次側接地端子を所定の容量値のコンデンサを介して接地することにより、コンデンサは直流を通さないので絶縁抵抗測定時にはGPTの高圧巻線は大地から切り離されたのと同じ状態になることから、コンデンサを接続したままで絶縁抵抗測定が可能となるようにした接地形計器用変圧器が開示されている。   In Patent Document 1 below, in order to eliminate the need to remove and attach the ground wire of the primary side ground terminal of the GPT at the time of measuring the insulation resistance of the high piezoelectric path, the primary side ground terminal of the GPT is set to a predetermined By grounding via a capacitor with a capacitance value, the capacitor does not pass direct current, so when measuring insulation resistance, the high-voltage winding of the GPT is in the same state as disconnected from the ground, so insulation is performed with the capacitor connected. A grounded instrument transformer is disclosed which allows resistance measurements.

特開平6−84670号公報JP-A-6-84670

しかしながら、従来の絶縁抵抗測定方法では、以下に示すような問題があった。
(1)GPT主回路を切り離して絶縁抵抗測定を行う方法では、GPT主回路の3本のリード線(図1に示す第1乃至第3のリード線51〜53参照)の取外しおよび取付け作業が必要である。
(2)絶縁抵抗測定に伴いGPT主回路のリード線またはGPTの1次側接地端子の取外しが必要であるため、絶縁抵抗測定に時間を要する。
(3)GPT主回路のリード線の取外し作業は、GPTが設置されている高所作業となるケースが多いため、危険を伴う場合がある。
(4)GPTの1次側接地端子を取り外す方法では、1次側接地端子用の碍子が小さいため、端子取外し作業時に碍子を破損させる可能性があり、碍子を破損させた場合にはGPTが運転できず保護継電器が使用できないケースや復旧できないことがある。
(5)GPT主回路のリード線およびGPTの1次側接地端子の取外しおよび取付け作業を伴うため、締め付け不良や接続忘れの恐れがあり、接地端子においては接続忘れがあった場合には、接地端子部に主回路と同電位の異常電圧が発生して設備が損傷する。
However, the conventional insulation resistance measuring method has the following problems.
(1) In the method of measuring the insulation resistance by separating the GPT main circuit, the removal and attachment of the three lead wires of the GPT main circuit (see the first to third lead wires 51 to 53 shown in FIG. 1) Work is necessary.
(2) It takes time to measure the insulation resistance because it is necessary to remove the lead wire of the GPT main circuit or the primary ground terminal of the GPT along with the insulation resistance measurement.
(3) Since the work for removing the lead wire of the GPT main circuit is often performed at a high place where the GPT is installed, it may be dangerous.
(4) In the method of removing the primary side ground terminal of the GPT, since the insulator for the primary side ground terminal is small, there is a possibility that the insulator may be damaged at the time of removing the terminal. In some cases, the protective relay cannot be used or cannot be restored.
(5) GPT main circuit lead wire and GPT primary side grounding terminal are required to be removed and attached, which may lead to poor tightening or forgetting connection. An abnormal voltage with the same potential as that of the main circuit is generated at the terminal, resulting in damage to the equipment.

本発明の目的は、作業性および安全性の向上が図れるとともに碍子および設備の損傷を防止することができる間接交流メガー測定器および絶縁抵抗測定方法を提供することにある。   An object of the present invention is to provide an indirect AC megger measuring device and an insulation resistance measuring method capable of improving workability and safety and preventing damage to insulators and equipment.

本発明の間接交流メガー測定器は、特別高圧の変圧器(1)の絶縁抵抗である変圧器絶縁抵抗(R)を測定するための間接交流メガー測定器(10,10’)であって、第1乃至第3の1次側端子が前記変圧器の2次側送電線の第1乃至第3相にそれぞれ接続された第1乃至第3の接地形計器用変圧器(21〜23)の第1乃至第3の2次側端子に印加電圧(V)をそれぞれ印加するための電圧印加手段と、前記印加電圧を前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の2次側端子にそれぞれ印加したときに該第1乃至第3の接地形計器用変圧器の第1乃至第3の1次側接地端子(2a1〜2a3)をそれぞれ流れる第1乃至第3の1次側電流(i1〜i3)または前記電圧印加手段の出力線に流れる電流を検出するための電流検出手段と、前記変圧器絶縁抵抗を測定するための変圧器絶縁抵抗測定手段とを具備し、前記電圧印加手段が、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の1次側端子と大地との間に所定の実効値の交流電圧をそれぞれ誘起させる前記印加電圧を前記変圧器が設置されている高圧系統の電圧階級に基づいて算出し、該算出した印加電圧を該第1乃至第3の接地形計器用変圧器の前記第1乃至第3の2次側端子にそれぞれ印加し、前記変圧器絶縁抵抗測定手段が、前記印加電圧と、前記所定の実効値と、前記第1乃至第3の1次側電流または前記電圧印加手段の出力線に流れる電流とに基づいて、前記変圧器絶縁抵抗を測定することを特徴とする。
ここで、前記印加電圧が、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の1次側端子と大地との間に実効値=2,000Vの交流電圧をそれぞれ誘起させる交流電圧であってもよい。
本発明の第1の間接交流メガー測定器は、前記間接交流メガー測定器(10)が、前記印加電圧を出力するための交流電源(11)と、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の1次側接地端子をそれぞれ接地するための第1乃至第3の接地線にそれぞれ取り付けられた第1乃至第3のクランプ変流器(211〜213)からそれぞれ入力される前記第1乃至第3の1次側電流に基づいて前記変圧器絶縁抵抗を算出するためのマイクロプロセッサ(14)と、該マイクロプロセッサに接続されたメモリ(15)と、各種データを表示するための表示器(16)と、絶縁抵抗開始指令や前記電圧階級を入力するための操作盤(17)とを具備することを特徴とする。
ここで、前記マイクロプロセッサが、前記第1乃至第3の1次側電流のベクトル和である1次側電流(i)の実効値(ie)を算出するとともに該1次側電流と前記印加電圧との位相差(θ)を求め、次式を用いて前記変圧器絶縁抵抗を計算してもよい。
R={2000/ie}×cosθ
ここで、ie=前記1次側電流の実効値
θ=前記1次側電流と前記印加電圧との位相差
本発明の第2の間接交流メガー測定器は、前記間接交流メガー測定器(10’)が、前記印加電圧を出力するための交流電源(11)と、該交流電源の出力線に設置された変流器(18)と、該変流器から入力される電流に基づいて前記変圧器絶縁抵抗を算出するためのマイクロプロセッサ(14)と、該マイクロプロセッサに接続されたメモリ(15)と、
各種データを表示するための表示器(16)と、絶縁抵抗開始指令や前記電圧階級などを入力するための操作盤(17)とを具備することを特徴とする。
ここで、前記マイクロプロセッサが、前記変流器から入力される電流に基づいて2次側電流(I)の実効値(Ie)を算出するとともに該2次側電流と前記印加電圧との位相差(θ)を求め、次式を用いて前記変圧器絶縁抵抗を計算してもよい。
R={2000/(Ie/変圧比)}×cosθ
ここで、Ie=前記2次側電流の実効値
θ=前記2次側電流と前記印加電圧との位相差
本発明の第1の絶縁抵抗測定方法は、本発明の第1の間接交流メガー測定器を用いて、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の2次側端子に前記交流電源から前記印加電圧をそれぞれ印加したときに該第1乃至第3の接地形計器用変圧器の前記第1乃至第3の1次側接地端子をそれぞれ流れる前記第1乃至第3の1次側電流を前記第1乃至第3のクランプ変流器によってそれぞれ検出して、該第1乃至第3のクランプ変流器によってそれぞれ検出された第1乃至第3の1次側電流に基づいて前記変圧器絶縁抵抗を前記マイクロプロセッサによって測定することを特徴とする。
本発明の第2の絶縁抵抗測定方法は、本発明の第2の間接交流メガー測定器を用いて、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の2次側端子に前記交流電源から前記印加電圧をそれぞれ印加したときに該交流電源の出力線に流れる電流を前記変流器によって検出して、該変流器によって検出された電流に基づいて前記変圧器絶縁抵抗を前記マイクロプロセッサによって測定することを特徴とする。
The indirect AC megger measuring device of the present invention is an indirect AC megger measuring device (10, 10 ') for measuring a transformer insulation resistance (R) which is an insulation resistance of an extra high voltage transformer (1). First to third grounded-type instrument transformers (2 1 to 2 3) in which the first to third primary terminals are connected to the first to third phases of the secondary transmission lines of the transformer, respectively. ) the first to the third secondary voltage applying means for applying an applied voltage (V) is to terminals, the first of the applied voltage of the first to third grounding type instrument transformer Through the first to third primary ground terminals (2a 1 to 2a 3 ) of the first to third earthing-type instrument transformers when applied to the second to third secondary terminals, respectively . 1st to 3rd primary side current (i 1 to i 3 ) or current for detecting the current flowing through the output line of the voltage applying means Detection means, provided with a transformer insulation resistance measuring means for measuring a pre-Symbol transformer insulation resistance, the voltage applying means, said first through said first to third grounding type instrument transformer The applied voltage for inducing an AC voltage having a predetermined effective value between the third primary side terminal and the ground is calculated based on the voltage class of the high voltage system in which the transformer is installed, and the calculated An applied voltage is applied to each of the first to third secondary terminals of the first to third grounded-type instrument transformers, and the transformer insulation resistance measuring means includes the applied voltage and the predetermined voltage The transformer insulation resistance is measured on the basis of an effective value and a current flowing through the first to third primary currents or an output line of the voltage applying means .
Here, the applied voltage, respectively an alternating voltage of an effective value = 2,000 V between the first to third above the earth type instrument transformer first through the third primary-side terminal and the ground An alternating voltage to be induced may be used.
The first indirect AC megger measuring device of the present invention is an AC power source (11) for the indirect AC megger measuring device (10) to output the applied voltage, and for the first to third grounding type meters. First to third clamp current transformers (21 1 to 21 3 ) respectively attached to first to third ground lines for grounding the first to third primary side ground terminals of the transformer, respectively. ), A microprocessor (14) for calculating the transformer insulation resistance based on the first to third primary currents respectively input from the memory, and a memory (15) connected to the microprocessor; A display (16) for displaying various data and an operation panel (17) for inputting an insulation resistance start command and the voltage class are provided.
Here, the microprocessor calculates an effective value (ie) of a primary side current (i) that is a vector sum of the first to third primary side currents, and the primary side current and the applied voltage. And the transformer insulation resistance may be calculated using the following equation.
R = {2000 / ie} × cos θ
Where ie = effective value of the primary side current
θ = phase difference between the primary side current and the applied voltage The second indirect AC megger measuring device of the present invention is an AC power source for the indirect AC megger measuring device (10 ′) to output the applied voltage. (11), a current transformer (18) installed on the output line of the AC power supply, and a microprocessor (14) for calculating the transformer insulation resistance based on the current input from the current transformer And a memory (15) connected to the microprocessor;
A display (16) for displaying various data and an operation panel (17) for inputting an insulation resistance start command and the voltage class are provided.
Here, the microprocessor position between the applied voltage and the secondary current and calculates the effective value of the secondary-side current (I) to (Ie) based on the current that will be input from the current transformer You may obtain | require a phase difference ((theta)) and may calculate the said transformer insulation resistance using following Formula.
R = {2000 / (Ie / transformation ratio)} × cos θ
Where Ie = effective value of the secondary current
θ = phase difference between the secondary current and the applied voltage The first insulation resistance measuring method of the present invention uses the first indirect AC megger measuring device of the present invention to The first to third grounded-type instrument transformers when the applied voltage is applied from the AC power source to the first to third secondary terminals of the topographic instrument transformer, respectively . The first to third clamp current transformers detect the first to third primary currents respectively flowing through the three primary ground terminals, respectively, and the first to third clamp current transformers are detected. The transformer insulation resistance is measured by the microprocessor on the basis of the first to third primary side currents detected respectively by the microprocessor.
The second insulation resistance measuring method of the present invention uses the second indirect AC megger measuring device of the present invention to perform the first to third secondary of the first to third earthing-type instrument transformers. the current flowing through the output line of the AC power when applying the application voltage from the AC power supply to the positive terminal respectively detected by the current transformer, the transformer on the basis of the current detected by the displacement current transformer The insulation resistance is measured by the microprocessor.

本発明の間接交流メガー測定器および絶縁抵抗測定方法は、以下に示す効果を奏する。
(1)GPT主回路のリード線またはGPTの1次側接地端子の取外し作業を不要にすることができるため、絶縁抵抗測定時間を従来の手法に比べて大幅に短縮することができ、1次側接地端子用の碍子の破損や接続忘れなどに伴う設備損傷のリスクをなくすことができるとともに、点検に伴う付帯費用を不要にすることができる。
(2)高所などにおける危険が伴うGPT主回路のリード線の取外し作業を不要にすることができるため、安全性を向上させることができる。
The indirect AC megger measuring device and the insulation resistance measuring method of the present invention have the following effects.
(1) Since it is not necessary to remove the lead wire of the GPT main circuit or the primary side ground terminal of the GPT, the insulation resistance measurement time can be greatly shortened compared to the conventional method. It is possible to eliminate the risk of equipment damage due to breakage of the insulator for the side ground terminal or forgetting connection, etc., and it is possible to eliminate the incidental costs associated with inspection.
(2) Since it is possible to eliminate the work of removing the lead wire of the GPT main circuit which is dangerous at high places, safety can be improved.

本発明の一実施例による間接交流メガー測定器10について説明するための図である。It is a figure for demonstrating the indirect alternating current megar measuring device 10 by one Example of this invention. 図1に示した間接交流メガー測定器10の構成を示すブロック図である。It is a block diagram which shows the structure of the indirect alternating current megger measuring device 10 shown in FIG. 図2に示したMPU14の動作について説明するためのフローチャートである。3 is a flowchart for explaining the operation of the MPU 14 shown in FIG. 2. 図1に示した間接交流メガー測定器10の一変形例である間接交流メガー測定器10’の構成を示すブロック図である。It is a block diagram which shows the structure of the indirect alternating current megger measuring device 10 'which is a modification of the indirect alternating current megger measuring device 10 shown in FIG. 本発明の絶縁抵抗測定方法の実証試験において使用した試験回路について説明するための図である。It is a figure for demonstrating the test circuit used in the verification test of the insulation resistance measuring method of this invention. 本発明の絶縁抵抗測定方法の実証試験結果の一例を示す図である。It is a figure which shows an example of the verification test result of the insulation resistance measuring method of this invention.

上記の目的を、交流電源から第1乃至第3のGPTの2次側端子に印加電圧を印加したときに第1乃至第3のGPTの第1乃至第3の1次側接地端子をそれぞれ流れる第1乃至第3の1次側電流または交流電源の出力線に流れる電流に基づいて変圧器絶縁抵抗を測定することにより実現した。   For the above purpose, when an applied voltage is applied from the AC power source to the secondary side terminals of the first to third GPTs, the first to third primary side ground terminals of the first to third GPTs flow respectively. This was realized by measuring the transformer insulation resistance based on the first to third primary side currents or the current flowing through the output line of the AC power supply.

以下、本発明の間接交流メガー測定器および絶縁抵抗測定方法の実施例について図面を参照して説明する。
本発明の一実施例による間接交流メガー測定器10は、図1に示すように、1次側端子が特別高圧の変圧器1の2次側送電線の第1乃至第3相にそれぞれ接続された第1乃至第3のGPT21〜23の2次側端子に印加電圧V(第1乃至第3のGPT21〜23の1次側端子と大地との間に実効値=2,000Vの交流電圧を誘起させる交流電圧)を印加したときに第1乃至第3のGPT21〜23の第1乃至第3の1次側接地端子2a1〜2a3をそれぞれ流れる第1乃至第3の1次側電流i1〜i3を検出して、検出した第1乃至第3の1次側電流i1〜i3に基づいて変圧器1の絶縁抵抗R(以下、「変圧器絶縁抵抗R」と称する。)を測定することを特徴とする。
Embodiments of an indirect AC megger measuring device and an insulation resistance measuring method according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the indirect AC megger measuring device 10 according to one embodiment of the present invention has a primary terminal connected to the first to third phases of the secondary transmission line of the extra high voltage transformer 1. the first to the effective value between the third GPT2 1 to 2 3 of the applied voltage V 2 primary terminals (first to third GPT2 1 to 2 3 of the primary-side terminal and the ground was = 2,000 V Are applied to the first to third primary side ground terminals 2a 1 to 2a 3 of the first to third GPTs 2 1 to 2 3 , respectively. Primary side currents i 1 to i 3 are detected, and based on the detected first to third primary side currents i 1 to i 3 , the insulation resistance R (hereinafter referred to as “transformer insulation resistance”) of the transformer 1 is detected. R ”)).

そのため、変圧器絶縁抵抗Rを測定する際には、第1乃至第3のGPT21〜23の2次側端子および2次側共通端子と配電盤との間に設置されたGPT2次側ナイフスイッチ3を切るとともに、第1乃至第3のGPT21〜23の3次側端子と配電盤との間に設置されたGPT3次側ナイフスイッチ4を切って、第1乃至第3のGPT21〜23の2次側端子をGPT2次側ナイフスイッチ3にそれぞれ接続する第1乃至第3の2次側配線L1〜L3と第1乃至第3のGPT21〜23の2次側共通端子をGPT2次側ナイフスイッチ3に接続する2次側共通配線LCとの間に印加電圧Vを間接交流メガー測定器10から印加する。
また、第1乃至第3のGPT21〜23の1次側接地端子2a1〜2a3をそれぞれ接地する第1乃至第3の接地線に第1乃至第3のクランプ変流器211〜213をそれぞれ取り付けて、第1乃至第3のクランプ変流器211〜213によってそれぞれ検出された第1乃至第3の1次側電流i1〜i3を間接交流メガー測定器10に入力する。
間接交流メガー測定器10では、第1乃至第3の1次側電流i1〜i3に基づいて変圧器絶縁抵抗Rが測定される。
Therefore, when measuring the transformer insulation resistance R, the GPT secondary side knife switch installed between the secondary side terminals and the secondary side common terminals of the first to third GPTs 21 to 23 and the switchboard 3 and at the same time, the GPT tertiary knife switch 4 installed between the tertiary side terminals of the first to third GPTs 2 1 to 2 3 and the switchboard is turned off, so that the first to third GPTs 2 1 to 2 are turned off. The secondary side common terminals of the first to third secondary wirings L 1 to L 3 and the first to third GPTs 2 1 to 2 3 that connect the secondary side terminals of 3 to the GPT secondary side knife switch 3, respectively. Is applied to the secondary common wiring L C connected to the GPT secondary knife switch 3 from the indirect AC megameter 10.
The first to third GPT2 1 to 2 3 of the primary-side ground terminal 2a 1 first, to 2A region 3 to the first to third ground line is grounded third clamp current transformer 21 1 - 21 3 , and the first to third primary currents i 1 to i 3 detected by the first to third clamp current transformers 21 1 to 21 3 , respectively, to the indirect AC megger measuring device 10. input.
In the indirect AC megger measuring device 10, the transformer insulation resistance R is measured based on the first to third primary currents i 1 to i 3 .

間接交流メガー測定器10は、図2に示すように、印加電圧Vを出力するための可変絶縁交流電源11と、可変絶縁交流電源11から入力される印加電圧Vおよび第1乃至第3のクランプ変流器211〜213から入力される1次側電流i1〜i3をデジタルデータに変換するためのアナログ/デジタル変換器12(以下、「A/D変換器12」と称する。)と、入出力インターフェース13(以下、「I/O13」と称する。)と、第1乃至第3の1次側電流i1〜i3に基づいて変圧器絶縁抵抗Rを算出するためのマイクロプロセッサ14(以下、「MPU14」と称する。)と、MPU14に接続されたメモリ15と、各種データを表示するための表示器16と、絶縁抵抗開始指令や試験対象回路の電圧階級などを入力するための操作盤17とを具備する。
なお、可変絶縁交流電源11、A/D変換器12、MPU14、表示器16および操作盤17はI/O13と接続されている。
As shown in FIG. 2, the indirect AC megger measuring device 10 includes a variable insulated AC power supply 11 for outputting an applied voltage V, an applied voltage V input from the variable insulated AC power supply 11 and first to third clamps. An analog / digital converter 12 (hereinafter referred to as “A / D converter 12”) for converting the primary currents i 1 to i 3 input from the current transformers 21 1 to 21 3 into digital data. And a microprocessor for calculating the transformer insulation resistance R based on the input / output interface 13 (hereinafter referred to as “I / O 13”) and the first to third primary currents i 1 to i 3. 14 (hereinafter referred to as “MPU 14”), a memory 15 connected to the MPU 14, a display 16 for displaying various data, an insulation resistance start command, a voltage class of a circuit under test, and the like. Operation panel ; And a 7.
The variable insulation AC power supply 11, the A / D converter 12, the MPU 14, the display 16 and the operation panel 17 are connected to the I / O 13.

可変絶縁交流電源11の2本の出力線のうちの1本の出力線(以下、「第1の出力線」と称する。)は外部で3分岐されたのちに第1乃至第3の2次側配線L1〜L3にそれぞれ接続されており、他の1本の出力線(以下、「第2の出力線」と称する。)は2次側共通配線LCに接続されている。 One of the two output lines of the variable insulated AC power supply 11 (hereinafter referred to as “first output line”) is branched into three branches and then first to third secondary. The other output lines (hereinafter referred to as “second output lines”) are connected to the side wirings L 1 to L 3 , respectively, and are connected to the secondary side common wiring L C.

次に、MPU14の動作について、図3に示すフローチャートを参照して説明する。
MPU14は、絶縁抵抗開始指令および試験対象回路の電圧階級が操作盤17からI/O13を介して入力されると(ステップS11)、第1乃至第3のGPT21〜23の1次側端子と大地との間に実効値=2,000Vの交流電圧が誘起する印加電圧V(実効値Ve=2000/変圧比)を電圧階級に基づいて算出したのち、算出した印加電圧Vを出力するように可変絶縁交流電源11に対してI/O13を介して指示する(ステップS12)。
たとえば、印加電圧Vの実効値Veは、11kV系では20.0V、22kV系では10.0V、66kV系では3.3V、110kV系では2.0Vとなる。
これにより、印加電圧Vが、第1乃至第3の2次側配線L1〜L3と2次側共通配線LCとの間にそれぞれ印加されて、第1乃至第3のGPT21〜23の1次側接地端子2a1〜2a3に第1乃至第3の1次側電流i1〜i3がそれぞれ流れる。
印加電圧Vと第1乃至第3のクランプ変流器211〜213によってそれぞれ検出された第1乃至第3の1次側電流i1〜i3とは、A/D変換器12によってデジタルデータに変換されたのちにI/O13を介してMPU14に入力される。
Next, the operation of the MPU 14 will be described with reference to the flowchart shown in FIG.
When the MPU 14 receives the insulation resistance start command and the voltage class of the circuit under test from the operation panel 17 via the I / O 13 (step S11), the primary side terminals of the first to third GPTs 2 1 to 23 3 After calculating the applied voltage V (effective value Ve = 2000 / transformation ratio) induced by an alternating voltage of effective value = 2,000 V between the ground and the ground based on the voltage class, the calculated applied voltage V is output. To the variable insulated AC power supply 11 via the I / O 13 (step S12).
For example, the effective value Ve of the applied voltage V is 20.0 V for the 11 kV system, 10.0 V for the 22 kV system, 3.3 V for the 66 kV system, and 2.0 V for the 110 kV system.
As a result, the applied voltage V is applied between the first to third secondary wirings L 1 to L 3 and the secondary common wiring L C , respectively, and the first to third GPTs 2 1 to 2 are applied. 3 of the primary-side ground terminal 2a 1 to 2A region 3 through the first to third primary-side current i 1 through i 3, respectively.
The applied voltage V and the first to third primary currents i 1 to i 3 detected by the first to third clamp current transformers 21 1 to 21 3 are digitally converted by the A / D converter 12. After being converted to data, it is input to the MPU 14 via the I / O 13.

MPU14は、入力された第1乃至第3の1次側電流i1〜i3のベクトル和の実効値ie(以下、第1乃至第3の1次側電流i1〜i3のベクトル和を「1次側電流i」と称する。)を算出するとともに1次側電流iと印加電圧Vとの位相差θを求める(ステップS13)。 The MPU 14 calculates the effective value ie of the vector sum of the input first to third primary side currents i 1 to i 3 (hereinafter referred to as the vector sum of the first to third primary side currents i 1 to i 3 ). (Referred to as “primary side current i”) and a phase difference θ between the primary side current i and the applied voltage V is obtained (step S13).

その後、MPU14は、以下に示す(1)式を用いて変圧器絶縁抵抗Rを計算する(ステップS14)。
R={2000/ie}×cosθ (1)
ここで、ie=1次側電流iの実効値
θ=1次側電流iと印加電圧との位相差
Thereafter, the MPU 14 calculates the transformer insulation resistance R using the following equation (1) (step S14).
R = {2000 / ie} × cos θ (1)
Where ie = effective value of primary side current i
θ = phase difference between primary current i and applied voltage

その後、MPU14は、求めた変圧器絶縁抵抗Rが500MΩ以上(500MΩ≦R)であれば「良好」と判断し、求めた変圧器絶縁抵抗Rが100MΩ以上500MΩ未満(100MΩ≦R<500MΩ)であれば「要注意」と判断し、求めた変圧器絶縁抵抗Rが100MΩ未満であれば「不良」と判断して、判断結果をI/O13を介して表示器16に表示させる(ステップS15〜S18)。   Thereafter, the MPU 14 determines that the transformer insulation resistance R obtained is “good” if the obtained transformer insulation resistance R is 500 MΩ or more (500 MΩ ≦ R), and the obtained transformer insulation resistance R is 100 MΩ or more and less than 500 MΩ (100 MΩ ≦ R <500 MΩ). If there is, it is determined as “Needs Attention”, and if the obtained transformer insulation resistance R is less than 100 MΩ, it is determined as “defective” and the determination result is displayed on the display 16 via the I / O 13 (steps S15 to S15). S18).

その後、MPU14は、操作盤17からの指示に応じて、印加電圧V、第1乃至第3の1次側電流i1〜i3、1次側電流iおよび変圧器絶縁抵抗Rをメモリ15に記憶したり表示器16に表示させたりする(ステップS19)。 Thereafter, the MPU 14 stores the applied voltage V, the first to third primary side currents i 1 to i 3 , the primary side current i, and the transformer insulation resistance R in the memory 15 in accordance with an instruction from the operation panel 17. The information is stored or displayed on the display 16 (step S19).

以上の説明では、第1乃至第3のクランプ変流器211〜213から入力される第1乃至第3の1次側電流i1〜i3に基づいて変圧器絶縁抵抗Rを測定したが、図4に示すように間接交流メガー測定器10’のように可変絶縁交流電源11の第1の出力線に変流器18を設置し、可変絶縁交流電源11の第1の出力線に流れる電流を変流器18によって検出し、検出した電流に基づいて変圧器絶縁抵抗Rを測定してもよい。
この場合には、MPU14は、変流器18からA/D変換器12およびI/O13を介して入力される電流に基づいて2次側電流Iの実効値Ieを算出するとともに2次側電流Iと印加電圧Vとの位相差θを求め、以下に示す(2)式を用いて変圧器絶縁抵抗Rを計算する。
R={2000/(Ie/変圧比)}×cosθ (2)
ここで、Ie=2次側電流Iの実効値
θ=2次側電流Iと印加電圧との位相差
なお、変流器18は可変絶縁交流電源11の第2の出力線に設置してもよい。
In the above description, the transformer insulation resistance R is measured based on the first to third primary currents i 1 to i 3 input from the first to third clamp current transformers 21 1 to 21 3 . However, as shown in FIG. 4, a current transformer 18 is installed in the first output line of the variable insulated AC power supply 11 as in the indirect AC megameter 10 ′, and the first output line of the variable insulated AC power supply 11 The flowing current may be detected by the current transformer 18, and the transformer insulation resistance R may be measured based on the detected current.
In this case, the MPU 14 calculates the effective value Ie of the secondary side current I based on the current input from the current transformer 18 via the A / D converter 12 and the I / O 13 and the secondary side current. The phase difference θ between I and the applied voltage V is obtained, and the transformer insulation resistance R is calculated using the following equation (2).
R = {2000 / (Ie / transformation ratio)} × cos θ (2)
Where Ie = effective value of secondary side current I
θ = phase difference between secondary current I and applied voltage Note that the current transformer 18 may be installed on the second output line of the variable insulated AC power supply 11.

次に、間接交流メガー測定器10,10’を用いた変圧器1の絶縁抵抗測定の検証試験を行った結果について、図5および図6(a),(b)を参照して説明する。
この実証試験は、図5に示すように、間接交流メガー測定器10の代わりに可変交流電源51を使用して印加電圧Vを第1乃至第3のGPT21〜23の2次側端子に印加し、模擬機器52を第1乃至第3のGPT21〜23の各1次側端子に接続線53を用いて接続するとともに、第1乃至第3のGPT21〜23の第1乃至第3の1次側接地端子2a1〜2a3を接地線54に接続して、以下のようにして行った。
(1)図2に示した間接交流メガー測定器10のように1次側電流i(第1乃至第3の1次側電流i1〜i3)に基づいて変圧器絶縁抵抗Rを測定する方法(以下、「第1の絶縁抵抗測定方法」と称する。)については、可変交流電源51からの印加電圧Vを電圧計55で測定するとともに、第1乃至第3のGPT21〜23の1次側接地端子2a1〜2a3にそれぞれ流れる第1乃至第3の1次側電流i1〜i3のベクトル和である1次側電流iを接地線54に取り付けたクランプ変流器55によって測定し、測定した1次側電流iに基づいて上述した(1)式を用いて模擬機器52の絶縁抵抗r(以下、「模擬機器絶縁抵抗r」と称する。)を求めることにより行った。
(2)図4に示した間接交流メガー測定器10’のように2次側電流Iに基づいて変圧器絶縁抵抗Rを測定する方法(以下、「第2の絶縁抵抗測定方法」と称する。)については、可変交流電源51からの印加電圧Vを電圧計55で測定するとともに、2次側電流Iを可変交流電源51の共通出力線(2次側共通配線LCに接続されている。)に取り付けたクランプ変流器57によって測定し、測定した2次側電流Iに基づいて上述した(2)式を用いて模擬機器絶縁抵抗rを求めることにより行った。
Next, the result of the verification test for measuring the insulation resistance of the transformer 1 using the indirect AC megger measuring devices 10 and 10 ′ will be described with reference to FIGS. 5 and 6A and 6B.
As shown in FIG. 5, this demonstration test uses a variable AC power source 51 in place of the indirect AC megger measuring device 10 to apply the applied voltage V to the secondary terminals of the first to third GPTs 2 1 to 2 3. applied to, as well as using the bonding wire 53 to the primary-side terminals of the simulated device 52 first to third GPT2 1 to 2 3, first to the first to third GPT2 1 to 2 3 The third primary side ground terminals 2a 1 to 2a 3 were connected to the ground line 54, and the process was performed as follows.
(1) The transformer insulation resistance R is measured based on the primary side current i (first to third primary side currents i 1 to i 3 ) as in the indirect alternating current megger 10 shown in FIG. Regarding the method (hereinafter referred to as “first insulation resistance measuring method”), the applied voltage V from the variable AC power source 51 is measured by the voltmeter 55 and the first to third GPTs 21 to 23 are measured. A clamp current transformer 55 in which a primary current i, which is a vector sum of first to third primary currents i 1 to i 3 flowing in the primary ground terminals 2a 1 to 2a 3 , is attached to the ground line 54, respectively. And by determining the insulation resistance r of the simulated device 52 (hereinafter referred to as “simulated device insulation resistance r”) using the above-described equation (1) based on the measured primary current i. .
(2) A method of measuring the transformer insulation resistance R based on the secondary current I as in the indirect AC megger measuring instrument 10 ′ shown in FIG. 4 (hereinafter referred to as “second insulation resistance measurement method”). ), The applied voltage V from the variable AC power supply 51 is measured by the voltmeter 55, and the secondary current I is connected to the common output line (secondary common wiring L C) of the variable AC power supply 51. ) Was measured by using a clamp current transformer 57 attached to (), and based on the measured secondary current I, the above-described equation (2) was used to obtain the simulated device insulation resistance r.

第1の絶縁抵抗測定方法についての実証試験結果は、図6(a)に示すように、模擬機器52の絶縁抵抗を10MΩ、5MΩ、2MΩおよび1MΩと設定したときの模擬機器絶縁抵抗rの測定値は7.52MΩ(誤差=−25%)、4.34MΩ(誤差=−13%)、1.94MΩ(誤差=−3%)および0.81MΩ(誤差=−19%)であった。なお、この試験では、検証に使用した模擬機器52に流れる漏洩電流成分が印加電圧Vと同相成分が殆どであり、印加電圧Vと漏洩電流との位相差θによる影響が小さいことから、位相差による補正(cosθ)は省略した。
ここで、誤差が最大−25%と大きくなった理由としては、クランプ変流器56として微小電流が検出可能な機材が準備できずに0〜20Aの測定範囲となる機材を使用したことによると考えられる。したがって、微小電流が検出可能なクランプ変流器を使用することにより、第1の絶縁抵抗測定方法によって変圧器絶縁抵抗Rをより誤差が少なく測定できることが確認できた。
As shown in FIG. 6A, the result of the verification test for the first insulation resistance measurement method is the measurement of the simulated equipment insulation resistance r when the insulation resistance of the simulated equipment 52 is set to 10 MΩ, 5 MΩ, 2 MΩ, and 1 MΩ. The values were 7.52 MΩ (error = −25%), 4.34 MΩ (error = −13%), 1.94 MΩ (error = −3%) and 0.81 MΩ (error = −19%). In this test, the leakage current component flowing in the simulation device 52 used for the verification is mostly in-phase with the applied voltage V, and the influence of the phase difference θ between the applied voltage V and the leakage current is small. Correction by (cosθ) was omitted.
Here, the reason why the error is as large as −25% is that the clamp current transformer 56 cannot prepare a device capable of detecting a minute current and uses a device having a measurement range of 0 to 20 A. Conceivable. Therefore, it was confirmed that the transformer insulation resistance R can be measured with less error by the first insulation resistance measurement method by using the clamp current transformer capable of detecting a minute current.

第2の絶縁抵抗測定方法についての実証試験結果は、図6(b)に示すように、模擬機器52の絶縁抵抗を10MΩ、5MΩ、2MΩおよび1MΩと設定したときの模擬機器絶縁抵抗rの測定値は1.40MΩ(誤差=−86%)、1.25MΩ(誤差=−75%)、0.90MΩ(誤差=−55%)および0.55MΩ(誤差=−45%)であった。
これにより、GPTに流れる電流の成分のうち模擬機器絶縁抵抗rが小さいほど印加電圧Vと同相の2次側電流Iの成分は増加するが90度遅れの2次側電流Iの成分は大きく変化しないことが確認できたが、2次側電流Iに基づいて変圧器絶縁抵抗Rを算出することは困難であることが判明した(この理由としては、模擬機器絶縁抵抗rに比較してGPTの励磁インピーダンスの抵抗成分が小さいためと考えられる)。
しかしながら、第2の絶縁抵抗測定方法では、GPTの励磁電流の影響を受けるが、実証試験結果が実際の模擬機器絶縁抵抗rよりも小さくなる方向の誤差となるために安全方向の判断となることから、測定した変圧器絶縁抵抗Rが許容範囲外となる場合にのみ、従来と同様にGPT主回路のリード線またはGPTの1次側接地端子の取外しを行って変圧器絶縁抵抗Rを測定すればよいので、従来の絶縁抵抗測定方法を補完するという点では効果的であることが判明した。
As shown in FIG. 6B, the result of the verification test for the second insulation resistance measurement method is the measurement of the simulated equipment insulation resistance r when the insulation resistance of the simulated equipment 52 is set to 10 MΩ, 5 MΩ, 2 MΩ, and 1 MΩ. The values were 1.40 MΩ (error = −86%), 1.25 MΩ (error = −75%), 0.90 MΩ (error = −55%) and 0.55 MΩ (error = −45%).
As a result, among the current components flowing through the GPT, the component of the secondary current I in phase with the applied voltage V increases as the simulated device insulation resistance r decreases, but the component of the secondary current I delayed by 90 degrees greatly changes. However, it has been found that it is difficult to calculate the transformer insulation resistance R based on the secondary current I (this is because the GPT is compared with the simulated equipment insulation resistance r). This is probably because the resistance component of the excitation impedance is small).
However, the second insulation resistance measurement method is affected by the excitation current of the GPT, but the verification test result is an error in a direction that becomes smaller than the actual simulated equipment insulation resistance r, so that the safety direction is judged. Therefore, only when the measured transformer insulation resistance R is outside the allowable range, the lead wire of the GPT main circuit or the primary side ground terminal of the GPT is removed and the transformer insulation resistance R is measured as before. As a result, it proved effective in complementing the conventional insulation resistance measurement method.

1 変圧器
1〜23 第1乃至第3のGPT
2a1〜2a3 第1乃至第3の1次側接地端子
3 GPT2次側ナイフスイッチ
4 GPT3次側ナイフスイッチ
1〜53 第1乃至第3のリード線
10,10’ 間接交流メガー測定器
11 可変絶縁交流電源
12 A/D変換器
13 I/O
14 MPU
15 メモリ
16 表示器
17 操作盤
18 変流器
211〜213 第1乃至第3のクランプ変流器
51 可変交流電源
52 模擬機器
53 接続線
54 接地線
55 電圧計
56,57 クランプ変流器
1〜L3 第1乃至第3の2次側配線
C 2次側共通配線
R 変圧器絶縁抵抗
r 模擬機器絶縁抵抗
V 印加電圧
Ve 印加電圧Vの実効値
i 1次側電流
ie 1次側電流iの実効値
1〜i3 第1乃至第3の1次側電流
I 2次側電流
Ie 2次側電流Iの実効値
S11〜S19 ステップ
1 Transformer 2 1 to 2 3 1st to 3rd GPT
2a 1 to 2a 3 1st to 3rd primary side ground terminal 3 GPT secondary side knife switch 4 GPT tertiary side knife switch 5 1 to 5 3 1st to 3rd lead wires 10, 10 'Indirect AC megger measuring device 11 Variable Insulation AC Power Supply 12 A / D Converter 13 I / O
14 MPU
15 Memory 16 Display 17 Operation Panel 18 Current Transformers 21 1 to 21 3 First to Third Clamp Current Transformers 51 Variable AC Power Supply 52 Simulated Equipment 53 Connection Line 54 Grounding Line 55 Voltmeter 56, 57 Clamp Current Transformer L 1 to L 3 First to third secondary side wirings L C Secondary side common wiring R Transformer insulation resistance r Simulated equipment insulation resistance V Applied voltage Ve Effective value i of applied voltage V Primary side current ie Primary RMS values i 1 to i 3 of the side current i 1st to 3rd primary current I Secondary current Ie RMS values of the secondary current I S11 to S19

Claims (8)

特別高圧の変圧器(1)の絶縁抵抗である変圧器絶縁抵抗(R)を測定するための間接交流メガー測定器(10,10’)であって、
第1乃至第3の1次側端子が前記変圧器の2次側送電線の第1乃至第3相にそれぞれ接続された第1乃至第3の接地形計器用変圧器(21〜23)の第1乃至第3の2次側端子に印加電圧(V)をそれぞれ印加するための電圧印加手段と、
前記印加電圧を前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の2次側端子にそれぞれ印加したときに該第1乃至第3の接地形計器用変圧器の第1乃至第3の1次側接地端子(2a1〜2a3)をそれぞれ流れる第1乃至第3の1次側電流(i1〜i3)または前記電圧印加手段の出力線に流れる電流を検出するための電流検出手段と、
前記変圧器絶縁抵抗を測定するための変圧器絶縁抵抗測定手段とを具備し、
前記電圧印加手段が、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の1次側端子と大地との間に所定の実効値の交流電圧をそれぞれ誘起させる前記印加電圧を前記変圧器が設置されている高圧系統の電圧階級に基づいて算出し、該算出した印加電圧を該第1乃至第3の接地形計器用変圧器の前記第1乃至第3の2次側端子にそれぞれ印加し、
前記変圧器絶縁抵抗測定手段が、前記印加電圧と、前記所定の実効値と、前記第1乃至第3の1次側電流または前記電圧印加手段の出力線に流れる電流とに基づいて、前記変圧器絶縁抵抗を測定する、
ことを特徴とする、間接交流メガー測定器。
An indirect AC megger measuring device (10, 10 ') for measuring a transformer insulation resistance (R) which is an insulation resistance of an extra high voltage transformer (1),
First to third grounded-type instrument transformers (2 1 to 2 3) in which the first to third primary terminals are connected to the first to third phases of the secondary transmission lines of the transformer, respectively. ) and the first to third secondary voltage applying means for applying each applied voltage (V) at the terminals of,
First of the first to third grounding type instrument transformer when applying respectively the applied voltage to the first to third secondary terminals of the first to third grounding type instrument transformer First to third primary side currents (i 1 to i 3 ) flowing through the first to third primary side ground terminals (2a 1 to 2a 3 ), respectively, or a current flowing to the output line of the voltage applying means are detected. Current detection means for
A transformer insulation resistance measuring means for measuring the transformer insulation resistance ,
The voltage application means induces an AC voltage having a predetermined effective value between the first to third primary terminals of the first to third grounded-type instrument transformers and the ground, respectively. The voltage is calculated based on the voltage class of the high voltage system in which the transformer is installed, and the calculated applied voltage is used as the first to third secondary of the first to third grounded-type instrument transformers. Apply to each side terminal,
The transformer insulation resistance measuring means is configured to change the voltage based on the applied voltage, the predetermined effective value, and the first to third primary currents or the current flowing through the output line of the voltage applying means. Measuring the insulation resistance,
An indirect AC megger measuring device.
前記印加電圧が、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の1次側端子と大地との間に実効値=2,000Vの交流電圧をそれぞれ誘起させる交流電圧であることを特徴とする、請求項1記載の間接交流メガー測定器。 The applied voltage induces an AC voltage having an effective value of 2,000 V between the first to third primary terminals of the first to third grounded-type instrument transformers and the ground, respectively. 2. The indirect AC megger measuring device according to claim 1, wherein the measuring device is a voltage. 前記間接交流メガー測定器(10)が、
前記印加電圧を出力するための交流電源(11)と、
前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の1次側接地端子をそれぞれ接地するための第1乃至第3の接地線にそれぞれ取り付けられた第1乃至第3のクランプ変流器(211〜213)からそれぞれ入力される前記第1乃至第3の1次側電流に基づいて前記変圧器絶縁抵抗を算出するためのマイクロプロセッサ(14)と、
該マイクロプロセッサに接続されたメモリ(15)と、
各種データを表示するための表示器(16)と、
絶縁抵抗開始指令や前記電圧階級を入力するための操作盤(17)と、
を具備することを特徴とする、請求項1または2記載の間接交流メガー測定器。
The indirect AC megger measuring device (10)
An AC power supply (11) for outputting the applied voltage;
First to third attached to first to third ground lines for grounding the first to third primary side ground terminals of the first to third grounded-type instrument transformers, respectively. and based clamp current transformer from (21 1 to 21 3) in the first to third primary current is inputted, the microprocessor for calculating the transformer insulation resistance (14),
A memory (15) connected to the microprocessor;
A display (16) for displaying various data;
An operation panel (17) for inputting an insulation resistance start command and the voltage class ;
The indirect AC megger measuring device according to claim 1 or 2, characterized by comprising:
前記マイクロプロセッサが、前記第1乃至第3の1次側電流のベクトル和である1次側電流(i)の実効値(ie)を算出するとともに該1次側電流と前記印加電圧との位相差(θ)を求め、次式を用いて前記変圧器絶縁抵抗を計算する
R={2000/ie}×cosθ
ここで、ie=前記1次側電流の実効値
θ=前記1次側電流と前記印加電圧との位相差
ことを特徴とする、請求項3記載の間接交流メガー測定器。
The microprocessor calculates an effective value (ie) of a primary side current (i) that is a vector sum of the first to third primary side currents, and calculates the level of the primary side current and the applied voltage. Obtain the phase difference (θ) and calculate the transformer insulation resistance using the following equation: R = {2000 / ie} × cos θ
Where ie = effective value of the primary side current
The indirect AC megameter according to claim 3, wherein θ is a phase difference between the primary side current and the applied voltage.
前記間接交流メガー測定器(10’)が、
前記印加電圧を出力するための交流電源(11)と、
該交流電源の出力線に設置された変流器(18)と、
該変流器から入力される電流に基づいて前記変圧器絶縁抵抗を算出するためのマイクロプロセッサ(14)と、
該マイクロプロセッサに接続されたメモリ(15)と、
各種データを表示するための表示器(16)と、
絶縁抵抗開始指令や前記電圧階級などを入力するための操作盤(17)と、
を具備することを特徴とする、請求項1または2記載の間接交流メガー測定器。
The indirect AC megger measuring device (10 ′)
An AC power supply (11) for outputting the applied voltage;
A current transformer (18) installed on the output line of the AC power supply;
A microprocessor (14) for calculating the transformer insulation resistance based on the current input from the current transformer;
A memory (15) connected to the microprocessor;
A display (16) for displaying various data;
An operation panel (17) for inputting an insulation resistance start command, the voltage class, and the like;
The indirect AC megger measuring device according to claim 1 or 2, characterized by comprising:
前記マイクロプロセッサが、前記変流器から入力される電流に基づいて2次側電流(I)の実効値(Ie)を算出するとともに該2次側電流と前記印加電圧との位相差(θ)を求め、次式を用いて前記変圧器絶縁抵抗を計算する
R={2000/(Ie/変圧比)}×cosθ
ここで、Ie=前記2次側電流の実効値
θ=前記2次側電流と前記印加電圧との位相差
ことを特徴とする、請求項5記載の間接交流メガー測定器。
The microprocessor the phase difference between the applied voltage and the secondary current to calculate an effective value (Ie) of the based on the current that will be input from the current transformer secondary current (I) (theta ) And calculate the transformer insulation resistance using the following equation: R = {2000 / (Ie / transformation ratio)} × cos θ
Where Ie = effective value of the secondary current
The indirect AC megameter according to claim 5, wherein θ is a phase difference between the secondary current and the applied voltage.
請求項3または4記載の間接交流メガー測定器を用いて、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の2次側端子に前記交流電源から前記印加電圧をそれぞれ印加したときに該第1乃至第3の接地形計器用変圧器の前記第1乃至第3の1次側接地端子をそれぞれ流れる前記第1乃至第3の1次側電流を前記第1乃至第3のクランプ変流器によってそれぞれ検出して、該第1乃至第3のクランプ変流器によってそれぞれ検出された第1乃至第3の1次側電流に基づいて前記変圧器絶縁抵抗を前記マイクロプロセッサによって測定することを特徴とする、絶縁抵抗測定方法。 5. The applied voltage from the AC power source to the first to third secondary terminals of the first to third earthing-type instrument transformers using the indirect AC megger measuring device according to claim 3 or 4. The first to third primary-side currents flowing through the first to third primary-side ground terminals of the first to third earthing-type instrument transformers when applied, respectively . The transformer insulation resistance is detected by the third clamp current transformer, and the transformer insulation resistance is determined based on the first to third primary currents respectively detected by the first to third clamp current transformers. An insulation resistance measuring method, comprising: measuring with a processor. 請求項5または6記載の間接交流メガー測定器を用いて、前記第1乃至第3の接地形計器用変圧器の前記第1乃至第3の2次側端子に前記交流電源から前記印加電圧をそれぞれ印加したときに該交流電源の出力線に流れる電流を前記変流器によって検出して、該変流器によって検出された電流に基づいて前記変圧器絶縁抵抗を前記マイクロプロセッサによって測定することを特徴とする、絶縁抵抗測定方法。 The applied voltage from the AC power source to the first to third secondary terminals of the first to third earthing-type instrument transformers using the indirect AC megger measuring device according to claim 5 or 6. when applying respectively the current flowing through the output line of the AC power supply detected by the current transformer, the said transformer insulation resistance based on the current detected by the displacement current transformer can be measured by the microprocessor A method for measuring insulation resistance, which is characteristic.
JP2013088978A 2013-04-22 2013-04-22 Indirect AC megger measuring instrument and insulation resistance measuring method Active JP5679480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013088978A JP5679480B2 (en) 2013-04-22 2013-04-22 Indirect AC megger measuring instrument and insulation resistance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013088978A JP5679480B2 (en) 2013-04-22 2013-04-22 Indirect AC megger measuring instrument and insulation resistance measuring method

Publications (2)

Publication Number Publication Date
JP2014211400A JP2014211400A (en) 2014-11-13
JP5679480B2 true JP5679480B2 (en) 2015-03-04

Family

ID=51931254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088978A Active JP5679480B2 (en) 2013-04-22 2013-04-22 Indirect AC megger measuring instrument and insulation resistance measuring method

Country Status (1)

Country Link
JP (1) JP5679480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537797B (en) * 2020-05-15 2021-09-07 广东电网有限责任公司 System and method for measuring insulation resistance of transformer substation without disassembling lead
CN117388623B (en) * 2023-12-12 2024-05-14 国网江西省电力有限公司电力科学研究院 Comprehensive diagnosis analyzer and method for power transformer without disassembling lead

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373176A (en) * 1976-12-13 1978-06-29 Fuji Electric Co Ltd Insulation resistance measuring apparatus
JPS5821707B2 (en) * 1976-12-14 1983-05-02 富士電機株式会社 Insulation monitoring device
JPS5811872A (en) * 1981-07-16 1983-01-22 Fuji Electric Co Ltd Measuring device for insulating resistance
JPS5812871U (en) * 1981-07-16 1983-01-27 富士電機株式会社 Insulation resistance measuring device

Also Published As

Publication number Publication date
JP2014211400A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
TWI557412B (en) Leakage current calculation device and leakage current calculation method
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
CN103852691B (en) The oriented detection of failure in the network of compensation or the earthed system for the neutral point that insulate
JP2018183034A (en) Protector for power supply system and system comprising the same
RU2695278C1 (en) Method for determining single-phase fault of feeder to ground in medium voltage cable networks
JP2009058234A (en) Leak current measuring instrument and measuring method
JP2008164374A (en) Device and method for measuring leakage current
JP5661231B2 (en) Clamp meter and DC ground fault circuit search method
JP6328591B2 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
JPWO2018167909A1 (en) Leakage current detection device, method, and program for detecting leakage current
JP2011137718A (en) Device for monitoring high voltage insulation
KR101490770B1 (en) Ground fault detecting apparatus
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JP5996709B1 (en) High voltage insulation monitoring device
JP2017194465A (en) Monitoring device
JP7199651B2 (en) Detection device, method and program
JP5529300B1 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
JP6128921B2 (en) Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method
JP2008309681A (en) Insulation deterioration monitoring device and its method
JP5636698B2 (en) DC accident point inspection device
RU2631121C2 (en) Method of selective identification of outgoing line with single-phase earth fault in distribution networks with voltage of 6-35 kv
JP2958594B2 (en) Insulation deterioration diagnosis device
Yusoh et al. Identification of the source location Neutral to Earth Voltage (NTEV) rise on the commercial building
JP2018155535A (en) Insulation monitoring device, method, and program
JP5501820B2 (en) Line characteristic calculation device and line characteristic calculation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5679480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250