JP5529300B1 - High voltage insulation monitoring method and high voltage insulation monitoring device - Google Patents

High voltage insulation monitoring method and high voltage insulation monitoring device Download PDF

Info

Publication number
JP5529300B1
JP5529300B1 JP2013010142A JP2013010142A JP5529300B1 JP 5529300 B1 JP5529300 B1 JP 5529300B1 JP 2013010142 A JP2013010142 A JP 2013010142A JP 2013010142 A JP2013010142 A JP 2013010142A JP 5529300 B1 JP5529300 B1 JP 5529300B1
Authority
JP
Japan
Prior art keywords
zero
phase
voltage
ground fault
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013010142A
Other languages
Japanese (ja)
Other versions
JP2014142230A (en
Inventor
善和 井上
Original Assignee
一般財団法人 関西電気保安協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人 関西電気保安協会 filed Critical 一般財団法人 関西電気保安協会
Priority to JP2013010142A priority Critical patent/JP5529300B1/en
Application granted granted Critical
Publication of JP5529300B1 publication Critical patent/JP5529300B1/en
Publication of JP2014142230A publication Critical patent/JP2014142230A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 簡易な手段でもって、高圧電力設備の絶縁劣化状態を安価に監視する。
【解決手段】 非接地系電路に接続している高圧電路12の電力ケーブル13に設置された零相変流器ZCT15により、電力ケーブル13での地絡事故の発生でもって電力ケーブル13に流れる零相電流I0を検出し、地絡事故が構内地絡であることを判定する高圧絶縁監視方法であって、高圧電路12に設置された電力ケーブル13のシールド線17にクランプ式変流器18を接続し、地絡事故の発生時にシールド線17に流れる零相電流I0Sをクランプ式変流器18で検出し、零相電流I0Sの位相を基準とする零相電流I0の位相差を乗算することで地絡事故が構内地絡であることを判定する。
【選択図】 図1
PROBLEM TO BE SOLVED: To inexpensively monitor an insulation deterioration state of a high-voltage power facility with a simple means.
A zero-phase current transformer ZCT15 installed in a power cable 13 of a high-piezoelectric circuit 12 connected to a non-grounded electric circuit causes a zero to flow through the power cable 13 due to the occurrence of a ground fault in the power cable 13. A high-voltage insulation monitoring method for detecting a phase current I 0 and determining that a ground fault is a ground fault on the premises, wherein a clamp-type current transformer 18 is connected to a shield wire 17 of a power cable 13 installed in a high-voltage path 12. Are connected, and a zero-phase current I 0S flowing through the shield wire 17 when a ground fault occurs is detected by a clamp-type current transformer 18, and the phase difference of the zero-phase current I 0 with reference to the phase of the zero-phase current I 0S is detected. To determine that the ground fault is a ground fault on the premises.
[Selection] Figure 1

Description

本発明は、地絡事故により非接地系電路に接続している高圧電路に発生する零相電流I0を検出することにより、高圧電路の絶縁劣化状態を監視する高圧絶縁監視方法および高圧絶縁監視装置に関する。 The present invention relates to a high voltage insulation monitoring method and a high voltage insulation monitoring method for monitoring an insulation deterioration state of a high piezoelectric path by detecting a zero-phase current I 0 generated in a high piezoelectric path connected to an ungrounded circuit due to a ground fault. Relates to the device.

非接地系電路に接続している高圧電路に、各種の電気機器(例えば、変圧器、進相コンデンサ、計器用変圧器、変流器など)が接続されており、その高圧電路に設置された零相変流器ZCTにより、地絡事故の発生時に高圧電路に流れる零相電流I0を検出することで、高圧電路の絶縁劣化状態を監視するようにしている。この高圧電路との接続点である受電点から負荷側を構内と称して保護範囲とし、前述の受電点から系統側を構外と称して保護範囲外としているのが一般的である。 Various electrical devices (for example, transformers, phase-advancing capacitors, instrument transformers, current transformers, etc.) are connected to the high-voltage path connected to the ungrounded circuit, and installed on the high-voltage path. The zero-phase current transformer ZCT detects the zero-phase current I 0 flowing in the high-voltage path when a ground fault occurs, thereby monitoring the insulation deterioration state of the high-voltage path. In general, the load side from the power receiving point, which is a connection point with the high piezoelectric path, is referred to as a premise, and the protection range is called, and the system side from the power receiving point is called the premise, and is outside the protection range.

このようにして、地絡事故の発生時に高圧電路に流れる零相電流I0を零相変流器ZCTで検出することにより、その地絡事故が構内地絡であるか否かを判定することで、高圧電路の絶縁劣化状態を監視するようにしている。従来、電路の絶縁劣化状態を監視する手段として、例えば、特許文献1に開示されたものが提案されている。 In this way, by detecting the zero-phase current I 0 flowing in the high piezoelectric path at the time of occurrence of the ground fault with the zero-phase current transformer ZCT, it is determined whether or not the ground fault is a campus ground fault. Therefore, the insulation deterioration state of the high piezoelectric path is monitored. Conventionally, as means for monitoring an insulation deterioration state of an electric circuit, for example, one disclosed in Patent Document 1 has been proposed.

この特許文献1は、電路に零相変流器ZCT、零相変圧器、接地用変圧器を設置し、電路に発生した零相電流I0、零相電圧V0および相電圧Vを検出し、複素数で演算することにより、電路の絶縁劣化状態を監視するようにした絶縁劣化測定装置である。 In this patent document, a zero-phase current transformer ZCT, a zero-phase transformer, and a grounding transformer are installed in an electric circuit, and zero-phase current I 0 , zero-phase voltage V 0 and phase voltage V generated in the electric circuit are detected. This is an insulation deterioration measuring device which monitors the insulation deterioration state of the electric circuit by calculating with a complex number.

特許第4121979号公報Japanese Patent No. 4121979

ところで、特許文献1では、前述したように、電路に発生した零相電流I0,零相電圧V0および相電圧Vを検出することにより、電路の絶縁劣化状態を監視するようにしている。この監視方法を採用した場合、構内の対地間定数をあらかじめ計測または入力する必要はない。しかしながら、構内地絡による地絡電流Igを求めるためには、零相電流I0,零相電圧V0および相電圧Vを複素数で計測してベクトル演算しなければならない。そのため、絶縁劣化測定装置が高価なものになり、電路の絶縁劣化状態を定期的に監視する上で、高価な絶縁劣化測定装置を使用しなければならないという問題があった。 By the way, in Patent Document 1, as described above, the insulation deterioration state of the electric circuit is monitored by detecting the zero-phase current I 0 , the zero-phase voltage V 0 and the phase voltage V generated in the electric circuit. When this monitoring method is adopted, there is no need to measure or input the ground-to-ground constant in advance. However, in order to obtain the ground fault current Ig due to the ground fault, the zero phase current I 0 , the zero phase voltage V 0, and the phase voltage V must be measured in complex numbers and vector-calculated. Therefore, the insulation deterioration measuring device becomes expensive, and there has been a problem that an expensive insulation deterioration measuring device has to be used for periodically monitoring the insulation deterioration state of the electric circuit.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、簡易な手段でもって、高圧電路の絶縁劣化状態を安価に監視し得る高圧絶縁監視方法および高圧絶縁監視装置を提供することにある。   Accordingly, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to provide a high voltage insulation monitoring method and high voltage insulation which can monitor the insulation deterioration state of a high piezoelectric path at a low cost with simple means. It is to provide a monitoring device.

本発明は、非接地系電路の地絡事故により、高圧電路に流れる零相電流I0と、高圧電路に設置された電力ケーブルのシールド線に流れる零相電流I0Sとを検出し、地絡事故が構内地絡であることを判定する高圧絶縁監視方法および高圧絶縁監視装置である。 The present invention, by ground fault ungrounded system path, detects a zero-phase current I 0 flowing through the high-pressure path, and a zero-phase current I 0S flowing through the shield wire of the power cable installed in a high-pressure path, ground A high-voltage insulation monitoring method and a high-voltage insulation monitoring device for determining that an accident is a ground fault on the premises.

前述した地絡検出の目的を達成するための技術的手段として、本発明に係る高圧絶縁監視方法は、非接地系電路に接続している高圧電路に流れる零相電流I0を検出し、地絡事故が構内地絡であることを判定する方法であって、高圧電路に設置された電力ケーブルのシールド線に変流器を接続し、地絡事故の発生時にシールド線に流れる零相電流I0Sを変流器で検出し、零相電流I0Sの位相を基準とする零相電流I0の位相差から地絡事故が構内地絡であることを判定するようにしたことを特徴とする。また、本発明に係る高圧絶縁監視装置は、非接地系電路に接続している高圧電路に流れる零相電流I0を検出し、地絡事故が構内地絡であることを判定する装置であって、高圧電路に設置された電力ケーブルのシールド線に着脱自在に接続され、地絡事故の発生時にシールド線に流れる零相電流I0Sを検出する変流器と、その変流器で検出された零相電流I0Sを変換した零相電圧V0Sの大きさをゲイン調整により1とするゲイン調整部と、ゲイン調整により零相電圧V0Sを1としたことにより零相電圧V0Sの位相を基準とし、その基準とした零相電圧V0Sに零相電流I0をベクトル乗算することで地絡電流Igを算出する演算部とで構成されたことを特徴とする。 As a technical means for achieving the above-mentioned purpose of ground fault detection, the high voltage insulation monitoring method according to the present invention detects a zero-phase current I 0 flowing in a high-voltage circuit connected to a non-grounded circuit, and A zero-phase current I flowing in the shield line when a ground fault occurs by connecting a current transformer to the shield line of the power cable installed on the high-voltage road. 0S is detected by a current transformer, and it is determined that the ground fault is a ground fault from the phase difference of the zero phase current I 0 based on the phase of the zero phase current I 0S. . The high-voltage insulation monitoring device according to the present invention is a device that detects a zero-phase current I 0 flowing through a high-voltage circuit connected to a non-grounded circuit and determines that a ground fault is a ground fault on the premises. And a current transformer that is detachably connected to the shield wire of the power cable installed on the high-voltage path and detects the zero-phase current I 0S flowing through the shield wire in the event of a ground fault, and is detected by the current transformer. zero-phase current I and the gain adjusting unit to 1 0S by the gain adjusting the size of the zero-phase voltage V 0S converted to the zero-phase voltage V 0S phase by which the zero-phase voltage V 0S 1 by gain adjust And a calculation unit that calculates a ground fault current Ig by multiplying the zero phase voltage V 0S that is the reference by a vector multiplication of the zero phase current I 0 .

本発明の高圧絶縁監視方法および高圧絶縁監視装置では、地絡事故の発生時にシールド線に流れる零相電流I0Sを変流器で検出し、この零相電流I0Sが端末抵抗に流れる時の端末抵抗の両端電圧を零相電流I0Sに基づく零相電圧V0Sとし、この零相電圧V0Sの大きさをゲイン調整により1とし、ゲイン調整でもって零相電圧V0Sを1とすることにより零相電圧V0Sの位相を基準とし、基準とした零相電圧V0Sに零相電流I0をベクトル乗算することから、地絡事故が構内地絡であることを判定するようにした。このことから、従来の絶縁監視方法(特許文献1)のように、零相電流I0,零相電圧V0および相電圧Vを複素数で計測することに基づく複雑なベクトル演算が不要となる。また、電力ケーブル13の芯線と大地間の対地静電容量は、電力ケーブル13の口径および長さにより異なる。したがって、零相電圧V0を計測するには、その対地静電容量に流れる電流による誤差分を補正するための回路が必要となる。しかし、本発明では、ゲイン調整でもって零相電圧V0Sを1とすることにより、前述の補正回路が不要となって簡易な回路構成で高圧絶縁監視装置を実現できる。このように高圧電路の絶縁劣化状態を常時監視する上で簡易かつ安価な高圧絶縁監視装置で地絡電流Igを簡単に得ることができる。 In the high voltage insulation monitoring method and the high voltage insulation monitoring device of the present invention, the zero-phase current I 0S flowing through the shield wire at the time of occurrence of the ground fault is detected by a current transformer, and the zero-phase current I 0S flows through the terminal resistance. The voltage across the terminal resistor is a zero-phase voltage V 0S based on the zero-phase current I 0S , the magnitude of this zero-phase voltage V 0S is set to 1 by gain adjustment, and the zero-phase voltage V 0S is set to 1 by gain adjustment. Thus, the phase of the zero-phase voltage V 0S is used as a reference, and the zero-phase voltage V 0S used as a reference is multiplied by the vector of the zero-phase current I 0 , so that it is determined that the ground fault is a ground fault. Therefore, unlike the conventional insulation monitoring method (Patent Document 1), a complicated vector calculation based on measuring the zero-phase current I 0 , the zero-phase voltage V 0, and the phase voltage V as complex numbers becomes unnecessary. The ground capacitance between the core wire of the power cable 13 and the ground varies depending on the diameter and length of the power cable 13. Therefore, in order to measure the zero-phase voltage V 0 , a circuit for correcting an error due to the current flowing through the ground capacitance is required. However, in the present invention, by setting the zero-phase voltage V 0S to 1 by gain adjustment, the above-described correction circuit becomes unnecessary and a high voltage insulation monitoring device can be realized with a simple circuit configuration. As described above, the ground fault current Ig can be easily obtained by a simple and inexpensive high voltage insulation monitoring device for constantly monitoring the insulation deterioration state of the high piezoelectric path.

本発明の高圧絶縁監視方法では、高圧電路に設置された零相変流器ZCTにより、地絡事故の発生時に電力ケーブルに流れる零相電流I0を検出することが可能であるが、他の手段として、零相変流器ZCTの二次側に変流器を接続し、その変流器により地絡事故の発生時に電力ケーブルに流れる零相電流I0を検出することが望ましい。また、本発明の高圧絶縁監視装置では、零相変流器ZCTの二次側に着脱自在に接続され、地絡事故の発生時に高圧電路に流れる零相電流I0を検出する変流器を具備することが望ましい。このようにすれば、地絡保護継電器用として既設された零相変流器ZCTの二次側に変流器を取り付けるだけで簡易に絶縁監視を行うことができ、しかも、高圧電路に雷サージ等の過電圧が印加されても、零相変流器ZCTにより絶縁されるので、その過電圧に対する保護も確実となって信頼性の向上が図れる。 In the high voltage insulation monitoring method of the present invention, the zero phase current transformer ZCT installed in the high piezoelectric path can detect the zero phase current I 0 flowing in the power cable when a ground fault occurs. As a means, it is desirable to connect a current transformer to the secondary side of the zero-phase current transformer ZCT, and to detect the zero-phase current I 0 flowing through the power cable when a ground fault occurs. In the high voltage insulation monitoring device of the present invention, a current transformer is detachably connected to the secondary side of the zero-phase current transformer ZCT and detects the zero-phase current I 0 flowing through the high-voltage path when a ground fault occurs. It is desirable to have it. In this way, insulation monitoring can be performed simply by attaching a current transformer to the secondary side of the zero-phase current transformer ZCT already installed for ground fault protection relays. Even when an overvoltage such as the above is applied, insulation is performed by the zero-phase current transformer ZCT, so that the protection against the overvoltage is ensured and the reliability can be improved.

本発明の高圧絶縁監視方法では、高圧電路から分岐した複数のフィーダ線のそれぞれに変流器を接続し、その変流器により地絡事故の発生時に各フィーダ線に流れる零相電流I01〜I0Nを検出することが望ましい。また、本発明の高圧絶縁監視装置では、高圧電路から分岐した複数のフィーダ線のそれぞれに着脱自在に接続され、地絡事故の発生時に各フィーダ線に流れる零相電流I01〜I0Nを検出する変流器を具備することが望ましい。このようにすれば、高圧電路から分岐した複数のフィーダ線についても絶縁監視を容易に行うことができる。 In the high voltage insulation monitoring method of the present invention, a current transformer is connected to each of a plurality of feeder lines branched from a high piezoelectric path, and zero-phase currents I 01 to I flowing in the feeder lines when a ground fault occurs due to the current transformers. It is desirable to detect I 0N . In the high voltage insulation monitoring device of the present invention, the zero-phase currents I 01 to I 0N flowing through the feeder lines are detected by being detachably connected to each of the plurality of feeder lines branched from the high piezoelectric path. It is desirable to have a current transformer that In this way, insulation monitoring can be easily performed for a plurality of feeder lines branched from the high piezoelectric path.

本発明によれば、ゲイン調整により零相電流I0Sに基づいて得られた零相電圧V0Sを1とすることにより、この零相電圧V0Sの位相を基準とする零相電流I0の位相差から地絡事故が構内地絡であることを判定するようにしたことから、従来の絶縁監視方法(特許文献1)のように、零相電流I0,零相電圧V0および相電圧Vを複素数で計測することに基づく複雑なベクトル演算が不要となる。また、零相電流I0Sに基づいて得られた零相電圧V0Sについては、電力ケーブルの芯線と大地間の対地静電容量を決める電力ケーブルの口径および長さをパラメータとしてその対地静電容量に流れる電流による誤差分を補正するための回路が不要となる。このことから、高圧電路の絶縁劣化状態を常時監視する上で、簡易な回路構成で安価な高圧絶縁監視装置を使用することができ、その実用的価値は大きい。 According to the present invention, by a zero-phase voltage V 0S obtained based on the zero-phase current I 0S by gain adjustment and 1, the zero-phase current I 0 relative to the phase of the zero-phase voltage V 0S Since it is determined from the phase difference that the ground fault is a premise ground fault, the zero-phase current I 0 , zero-phase voltage V 0, and phase voltage as in the conventional insulation monitoring method (Patent Document 1). A complicated vector operation based on measuring V as a complex number is not necessary. The zero-phase voltage V 0S obtained on the basis of the zero-phase current I 0S is determined by using the power cable diameter and length that determine the ground capacitance between the core of the power cable and the ground as parameters. A circuit for correcting an error due to the current flowing in the circuit becomes unnecessary. For this reason, an inexpensive high voltage insulation monitoring device can be used with a simple circuit configuration for constantly monitoring the insulation deterioration state of the high piezoelectric path, and its practical value is great.

本発明の実施形態で、一線地絡時の高圧電路に接続された高圧絶縁監視装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the high voltage | pressure insulation monitoring apparatus connected to the high piezoelectric path at the time of a one-line ground fault in embodiment of this invention. 本発明の他の実施形態で、一線地絡時の高圧電路に接続された高圧絶縁監視装置の概略構成を示すブロック図である。In other embodiment of this invention, it is a block diagram which shows schematic structure of the high voltage | pressure insulation monitoring apparatus connected to the high piezoelectric path at the time of a one-line ground fault. 一線地絡事故の発生時の等価回路図である。It is an equivalent circuit diagram at the time of occurrence of a one-line ground fault. 一線地絡事故の発生時のベクトル図である。It is a vector diagram at the time of occurrence of a one-line ground fault. 高圧電路において構外地絡が発生した状態を示す構成図である。It is a block diagram which shows the state which the off-ground ground fault generate | occur | produced in the high piezoelectric road. 高圧電路において構内地絡が発生した状態を示す構成図である。It is a block diagram which shows the state which the local ground fault generate | occur | produced in the high piezoelectric road. 実際の地絡事故時の零相電流I0を示す波形図である。Is a waveform diagram showing a zero-phase current I 0 at the time of the actual ground fault.

本発明の実施形態を以下に詳述する。以下の実施形態では、地絡事故により高圧電路に発生する零相電流Ioを検出することにより、高圧電路の絶縁劣化状態を監視する高圧絶縁監視方法および高圧絶縁監視装置を説明する。   Embodiments of the present invention are described in detail below. In the following embodiments, a high voltage insulation monitoring method and a high voltage insulation monitoring device for monitoring the insulation deterioration state of a high piezoelectric path by detecting a zero phase current Io generated in the high piezoelectric path due to a ground fault will be described.

図1は本発明の一つの実施形態を示し、図2は本発明の他の実施形態を示す。図1および図2に示す6.6kVの非接地系電路(三相回路)では、変電所11から延びる高圧電路12に設置された電力ケーブル13に各種の電気機器(例えば、変圧器、進相コンデンサ、計器用変圧器、変流器など)が接続されており、地絡事故の発生時に流れる零相電流I0を検出することにより、高圧電路12の絶縁劣化状態を監視するようにしている。なお、図1および図2は電力ケーブル13のA相に一線地絡事故が発生した場合を例示し、その時の地絡電流をIgとする。 FIG. 1 shows one embodiment of the present invention, and FIG. 2 shows another embodiment of the present invention. In the 6.6 kV ungrounded electric circuit (three-phase circuit) shown in FIGS. 1 and 2, various electric devices (for example, a transformer, a phase advancement) are connected to the power cable 13 installed in the high-voltage circuit 12 extending from the substation 11. Capacitors, instrument transformers, current transformers, etc.) are connected, and the insulation deterioration state of the high-voltage path 12 is monitored by detecting the zero-phase current I 0 that flows when a ground fault occurs. . 1 and 2 exemplify a case where a one-line ground fault has occurred in the A phase of the power cable 13, and let the ground fault current at that time be Ig.

この高圧電路12と電力ケーブル13の接続点である受電点から負荷側を構内と称して保護範囲とし、前述の受電点から系統側を構外と称して保護範囲外としている。図1および図2における符号CA1,CB1,CC1は高圧電路12と大地との間に存在する構外の対地静電容量であり、CA2,CB2,CC2は電力ケーブル13および各種電気機器と大地との間に存在する構内の対地静電容量である。電力ケーブル13のシールド線17に流れる電流I0Sは、零相電圧V0により電力ケーブル13の芯線と大地間の対地静電容量CAS,CBS,CCS(図示せず)により流れる電流である(I0S=ω・C0S・V0、ただし、ω=2・π・電源周波数(Hz)、C0S=CAS+CBS+CCS)。 The load side from the power receiving point that is the connection point of the high piezoelectric path 12 and the power cable 13 is referred to as a premise, and the protection side is referred to as the premise, and the system side from the power receiving point is referred to as the premise, and is outside the protective range. Reference numerals C A1 , C B1 , and C C1 in FIGS. 1 and 2 are external ground capacitances existing between the high piezoelectric path 12 and the ground, and C A2 , C B2 , and C C2 are power cables 13 and various types. This is the ground capacitance on the premises that exists between the electrical equipment and the ground. The current I 0S flowing through the shield wire 17 of the power cable 13 is a current flowing through the ground capacitances C AS , C BS , C CS (not shown) between the core wire and the ground of the power cable 13 due to the zero-phase voltage V 0. (I 0S = ω · C 0S · V 0 , where ω = 2 · π · power frequency (Hz), C 0S = C AS + C BS + C CS ).

非接地系電路では、電力を供給している電力会社や特別高圧変電設備の主力変圧器の中性極に接地用変圧器(EVT)が設備されている。この接地用変圧器の二次(三次)巻線は、オープンデルタ結線で出力端子に制限抵抗が接続される。この制限抵抗を一次(高圧)側に換算した制限抵抗Rnは、約10kΩ〜40kΩ程度になる(図1および図2参照)。図1および図2に示す非接地系電路で一線地絡事故が発生すると、図3に示すような等価回路となる。   In the non-grounded electric circuit, a grounding transformer (EVT) is installed at the neutral pole of the main transformer of the power company supplying the power or the special high voltage substation equipment. The secondary (tertiary) winding of the grounding transformer has an open delta connection, and a limiting resistor is connected to the output terminal. The limiting resistance Rn obtained by converting the limiting resistance to the primary (high voltage) side is about 10 kΩ to 40 kΩ (see FIGS. 1 and 2). When a one-line ground fault occurs in the ungrounded circuit shown in FIGS. 1 and 2, an equivalent circuit as shown in FIG. 3 is obtained.

ここで、本出願人が先に提案した地絡監視方法および装置(特許第2774443号公報参照)では、前述の制限抵抗Rnの端子間と高圧電路12の対地定数(対地静電容量)は並列接続になり、制限抵抗Rnの端子間に零相電圧Votが生じる。また、非接地系電路の対地間定数(対地静電容量)の不平衡による零相電圧Vorが生じる。この高圧電路12の対地定数の不平衡による零相電圧Vorは、一線完全地絡時の零相電圧〔線間電圧/√3=6600V/√3=3810V(代表値)〕の5%以下の値で常に生じて変動している。また、高圧電路12に生じている零相電圧V0は、絶縁劣化により生じる零相電圧Votと対地定数の不平衡による(残留)零相電圧Vorとからなる。本発明では、対地定数の不平衡による零相電圧Vorは予測できないので取り扱わず、絶縁劣化により生じる零相電圧Votのみを取り扱う。 Here, in the ground fault monitoring method and apparatus previously proposed by the present applicant (see Japanese Patent No. 2774443), the ground constant (ground capacitance) between the terminals of the limiting resistor Rn and the high piezoelectric path 12 is parallel. Thus, a zero-phase voltage Vot is generated between the terminals of the limiting resistor Rn. In addition, a zero-phase voltage Vor is generated due to an unbalanced ground-to-ground constant (ground capacitance) of the ungrounded circuit. The zero-phase voltage Vor due to the unbalance of the ground constant of the high piezoelectric path 12 is 5% or less of the zero-phase voltage [line voltage / √3 = 6600V / √3 = 3810V (typical value)] at the time of one line complete ground fault. It always arises and fluctuates in value. The zero-phase voltage V 0 generated in the high piezoelectric path 12 is composed of a zero-phase voltage Vot caused by insulation deterioration and a (residual) zero-phase voltage Vor due to an unbalanced ground constant. In the present invention, the zero phase voltage Vor due to the unbalance of the ground constant cannot be predicted and is not handled, and only the zero phase voltage Vot caused by the insulation deterioration is handled.

高圧電路12の電力ケーブル13および各種電気機器において、図4に示すように、零相電圧V0と電力ケーブル13および各種電気機器の対地静電容量により流れる零相電流I0C(図1および図2参照)は、高圧電路12に生じた零相電圧V0(Vot)に対して進み90度であるが、零相変流器15から見た時に逆位相となり遅れ90度となる。特に、電力ケーブル13のシールド線17に流れる零相電流I0Sを基準位相とすることにより、零相電流I0Cと地絡電流Igとを区別することができる。一方、高圧電路12の絶縁劣化による地絡電流Igは、対地電圧Vrg(図1および図2参照)と同位相である。 As shown in FIG. 4, in the power cable 13 and various electric devices of the high piezoelectric path 12, the zero-phase current I 0C that flows due to the zero-phase voltage V 0 and the electrostatic capacitance of the power cable 13 and various electric devices (see FIGS. 2) is 90 degrees advance with respect to the zero-phase voltage V 0 (Vot) generated in the high piezoelectric path 12, but when viewed from the zero-phase current transformer 15, the phase is reversed and the delay is 90 degrees. In particular, the zero phase current I 0C and the ground fault current Ig can be distinguished by using the zero phase current I 0S flowing through the shield wire 17 of the power cable 13 as a reference phase. On the other hand, the ground fault current Ig due to the insulation deterioration of the high piezoelectric path 12 is in phase with the ground voltage Vrg (see FIGS. 1 and 2).

地絡事故の発生時に流れる零相電流I0を検出することにより、その地絡事故が構内地絡であるか否かを判定する高圧絶縁監視装置14は、図1に示す実施形態の場合、地絡保護継電器用として既設された零相変流器ZCT15により、地絡事故の発生時に流れる零相電流I0を検出する構成を採用している。一方、図2に示す実施形態の場合、設置された零相変流器ZCT15の二次側にクランプ式変流器16を接続し、このクランプ式変流器16により、地絡事故の発生時に流れる零相電流I0を検出する構成を採用している。なお、零相変流器ZCT15の二次側に接続する変流器としては、前述のクランプ式変流器16以外に、例えば、貫通式変流器であってもよい。 In the case of the embodiment shown in FIG. 1, the high-voltage insulation monitoring device 14 that determines whether or not the ground fault is a premises ground fault by detecting the zero-phase current I 0 that flows when the ground fault occurs is A configuration is adopted in which the zero-phase current transformer ZCT15 already installed for the ground fault protection relay detects the zero phase current I 0 that flows when a ground fault occurs. On the other hand, in the case of the embodiment shown in FIG. 2, a clamp-type current transformer 16 is connected to the secondary side of the installed zero-phase current transformer ZCT15, and this clamp-type current transformer 16 causes a ground fault to occur. A configuration for detecting a flowing zero-phase current I 0 is employed. The current transformer connected to the secondary side of the zero-phase current transformer ZCT15 may be, for example, a through-type current transformer other than the clamp-type current transformer 16 described above.

図2に示す実施形態のように、零相変流器ZCT15の二次側にクランプ式変流器16を接続し、このクランプ式変流器16により地絡事故の発生時に流れる零相電流I0を検出することにより、地絡保護継電器31が接続された既設の零相変流器ZCT15の二次側にクランプ式変流器16を取り付けるだけで簡易に絶縁監視を行うことができ、しかも、電力ケーブル13に雷サージ等の過電圧が印加されても、その過電圧が高圧絶縁監視装置14へ直接印加することがないので過電圧に対する保護も確実となって信頼性の向上が図れる。 As in the embodiment shown in FIG. 2, a clamp-type current transformer 16 is connected to the secondary side of the zero-phase current transformer ZCT15, and this clamp-type current transformer 16 causes a zero-phase current I flowing when a ground fault occurs. By detecting 0 , insulation monitoring can be performed simply by attaching the clamp type current transformer 16 to the secondary side of the existing zero-phase current transformer ZCT15 to which the ground fault protection relay 31 is connected. Even if an overvoltage such as a lightning surge is applied to the power cable 13, the overvoltage is not directly applied to the high voltage insulation monitoring device 14, so that protection against the overvoltage is ensured and reliability can be improved.

前述のクランプ式変流器16は、磁気回路を構成して電流を検出するリング状部が本体先端に開閉可能に設けられた構造を具備する。クランプ式変流器16の零相変流器ZCT15の二次側への装着は、リング状部を手動操作により開いてその内部に地絡保護継電器との接続線を取り込んだ後に閉じることで、磁気回路を構成するリング状部に接続線を貫通させるようにして行われる。このような簡単な操作でその取り付け作業が容易であるので、現場における作業も効率よく実施できてその実用的価値は大きい。   The clamp-type current transformer 16 described above has a structure in which a ring-shaped portion that forms a magnetic circuit and detects current is provided at the front end of the main body so as to be opened and closed. The clamp-type current transformer 16 is attached to the secondary side of the zero-phase current transformer ZCT15 by opening the ring-shaped part by manual operation and closing it after taking the connection line with the ground fault protection relay inside. The connection is made to penetrate the ring-shaped portion constituting the magnetic circuit. Since the attachment work is easy by such a simple operation, the work in the field can be carried out efficiently and its practical value is great.

高圧絶縁監視装置14は、高圧電路12に設置された零相変流器ZCT15(図1参照)、あるいはその零相変流器ZCT15の二次側に接続されたクランプ式変流器16(図2参照)により、電力ケーブル13および各種電気機器で発生した地絡事故時に流れる零相電流I0を検出し、地絡事故が構内地絡であることを判定するものである。 The high voltage insulation monitoring device 14 includes a zero-phase current transformer ZCT15 (see FIG. 1) installed in the high piezoelectric path 12 or a clamp-type current transformer 16 (see FIG. 1) connected to the secondary side of the zero-phase current transformer ZCT15. 2), the zero-phase current I 0 flowing at the time of the ground fault occurring in the power cable 13 and various electric devices is detected, and it is determined that the ground fault is a ground fault on the premises.

この高圧絶縁監視装置14は、図1および図2に示すように、電力ケーブル13のシールド線17に着脱自在に接続され、地絡事故の発生時にシールド線17に流れる零相電流I0Sを検出するクランプ式変流器18と、そのクランプ式変流器18で検出された零相電流I0Sが端末抵抗21に流れる時の端末抵抗21の両端電圧を零相電流I0Sに基づく零相電圧V0Sとし、この零相電圧V0Sの大きさをゲイン調整により1とするゲイン調整部19と、ゲイン調整により零相電圧V0Sを1とすることにより零相電圧V0Sの位相を基準とし、その基準とした零相電圧V0Sに零相変流器ZCTまたはクランプ式変流器16により検出された零相電流I0をベクトル乗算することで地絡電流Igを算出する演算部20とで主要部が構成されている。前述の電力ケーブル13のシールド線17に取り付ける変流器としては、前述のクランプ式変流器18以外に、例えば、貫通式変流器であってもよい。なお、ゲイン調整部19および演算部20の前段には、電流を電圧に変換するための端末抵抗21,22と、高調波ノイズを除去するためのロウパスフィルタ23,24とが設けられている。 As shown in FIGS. 1 and 2, the high-voltage insulation monitoring device 14 is detachably connected to the shield wire 17 of the power cable 13, and detects a zero-phase current I 0S flowing through the shield wire 17 when a ground fault occurs. And the voltage across the terminal resistor 21 when the zero-phase current I 0S detected by the clamp-type current transformer 18 flows through the terminal resistor 21 is the zero-phase voltage based on the zero-phase current I 0S. V 0S , the gain adjusting unit 19 that sets the magnitude of the zero-phase voltage V 0S to 1 by gain adjustment, and the zero-phase voltage V 0S is set to 1 by gain adjustment, and the phase of the zero-phase voltage V 0S is used as a reference. A calculation unit 20 for calculating a ground fault current Ig by multiplying the zero-phase voltage V 0S as a reference by the zero-phase current I 0 detected by the zero-phase current transformer ZCT or the clamp-type current transformer 16 The main part is composed of. The current transformer attached to the shield wire 17 of the power cable 13 described above may be, for example, a through-type current transformer in addition to the clamp current transformer 18 described above. In addition, terminal resistors 21 and 22 for converting current into voltage and low-pass filters 23 and 24 for removing harmonic noise are provided in front of the gain adjustment unit 19 and the calculation unit 20. .

この高圧絶縁監視装置では、電力ケーブル13のシールド線17に着脱自在に接続されたクランプ式変流器18により、地絡事故の発生時に電力ケーブル13のシールド線17に流れる零相電流I0Sを検出する。クランプ式変流器18の二次側で検出された零相電流I0Sが端末抵抗21に流れる時にその端末抵抗21の両端で得られた零相電圧V0Sは、零相電圧V0と電力ケーブル13の対地間静電容量のベクトル積となる零相電流I0S(=−jωCV0、ただし、C=電力ケーブル13の対地間静電容量)と同位相である。さらに、電力ケーブル13の対地間静電容量のパラメータ部(変数C)を標準化するために、零相電流I0Sの大きさをゲイン調整により1(|−jωC|=1)とすると、得られた零相電圧V0Sは零相電圧V0の位相から90度遅れた位相(基準)を示すことになる。 In this high voltage insulation monitoring device, a zero-phase current I 0S that flows through the shield wire 17 of the power cable 13 when a ground fault occurs is caused by a clamp-type current transformer 18 that is detachably connected to the shield wire 17 of the power cable 13. To detect. When the zero-phase current I 0S detected on the secondary side of the clamp type current transformer 18 flows through the terminal resistor 21, the zero-phase voltage V 0S obtained at both ends of the terminal resistor 21 is the zero-phase voltage V 0 and the power It is in phase with the zero-phase current I 0S (= −jωCV 0 , where C = capacitance between the power cable 13 and ground), which is the vector product of the capacitance between the cable 13 and ground. Furthermore, in order to standardize the parameter part (variable C) of the capacitance between the power cable 13 and the ground, the magnitude of the zero-phase current I 0S is set to 1 (| −jωC | = 1) by gain adjustment. The zero-phase voltage V 0S indicates a phase (reference) delayed by 90 degrees from the phase of the zero-phase voltage V 0 .

従って、この零相電圧V0Sと零相変流器ZCTにより検出された零相電流I0を演算部20でベクトル乗算(電力計算)することにより、地絡事故が構内地絡であることを判定するようにした。このことから、従来の絶縁監視方法(特許文献1)のように、零相電流I0,零相電圧V0および相電圧Vを複素数で計測することに基づく複雑なベクトル演算が不要となる。また、零相電流I0Sに基づいて得られた零相電圧V0Sについては、電力ケーブル13の芯線と大地間の対地静電容量を決める電力ケーブル13の口径および長さをパラメータとしてその対地静電容量に流れる電流による誤差分を補正するための回路が不要となる。このように高圧電路12の絶縁劣化状態を常時監視する上で、簡易な回路構成で安価な高圧絶縁監視装置14を使用することができる。 Accordingly, the zero fault voltage V 0S and the zero phase current I 0 detected by the zero phase current transformer ZCT are vector-multiplied (power calculation) by the arithmetic unit 20 to determine that the ground fault is a ground fault on the premises. Judgment was made. Therefore, unlike the conventional insulation monitoring method (Patent Document 1), a complicated vector calculation based on measuring the zero-phase current I 0 , the zero-phase voltage V 0, and the phase voltage V as complex numbers becomes unnecessary. Further, the zero-phase voltage V 0S obtained based on the zero-phase current I 0S is measured using the diameter and length of the power cable 13 that determines the ground capacitance between the core wire and the ground of the power cable 13 as parameters. A circuit for correcting an error due to the current flowing in the capacitance is not necessary. Thus, in order to constantly monitor the insulation deterioration state of the high piezoelectric path 12, the inexpensive high voltage insulation monitoring device 14 can be used with a simple circuit configuration.

演算部20における乗算演算のベクトル計算は、一般によく使用される電力計測用演算素子(W=V・I・cosφ)を応用したもので、この電力計測用演算素子は一般市場に多く供給されており安価に入手可能な素子である。この電力計測用演算素子を用いた演算部20の電流および電圧入力を、零相変流器15あるいはクランプ式変流器16で検出された零相電流I0と、クランプ式変流器18の二次側で検出された零相電流I0Sが端末抵抗21に流れる時の端末抵抗21の両端電圧をゲイン調整した零相電圧V0Sとする。その零相電圧V0Sの大きさを自動的に基準値の1に調整して得られた零相電圧V0Sを基準位相とし、その基準とした零相電圧V0Sに零相変流器ZCTにより検出された零相電流I0をベクトル乗算(Ig=I0・V0S・cosφ)することで、その計算結果の地絡電流Igの符号が負であるとき、地絡電流Igが構内事故で生じたことを判定できる。 The vector calculation of the multiplication operation in the arithmetic unit 20 applies a commonly used power measurement arithmetic element (W = V · I · cosφ), and this power measurement arithmetic element is widely supplied to the general market. It is an element that can be obtained at low cost. The current and voltage input of the calculation unit 20 using this power measurement calculation element are obtained by using the zero-phase current I 0 detected by the zero-phase current transformer 15 or the clamp-type current transformer 16 and the clamp-type current transformer 18. The voltage across the terminal resistor 21 when the zero-phase current I 0S detected on the secondary side flows through the terminal resistor 21 is defined as a zero-phase voltage V 0S obtained by adjusting the gain. The zero-phase voltage V 0S obtained by adjusting the first automatic reference value the size of the zero-phase voltage V 0S as a reference phase, the zero-phase current transformer ZCT in the zero-phase voltage V 0S which was the reference When the sign of the ground fault current Ig of the calculation result is negative by vector multiplication (Ig = I 0 · V 0S · cosφ) of the zero-phase current I 0 detected by the Can be determined.

図5は高圧電路12で地絡事故が発生した場合の構外地絡を説明するもので、図6は電力ケーブル13から分岐した複数のフィーダ線25〜27で地絡事故が発生した場合の構内地絡を説明するものである。図5および図6では、前述したように電力ケーブル13から分岐した三つのフィーダ線25〜27を例示するが、その数は任意である。これらフィーダ線25〜27には各種の電気機器(例えば、変圧器、進相コンデンサ、計器用変圧器、変流器など)が接続されている。   FIG. 5 illustrates an off-site ground fault when a ground fault occurs on the high-voltage road 12, and FIG. 6 illustrates a pre-ground when a ground fault occurs on a plurality of feeder lines 25 to 27 branched from the power cable 13. It explains the ground fault. 5 and 6 exemplify the three feeder lines 25 to 27 branched from the power cable 13 as described above, but the number thereof is arbitrary. Various electric devices (for example, a transformer, a phase advance capacitor, an instrument transformer, a current transformer, etc.) are connected to the feeder lines 25 to 27.

なお、電力ケーブル13から分岐したフィーダ線25〜27については、図1および図2において図示省略している。また、図5および図6では、電力ケーブル13に設置された零相変流器ZCT15により零相電流Ioを検出する場合(図1の実施形態)を例示している。図示しないが、電力ケーブル13に設置された零相変流器ZCT15の二次側にクランプ式変流器16を接続する場合(図2の実施形態)も以下の説明は同様である。   Note that the feeder lines 25 to 27 branched from the power cable 13 are not shown in FIGS. 1 and 2. 5 and 6 illustrate a case where the zero-phase current Io is detected by the zero-phase current transformer ZCT15 installed in the power cable 13 (the embodiment in FIG. 1). Although not shown, the following description is the same when the clamp type current transformer 16 is connected to the secondary side of the zero-phase current transformer ZCT15 installed in the power cable 13 (embodiment of FIG. 2).

高圧絶縁監視装置14は、図5および図6に示すように、電力ケーブル13から分岐した複数のフィーダ線25〜27のそれぞれに着脱自在に接続され、地絡事故(構外地絡あるいは構内地絡)の発生時に各フィーダ線25〜27に流れる零相電流I01〜I03を検出するクランプ式変流器28〜30を具備する。このように、電力ケーブル13から分岐した各フィーダ線25〜27にクランプ式変流器28〜30を接続することにより、それら各フィーダ線25〜27についても絶縁監視を容易に行うことができる。 As shown in FIGS. 5 and 6, the high-voltage insulation monitoring device 14 is detachably connected to each of a plurality of feeder wires 25 to 27 branched from the power cable 13, and a ground fault (external ground fault or internal ground fault is detected). ), Clamp-type current transformers 28 to 30 for detecting zero-phase currents I 01 to I 03 flowing in the feeder lines 25 to 27 are provided. Thus, by connecting the clamp type current transformers 28 to 30 to the feeder lines 25 to 27 branched from the power cable 13, it is possible to easily monitor the insulation of the feeder lines 25 to 27.

地絡事故が構外地絡の場合、図5の矢印で示すように、電力ケーブル13に流れる零相電流I0、電力ケーブル13のシールド線17に流れる零相電流I0S、および各フィーダ線25〜27に流れる零相電流I01〜I03の全ての零相電流は零相電圧V0に対して遅れ90°の位相を持つ。一方、地絡事故が例えばフィーダ線27で発生した構内地絡の場合、図6の矢印で示すように、そのフィーダ線27に流れる零相電流I03および電力ケーブル13に流れる零相電流I0は零相電圧V0に対して進み90°の位相を持つ。逆に、残りのフィーダ線25,26に流れる零相電流I01,I02および電力ケーブルのシールド線17に流れる零相電流I0Sは遅れ90°の位相を持つ。つまり、電力ケーブル13に流れる零相電流I0は、I0=−I0S−I01−I02+I03となる。 When the ground fault is an off-premise ground fault, as shown by the arrows in FIG. 5, the zero-phase current I 0 flowing through the power cable 13, the zero-phase current I 0S flowing through the shield wire 17 of the power cable 13, and each feeder line 25 all zero-phase current of the zero-phase current I 01 ~I 03 flowing in to 27 has a delay of 90 ° phase with respect to the zero-phase voltage V 0. On the other hand, if the ground fault is a ground fault in the feeder line 27, for example, as shown by the arrow in FIG. 6, the zero-phase current I 03 flowing through the feeder line 27 and the zero-phase current I 0 flowing through the power cable 13 are shown. Is advanced with respect to the zero-phase voltage V 0 and has a phase of 90 °. Conversely, the zero-phase currents I 01 and I 02 flowing through the remaining feeder lines 25 and 26 and the zero-phase current I 0S flowing through the shield line 17 of the power cable have a phase of 90 ° behind. That is, the zero-phase current I 0 flowing through the power cable 13 is I 0 = −I 0S −I 01 −I 02 + I 03 .

実際の高圧電路の多回路分岐設備で地絡事故が発生した時の零相電流波形の計測例を図7に示す。図7において、Mainは電力ケーブル13、CH1〜CH5は電力ケーブル13から分岐した5本のフィーダ線、CH6は電力ケーブル13のシールド線17についての計測結果である。この地絡事故時の地絡電流Igが大きかった(約2A)ので、測定装置の零相電流波形計測範囲を超えている。従って、電流波形のMain,CH1,CH3,CH6の4波形は矩形波のような記録であるが、実際の地絡電流Igは商用周波数の正弦波に近い波形が生じていたと考えられる。電流値と位相については別の手段で計測しており結果を次に示す。   FIG. 7 shows a measurement example of the zero-phase current waveform when a ground fault occurs in an actual high-voltage multi-circuit branch facility. In FIG. 7, Main is the measurement result for the power cable 13, CH1 to CH5 are the five feeder lines branched from the power cable 13, and CH6 is the measurement result for the shield line 17 of the power cable 13. Since the ground fault current Ig at the time of the ground fault was large (about 2 A), it exceeds the zero phase current waveform measurement range of the measuring device. Therefore, although the four waveforms of Main, CH1, CH3, and CH6 of the current waveform are recorded like a rectangular wave, it is considered that the actual ground fault current Ig has a waveform close to a sine wave of the commercial frequency. The current value and phase are measured by different means, and the results are shown below.

図7に示す電流波形から、Mainは電力ケーブル13に流れる零相電流I0(=2000mA、位相262度)、CH1はフィーダ線に流れる零相電流I01(=336mA、位相82度)、CH2はフィーダ線に流れる零相電流I02(=41mA、位相84度)、CH3はフィーダ線に流れる零相電流I03(=2620mA、位相262度)、CH4はフィーダ線に流れる零相電流I04(=62mA、位相84度)、CH5はフィーダ線に流れる零相電流I05(=33mA、位相84度)、CH6は電力ケーブル13のシールド線17に流れる零相電流I06(=149mA、位相82度)を示している。 From the current waveform shown in FIG. 7, Main is a zero-phase current I 0 (= 2000 mA, phase 262 degrees) flowing through the power cable 13, CH1 is a zero-phase current I 01 (= 336 mA, phase 82 degrees) flowing through the feeder line, CH2 Is a zero-phase current I 02 (= 41 mA, phase 84 degrees) flowing through the feeder line, CH3 is a zero-phase current I 03 (= 2620 mA, phase 262 degrees) flowing through the feeder line, and CH4 is a zero-phase current I 04 flowing through the feeder line. (= 62 mA, phase 84 degrees), CH5 is a zero-phase current I 05 (= 33 mA, phase 84 degrees) flowing in the feeder line, and CH6 is a zero-phase current I 06 (= 149 mA, phase) flowing in the shield line 17 of the power cable 13. 82 degrees).

零相電流の測定値:
0=−I01−I02+I03−I04−I05−I0S
2000=−336−41+2619−62−33−149 単位[mA]
位相計算:(電力ケーブル13のシールド線17に流れる零相電流I0S位相を基準)
0φ−I0Sφ=262−82=180度
01φ−I0Sφ=82−82=0度
02φ−I0Sφ=84−82=2度
03φ−I0Sφ=262−82=180度
04φ−I0Sφ=84−82=2度
05φ−I0Sφ=84−82=2度
Zero-phase current measurement:
I 0 = −I 01 −I 02 + I 03 −I 04 −I 05 −I 0S
2000 = −336−41 + 2619−62−33−149 Unit [mA]
Phase calculation: (based on the phase of the zero-phase current I 0S flowing through the shield wire 17 of the power cable 13)
I 0 φ−I 0S φ = 262−82 = 180 degrees I 01 φ−I 0S φ = 82−82 = 0 degrees I 02 φ−I 0S φ = 84−82 = 2 degrees I 03 φ−I 0S φ = 262-82 = 180 degrees I 04 φ-I 0S φ = 84-82 = 2 degrees I 05 φ-I 0S φ = 84-82 = 2 degrees

この位相計算の結果、電力ケーブル13および各種電気機器の地絡事故を検出している零相電流I0φとフィーダ線CH3のI03φは、零相電流I0Sを基準位相とすると180度の位相を検出している。従って、零相電流I0φとフィーダ線のI03φのベクトル計算結果は逆位相(180度)となる。なお、健全なフィーダ線CH1,CH2,CH4,CH5の零相電流位相I01φ、I02φ、I04φ、I05φは、零相電流I0Sを基準位相とするとほぼ0度の同位相を検出している。従って、零相電流I0φとフィーダ線CH1,CH2,CH4,CH5のI01φ、I02φ、I04φ、I05φのベクトル計算結果はすべて正位相(0度,2度)となる。 As a result of this phase calculation, the zero-phase current I 0 φ that detects the ground fault of the power cable 13 and various electric devices and the I 03 φ of the feeder line CH 3 are 180 degrees when the zero-phase current I 0S is the reference phase. The phase of is detected. Therefore, the vector calculation result of the zero-phase current I 0 φ and the feeder line I 03 φ is in reverse phase (180 degrees). The zero-phase current phases I 01 φ, I 02 φ, I 04 φ, and I 05 φ of the healthy feeder lines CH1, CH2, CH4, and CH5 are substantially equal to 0 degrees when the zero-phase current I 0S is a reference phase. The phase is detected. Therefore, the vector calculation results of zero phase current I 0 φ and I 01 φ, I 02 φ, I 04 φ, and I 05 φ of feeder lines CH1, CH2, CH4, and CH5 are all positive phase (0 degree, 2 degrees). Become.

この地絡事故例からもわかることは、クランプ式変流器18の二次側で検出された零相電流I0Sが端末抵抗21に流れる時の端末抵抗21の両端電圧を零相電流I0Sに基づく零相電圧V0Sとし、その大きさを自動的に基準値の1に調整して得られた零相電圧V0Sを基準位相とし、その基準とした零相電圧V0Sに零相変流器ZCTにより検出された零相電流I0をベクトル乗算(Ig=I0・V0S・cosφ)することで、その計算結果の地絡電流Igの符号が負であるとき、地絡電流Igが構内事故で生じたことを判定することができる。 It can be understood from this ground fault case that the voltage across the terminal resistor 21 when the zero-phase current I 0S detected on the secondary side of the clamp type current transformer 18 flows to the terminal resistor 21 is the zero-phase current I 0S. a zero-phase voltage V 0S based on the zero-phase voltage V 0S obtained by adjusting the first automatic reference value the size of a reference phase, zero-phase zero-phase voltage V 0S which was the reference When the sign of the ground fault current Ig as a result of the calculation is obtained by vector multiplication (Ig = I 0 · V 0S · cosφ) of the zero-phase current I 0 detected by the current ZCT, the ground fault current Ig Can be determined to have occurred in the campus accident.

ここで、零相電圧V0Sについては、地絡事故の発生時に電力ケーブル13のシールド線17に流れる零相電流I0Sをクランプ式変流器18で検出し、その零相電流I0Sが端末抵抗21に流れる時の端末抵抗21の両端電圧を零相電圧V0Sとしてそのまま基準とすると、電力ケーブル13の芯線と大地間の対地静電容量を決める電力ケーブル13の口径および長さをパラメータとして対地静電容量に流れる電流による誤差分を補正しなければならない。このことから、この実施形態の高圧絶縁監視装置14では、クランプ式変流器18の二次側で検出された零相電流I0Sが端末抵抗21に流れる時の端末抵抗21の両端電圧をゲイン調整により1とし、これを基準の零相電圧V0Sとする。 Here, regarding the zero-phase voltage V 0S , the zero-phase current I 0S flowing through the shield wire 17 of the power cable 13 at the time of occurrence of the ground fault is detected by the clamp type current transformer 18, and the zero-phase current I 0S is the terminal. When the voltage across the terminal resistor 21 when flowing through the resistor 21 is used as a reference as the zero-phase voltage V 0S , the diameter and length of the power cable 13 that determines the ground capacitance between the core wire and the ground of the power cable 13 are used as parameters. The error due to the current flowing through the ground capacitance must be corrected. Therefore, in the high voltage insulation monitoring device 14 of this embodiment, the voltage across the terminal resistor 21 when the zero-phase current I 0S detected on the secondary side of the clamp type current transformer 18 flows through the terminal resistor 21 is gained. It is set to 1 by adjustment, and this is set as a reference zero-phase voltage V 0S .

この零相電圧V0Sの位相を基準とする零相電流I0の位相差から地絡事故が構内地絡であることを判定する。つまり、図1および図2に示すように、電力ケーブル13に流れる零相電流I0を零相変流器ZCT15(図1の実施形態の場合)あるいはクランプ式変流器16(図2の実施形態の場合)により検出すると共に、その電力ケーブル13のシールド線17に流れる零相電流I0Sをクランプ式変流器18で検出する。この電力ケーブルのシールド線17に流れる零相電流I0Sを、端末抵抗21で零相電流I0Sに基づいて得られた零相電圧V0Sに変換し、その零相電圧V0Sをゲイン調整部19でゲイン調整することにより1とする。 It is determined from the phase difference of the zero-phase current I 0 based on the phase of the zero-phase voltage V 0S that the ground fault is a campus ground fault. That is, as shown in FIGS. 1 and 2, the zero-phase current I 0 flowing through the power cable 13 is converted into a zero-phase current transformer ZCT15 (in the case of the embodiment of FIG. 1) or a clamp-type current transformer 16 (implementation of FIG. 2). The zero-phase current I 0S flowing through the shield wire 17 of the power cable 13 is detected by the clamp type current transformer 18. The power zero-phase current I 0S flowing through the shield wire 17 of the cable, converted to zero-phase voltage V 0S obtained based on the zero-phase current I 0S at the terminal resistor 21, the gain adjusting unit that zero-phase voltage V 0S 19 is adjusted to 1 by gain adjustment.

その結果、演算部20では、電力ケーブル13に流れる零相電流I0に、シールド線17に流れる零相電流I0Sの位相を基準とする零相電流I0の位相差cosφを乗算する(I0・cosφ)。つまり、ゲイン調整により零相電流I0Sに基づいて得られた零相電圧V0Sを1とすることにより、零相電流I0Sの位相情報のみを使用することで、地絡事故が構内地絡であるか否かを判定する。地絡事故が構内地絡の場合(図6参照)、電力ケーブル13のシールド線17に流れる零相電流I0Sに対して電力ケーブル13に流れる零相電流I0が逆位相(180度)となることから、演算部20から出力されるベクトル計算(Ig=I0・V0S・cosφ:但し、零相電流I0Sに基づいて得られた零相電圧V0Sが1であることから、I0・cosφ)が地絡電流Igに相当することになる。この零相電流I0と零相電圧V0Sをベクトル計算(Ig=I0・V0S・cosφ)した結果の符号が負であるとき構内地絡と判定する。 As a result, the arithmetic unit 20 multiplies the zero-phase current I 0 flowing through the power cable 13 by the phase difference cosφ of the zero-phase current I 0 based on the phase of the zero-phase current I 0S flowing through the shield wire 17 (I 0 · cosφ). That is, by setting the zero-phase voltage V 0S obtained based on the zero-phase current I 0S by gain adjustment to 1, and using only the phase information of the zero-phase current I 0S , the ground fault is caused by the ground fault on the premises. It is determined whether or not. If ground fault premises ground fault (see FIG. 6), the power zero-phase current I 0 flowing through the power cable 13 with respect to the zero-phase current I 0S flowing through the shield wire 17 of the cable 13 opposite phase (180 °) from becoming, vector outputted from the arithmetic unit 20 calculates (Ig = I 0 · V 0S · cosφ: However, since the zero-phase voltage V 0S obtained based on the zero-phase current I 0S is 1, I 0 · cosφ) corresponds to the ground fault current Ig. When the sign of the result of vector calculation (Ig = I 0 · V 0 S · cosφ) of the zero phase current I 0 and the zero phase voltage V 0S is negative, it is determined that the ground fault is in the premises.

このように、ゲイン調整により零相電流I0Sに基づいて得られた零相電圧V0Sを1とすることにより、零相電流I0Sの位相を基準とする零相電流I0の位相差cosφから地絡事故が構内地絡であることを判定するようにしたことから、従来の絶縁監視方法(特許文献1)のように、零相電流I0,零相電圧V0および相電圧Vを複素数で計測することに基づく複雑なベクトル演算が不要となる。また、零相電流I0Sに基づいて得られた零相電圧V0Sについては、電力ケーブル13の芯線と大地間の対地静電容量を決める電力ケーブルの口径および長さをパラメータとしてその対地静電容量に流れる電流による誤差分を補正するための回路が不要となる。このことから、高圧電路12の絶縁劣化状態を定期的に監視する上で、簡易な回路構成で安価な高圧絶縁監視装置14を使用することができる。 Thus, by setting the zero phase voltage V 0S obtained based on the zero phase current I 0S by gain adjustment to 1, the phase difference cosφ of the zero phase current I 0 with the phase of the zero phase current I 0S as a reference. Therefore, the zero-phase current I 0 , the zero-phase voltage V 0, and the phase voltage V are determined as in the conventional insulation monitoring method (Patent Document 1). Complex vector operations based on measurement with complex numbers become unnecessary. Further, the zero-phase voltage V 0S obtained based on the zero-phase current I 0S is measured by using the diameter and length of the power cable that determines the ground capacitance between the core wire and the ground of the power cable 13 as parameters. A circuit for correcting an error due to the current flowing through the capacitor is not necessary. Therefore, in order to periodically monitor the insulation deterioration state of the high piezoelectric path 12, an inexpensive high voltage insulation monitoring device 14 can be used with a simple circuit configuration.

図7に示すように地絡現象は数サイクル継続する現象が多く観測される。本発明の地絡電流Igは、零相変流器ZCTにより検出された零相電流I0を零相電圧V0Sにベクトル乗算(Ig=I0・V0S・cosφ)することで、その計算結果の地絡電流Igの符号を波形サイクル毎に判定している。この地絡電流Igの検出レベルを予め設定して、地絡電流Igがこの設定値を超えて、なおかつ、予め設定した継続時間を超える場合に地絡事故判定を行い警報出力する装置を構成することができる。 As shown in FIG. 7, many ground faults are observed for several cycles. The ground fault current Ig of the present invention is calculated by multiplying the zero phase voltage I 0 detected by the zero phase current transformer ZCT by the zero phase voltage V 0S (Ig = I 0 · V 0S · cosφ). The sign of the resulting ground fault current Ig is determined for each waveform cycle. A detection level of the ground fault current Ig is set in advance, and when the ground fault current Ig exceeds this set value and exceeds a preset duration, a ground fault is determined and an alarm is output. be able to.

なお、本発明の地絡電流Igは、零相変流器ZCTにより検出された零相電流I0と零相電圧V0Sとの商用周波数(1次)の高調波成分(n次)をベクトル乗算(Ign=I0n・V0Sn・cosφ)することで地絡電流Ignを計測することも可能である。 The ground fault current Ig of the present invention is a vector of the harmonic component (nth order) of the commercial frequency (first order) of the zero phase current I 0 and zero phase voltage V 0S detected by the zero phase current transformer ZCT. It is also possible to measure the ground fault current Ign by multiplication (Ign = I 0n · V 0Sn · cosφ).

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

12 高圧電路
13 電力ケーブル
14 高圧絶縁監視装置
15 零相変流器ZCT
16 変流器(クランプ式変流器)
17 電力ケーブルのシールド線
18 変流器(クランプ式変流器)
19 ゲイン調整部
20 演算部
25〜27 フィーダ線
28〜30 変流器(クランプ式変流器)
0 高圧電路に流れる零相電流
0S 電力ケーブルのシールド線に流れる電流
0Sφ I0Sに基づいて得られた基準位相
12 High Voltage Path 13 Power Cable 14 High Voltage Insulation Monitoring Device 15 Zero Phase Current Transformer ZCT
16 Current transformer (clamp type current transformer)
17 Shield wire of power cable 18 Current transformer (clamp type current transformer)
19 Gain Adjustment Unit 20 Calculation Unit 25-27 Feeder Line 28-30 Current Transformer (Clamp Type Current Transformer)
I 0 Zero-phase current flowing in high piezoelectric path I 0S Current flowing in shielded cable of power cable Reference phase obtained based on I 0S φ I 0S

Claims (7)

非接地系電路に接続している高圧電路に流れる零相電流I0を検出し、前記地絡事故が構内地絡であることを判定する高圧絶縁監視方法であって、
前記高圧電路に設置された電力ケーブルのシールド線に変流器を接続し、前記地絡事故の発生時に前記シールド線に流れる零相電流I0Sを前記変流器で検出し、前記零相電流I0Sの位相を基準とする前記零相電流I0の位相差から地絡事故が構内地絡であることを判定するようにしたことを特徴とする高圧絶縁監視方法。
A high-voltage insulation monitoring method for detecting a zero-phase current I 0 flowing in a high-piezoelectric path connected to a non-grounded electric circuit and determining that the ground fault is a ground fault on the premises,
A current transformer is connected to the shield line of the power cable installed in the high piezoelectric path, and the zero-phase current I 0S flowing through the shield line at the occurrence of the ground fault is detected by the current transformer. A high voltage insulation monitoring method, wherein a ground fault is determined as a ground fault from a phase difference of the zero phase current I 0 based on the phase of I 0S .
前記高圧電路に設置された零相変流器ZCTにより、地絡事故の発生時に前記高圧電路に流れる零相電流I0を検出するようにした請求項1に記載の高圧絶縁監視方法。 The high-voltage insulation monitoring method according to claim 1, wherein a zero-phase current I 0 flowing in the high-voltage path is detected by a zero-phase current transformer ZCT installed in the high-voltage path when a ground fault occurs. 前記高圧電路に設置された零相変流器ZCTの二次側に変流器を接続し、前記変流器により地絡事故の発生時に前記高圧電路に流れる零相電流I0を検出するようにした請求項1に記載の高圧絶縁監視方法。 A current transformer is connected to the secondary side of the zero-phase current transformer ZCT installed in the high-voltage path, and the zero-phase current I 0 flowing in the high-voltage path is detected by the current transformer when a ground fault occurs. The high voltage insulation monitoring method according to claim 1. 前記高圧電路から分岐した複数のフィーダ線のそれぞれに変流器を接続し、前記変流器により地絡事故の発生時に各フィーダ線に流れる零相電流I01〜I0Nを検出するようにした請求項1〜3のいずれか一項に記載の高圧絶縁監視方法。 A current transformer is connected to each of a plurality of feeder lines branched from the high piezoelectric path, and zero-phase currents I 01 to I 0N flowing through the feeder lines when a ground fault occurs are detected by the current transformer . The high voltage | pressure insulation monitoring method as described in any one of Claims 1-3. 非接地系電路に接続している高圧電路に流れる零相電流I0を検出し、前記地絡事故が構内地絡であることを判定する高圧絶縁監視装置であって、
前記高圧電路に設置された電力ケーブルのシールド線に着脱自在に接続され、前記地絡事故の発生時に前記シールド線に流れる零相電流I0Sを検出する変流器と、前記変流器で検出された前記零相電流I0Sを検出し、この零相電流I0Sを変換した零相電圧V0Sの大きさをゲイン調整により1とするゲイン調整部と、ゲイン調整により零相電圧V0Sを1としたことにより零相電圧V0Sの位相を基準とし、その基準とした零相電圧V0Sに前記零相電流I0をベクトル乗算することで地絡電流Igを算出する演算部とで構成されたことを特徴とする高圧絶縁監視装置。
A high-voltage insulation monitoring device that detects a zero-phase current I 0 that flows in a high-voltage circuit connected to a non-grounded circuit, and determines that the ground fault is a ground fault on the premises,
A current transformer that is detachably connected to a shield line of a power cable installed on the high-voltage path, and that detects a zero-phase current I 0S that flows through the shield line when the ground fault occurs, and is detected by the current transformer The zero-phase current I 0S is detected, and a gain adjustment unit that sets the magnitude of the zero-phase voltage V 0S obtained by converting the zero-phase current I 0S to 1 by gain adjustment, and the zero-phase voltage V 0S by gain adjustment. with respect to the phase of the zero-phase voltage V 0S by 1 and the configuration of the zero-phase current I 0 to the zero-phase voltage V 0S which was the reference in a calculation unit for calculating the ground fault current Ig by vector multiplication A high voltage insulation monitoring device characterized by
前記高圧電路に設置された零相変流器ZCTの二次側に着脱自在に接続され、地絡事故の発生時に前記高圧電路に流れる零相電流I0を検出する変流器を具備した請求項5に記載の高圧絶縁監視装置。 A current transformer is provided which is detachably connected to a secondary side of a zero-phase current transformer ZCT installed in the high-voltage path and detects a zero-phase current I 0 flowing in the high-voltage path when a ground fault occurs. Item 6. The high voltage insulation monitoring apparatus according to Item 5. 前記高圧電路から分岐した複数のフィーダ線のそれぞれに着脱自在に接続され、地絡事故の発生時に各フィーダ線に流れる零相電流I01〜I0Nを検出する変流器を具備した請求項5又は6に記載の高圧絶縁監視装置。 6. A current transformer is provided that is detachably connected to each of a plurality of feeder lines branched from the high-voltage path and detects zero-phase currents I 01 to I 0N flowing through the feeder lines when a ground fault occurs. Or the high voltage | pressure insulation monitoring apparatus of 6.
JP2013010142A 2013-01-23 2013-01-23 High voltage insulation monitoring method and high voltage insulation monitoring device Active JP5529300B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013010142A JP5529300B1 (en) 2013-01-23 2013-01-23 High voltage insulation monitoring method and high voltage insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013010142A JP5529300B1 (en) 2013-01-23 2013-01-23 High voltage insulation monitoring method and high voltage insulation monitoring device

Publications (2)

Publication Number Publication Date
JP5529300B1 true JP5529300B1 (en) 2014-06-25
JP2014142230A JP2014142230A (en) 2014-08-07

Family

ID=51175794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013010142A Active JP5529300B1 (en) 2013-01-23 2013-01-23 High voltage insulation monitoring method and high voltage insulation monitoring device

Country Status (1)

Country Link
JP (1) JP5529300B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687128A (en) * 2021-09-08 2021-11-23 阳光电源股份有限公司 Current detection method, device and equipment of photovoltaic PID suppression circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019042B (en) * 2016-04-29 2019-01-08 国网辽宁省电力有限公司电力科学研究院 A method of high-tension cable built-in electrical insulation defect type is identified based on characteristic spectrum
JP6925076B1 (en) 2020-12-18 2021-08-25 センスネットシステム株式会社 Detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153976A (en) * 1987-12-11 1989-06-16 Toko Denki Kk Investigating method for accident point of multiple earth distribution line
JP2003164055A (en) * 2001-11-27 2003-06-06 Kansai Denki Hoan Kyokai Grounding fault detection device of non-grounding system line, and grounding protection relay and grounding fault detection method using the same
JP2011137718A (en) * 2009-12-28 2011-07-14 Gs Yuasa Corp Device for monitoring high voltage insulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153976A (en) * 1987-12-11 1989-06-16 Toko Denki Kk Investigating method for accident point of multiple earth distribution line
JP2003164055A (en) * 2001-11-27 2003-06-06 Kansai Denki Hoan Kyokai Grounding fault detection device of non-grounding system line, and grounding protection relay and grounding fault detection method using the same
JP2011137718A (en) * 2009-12-28 2011-07-14 Gs Yuasa Corp Device for monitoring high voltage insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687128A (en) * 2021-09-08 2021-11-23 阳光电源股份有限公司 Current detection method, device and equipment of photovoltaic PID suppression circuit

Also Published As

Publication number Publication date
JP2014142230A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
FI115488B (en) Method and apparatus for detecting a breaking earth fault in a power distribution network
US10522998B2 (en) Method for detecting an open-phase condition of a transformer
EP2741389B1 (en) Ground fault direction determination for medium or high voltage distribution networks
CN103080757B (en) Device and method for detecting a ground fault
US8203814B2 (en) Electrical switching apparatus including a plurality of Rogowski coils and method of calibrating the same
US11435409B2 (en) Temporary overvoltage and ground fault overvoltage protection based on arrester current measurement and analysis
US20070236208A1 (en) Protective relay device, system and methods for Rogowski coil sensors
EP2730023A1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
CN111095000A (en) High fidelity voltage measurement using capacitively coupled voltage transformers
KR200401675Y1 (en) Low Voltage On-Line Insulation Monitoring System
JP6328591B2 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
US20190094287A1 (en) High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
JP5529300B1 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
US10338122B2 (en) Method and device for detecting a fault in an electrical network
JP5996709B1 (en) High voltage insulation monitoring device
JP2010187446A (en) Power cable ground fault detecting apparatus and power cable ground fault protection device
CN104833841B (en) A kind of transformer station invades Zenith tracking method
JP5163452B2 (en) Fine ground fault detection device and fine ground fault detection method
JP6736454B2 (en) Ground voltage detector
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
Naseri et al. Incipient fault monitoring of medium voltage UD-EPR power cable using Rogowski coil
KR200401672Y1 (en) Low Voltage On-Line Insulation Monitoring System
Lloyd et al. Operation, design and testing of generator 100% stator earth fault protection using low frequency injection
Sutherland et al. A new method for testing and calibration of high-resistance grounding systems

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140416

R150 Certificate of patent or registration of utility model

Ref document number: 5529300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250