JPH01153976A - Investigating method for accident point of multiple earth distribution line - Google Patents

Investigating method for accident point of multiple earth distribution line

Info

Publication number
JPH01153976A
JPH01153976A JP31227387A JP31227387A JPH01153976A JP H01153976 A JPH01153976 A JP H01153976A JP 31227387 A JP31227387 A JP 31227387A JP 31227387 A JP31227387 A JP 31227387A JP H01153976 A JPH01153976 A JP H01153976A
Authority
JP
Japan
Prior art keywords
current
current transformer
phase
zero
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31227387A
Other languages
Japanese (ja)
Other versions
JP2627754B2 (en
Inventor
Masanori Matsuoka
正憲 松岡
Shigetomi Kuwabara
桑原 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKO DENKI KK
Takaoka Toko Co Ltd
Original Assignee
TOKO DENKI KK
Toko Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKO DENKI KK, Toko Electric Corp filed Critical TOKO DENKI KK
Priority to JP31227387A priority Critical patent/JP2627754B2/en
Publication of JPH01153976A publication Critical patent/JPH01153976A/en
Application granted granted Critical
Publication of JP2627754B2 publication Critical patent/JP2627754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To easily investigate a leak position by comparing the polarities of secondary currents of a current transformer and a return circuit current detecting current transformer in order, and investigating the accident point while deciding the direction of the accident point. CONSTITUTION:The outputs of the return circuit current detecting current transformer 10 and a zero-phase current detecting current transformer are supplied to waveform shaping circuits 17 and 18 for waveform shaping through amplifying circuits 15 and 16. Then their waveform-shaping outputs are inputted to a counter 20 through a NAND circuit 19. A proper pulse signal is sent out of an oscillator 21 to the counter 20, which counts the pulse signal. Then a comparator 23 is connected between the counter 20 and a register 22 and the output of the comparator 23 is outputted to a display part 24, which performs such a display that the direction of the accident point is decided erroneously.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多重接地配電線の事故箇所の探査方法に関し、
詳しくは、配電線の接地線に流れる漏電電流と当該配電
線に流れる漏電電流との位相関係から漏電箇所の探査を
行おうとする方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for detecting a fault location in a multi-grounded distribution line.
Specifically, the present invention relates to a method of searching for a leakage point based on the phase relationship between a leakage current flowing in a grounding wire of a power distribution line and a leakage current flowing in the distribution line.

〔従来の技術〕[Conventional technology]

架空低圧配電線の第2種接地工事が施されている相は、
変圧器の設置箇所の他に、各所に接地工事が施されてい
るため、漏電箇所があれば、その配電線のどの場所でも
漏電電流が検出されるので、その漏電箇所の探査には多
大の労力と時間を必要とすることが多い。
Phases of overhead low-voltage distribution lines that are undergoing type 2 grounding work are:
In addition to the location where the transformer is installed, grounding work is carried out at various locations, so if there is a leakage point, the leakage current will be detected anywhere on the distribution line, so it takes a lot of effort to locate the leakage point. It often requires effort and time.

従来、かかる漏電があったときには、停電させ、メガ−
で絶縁測定を行なうような方法が採用されていた。
Conventionally, when such a leakage occurred, the power was cut off and a mega-
A method was used to perform insulation measurements.

また、従来の探査方法は、零相電圧と零相電流の位相差
を比較して事故点の方向を判別するというような方法も
採られていたが、零相電圧をとり出すことはやっかいな
操作を要し、簡単ではないなどの難点があり、当業者間
では、漏電探査時間を短縮させ、装置的にも簡単で省力
化された方法で漏電探査を行なえるような技術が開発さ
れることが希求されていた。
In addition, conventional exploration methods have used methods such as comparing the phase difference between zero-sequence voltage and zero-sequence current to determine the direction of the fault point, but extracting the zero-sequence voltage is troublesome. There are drawbacks such as the need for operation and it is not easy, and those skilled in the art have developed a technique that can shorten the time required for leakage detection and perform earth leakage detection using a simple and labor-saving method in terms of equipment. That was what was desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、かかる技術的背景の下、漏電箇所の探査を比
較的簡単に行なうことができ、従って、漏電箇所の探査
時間が短縮され、装置的にも省力化された形での探査を
行なうことのできる技術を提供することを目的とする。
With this technical background, the present invention can relatively easily search for a leakage point, thereby shortening the time required to search for a leakage point and performing the search in a manner that saves labor in terms of equipment. The aim is to provide technology that can

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔問題点を解決するための手段〕[Means for solving problems]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

本発明では多重接地配電線の接地線に流れる漏電電流(
事故電流)と、当該接地線を帰路として配電線に流れる
漏電電流との位相関係から漏電箇所の探査を行おうとす
るものである。
In the present invention, the leakage current (
This method attempts to detect the location of an earth leakage based on the phase relationship between the fault current (fault current) and the earth leakage current flowing through the distribution line using the grounding wire as a return path.

配電線には変流器を設置するが、これは順次移動させ、
当該配電線に流れる零相電流を検出する。
Current transformers will be installed on the distribution lines, but they will be moved one by one.
Detects the zero-sequence current flowing through the distribution line.

接地線にも変流器を設置し、この変流器により、帰路電
流を検出する。これら変流器に位相を弁別(比較)でき
る探査装置を接続し、配電線に沿って移動させる上記零
相電流検出変流器の検出した電流の位相と、上記帰路電
流検出変流器の検出した電流の位相関係とを上記探査装
置にて弁別しつつ、漏電箇所の特定を行なう。
A current transformer is also installed on the ground wire, and this current transformer detects the return current. An exploration device capable of phase discrimination (comparison) is connected to these current transformers, and the phase of the current detected by the zero-sequence current detection current transformer and the return path current detection current transformer moved along the distribution line are detected. The location of the electrical leakage is identified while distinguishing the phase relationship of the current with the above-mentioned exploration device.

[作用〕 多重接地配電線の配電系統において漏電(箇所)があっ
た場合その漏電電流は接地線を経てその帰路電流は配電
線に帰路していく。
[Operation] If there is a leakage (point) in the distribution system of a multi-grounded distribution line, the leakage current will pass through the grounding wire and the return current will return to the distribution line.

配電線に沿って零相電流検出変流器を顧客その測定箇所
を移動させて行き、その2次電流の位相と、接地線に設
置した帰路電流検出変流器の2次電流の位相とを、これ
ら変流器に接続した探査装置により観察して行くと1例
えば、同相から逆相にあるいは、逆相から同相に変ると
ころが出てくるので、例えばこのように相の変わる中間
に漏電箇所があることが判明できる。
Move the zero-sequence current detection current transformer along the distribution line to the customer's measurement point, and check the phase of the secondary current and the phase of the secondary current of the return current detection current transformer installed on the ground wire. When observing these current transformers with a detection device connected to them, you will find places where the current changes from the same phase to the opposite phase, or from the opposite phase to the same phase, so for example, there is a leakage point in the middle of the phase change. It turns out that there is something.

本発明によれば、上記の如く電流相互間の位相差比較の
ため、構造的に簡単で、かつ、探査時間も短く、漏電箇
所を停電させずに、やっかいな操作を要する零相電圧の
とり出しも必要とせずに、漏電箇所の探査を可能とする
According to the present invention, since the phase difference between the currents is compared as described above, the structure is simple, the exploration time is short, and the zero-sequence voltage measurement which requires troublesome operations is avoided without causing a power outage at the leakage point. To enable the detection of a leakage point without the need for a power source.

[実施例] 次に、本発明の実施例を図面を参照しつつ説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.

第1図に示す一例により1本発明の方法の原理を説明す
る。
The principle of the method of the present invention will be explained using an example shown in FIG.

変圧器lは、低圧配電線(以下単に配電線という)U、
V、Wに電力を供給している。
The transformer l is connected to a low voltage distribution line (hereinafter simply referred to as a distribution line) U,
Power is supplied to V and W.

配電線u、y、wの一線Wを接地線2A、2B、2G、
2Dと共用させる。
Grounding wires 2A, 2B, 2G, one line W of distribution lines u, y, w,
Shared with 2D.

接地線共用線Wに多重接地3A、3B、3C13Dが行
われている。
Multiple grounding 3A, 3B, 3C13D is performed on the ground line common line W.

各接地3A〜3Dの接地抵抗はそれぞれRA、RB、R
C,RDである。
The ground resistances of each ground 3A to 3D are RA, RB, and R, respectively.
C, RD.

今、配電線■で図示のように事故(漏電)Mが大地gと
生じたとき、地絡事故電流1gは、RAの接地抵抗をも
つ接地線2Aを帰路として矢印の方向に帰路電流IAと
して配電線Wに帰路する。
Now, when a fault (leakage) M occurs with the ground g as shown in the diagram on the distribution line ■, the ground fault current 1g flows in the direction of the arrow as a return current IA through the grounding wire 2A with the grounding resistance of RA. Return to distribution line W.

同様にしてRBの接地抵抗をもつ接地線2Bには帰路電
流IBとして、また、RCの接地抵抗をもつ接地線2C
には、帰路電流ICとして、さらに、RDの接地抵抗を
もつ接地線2Dには帰路電流IDとして、それぞれ、地
絡事故電流1gと反対方向に、配電線Wに帰路する。
Similarly, a return current IB is applied to the grounding wire 2B having a grounding resistance of RB, and a grounding wire 2C having a grounding resistance of RC is supplied as a return current IB.
Then, the return current IC returns to the distribution line W in the opposite direction to the ground fault current 1g as the return current ID to the ground line 2D having a ground resistance of RD.

配電線には変流器4を設置する。第1図の図示ではこの
変流器4が3個示されているが、1個の変流器4を適宜
方向に配電線U、V、Wに沿って移動させれば足りる。
A current transformer 4 is installed on the distribution line. Although three current transformers 4 are shown in FIG. 1, it is sufficient to move one current transformer 4 in an appropriate direction along the distribution lines U, V, and W.

変流器4は、配電線U、V、Wに流れる零相電流を検出
する変流器(零相電流検出変流器、以下単に変流器とい
う)で、例えば、3相配電線または3相と単相の組合せ
よりなる配電線に流れる総和の電流によって発生する零
相電流を検出する。
The current transformer 4 is a current transformer (zero-sequence current detection current transformer, hereinafter simply referred to as a current transformer) that detects the zero-sequence current flowing in the distribution lines U, V, and W, and is, for example, a three-phase distribution line or a three-phase current transformer. The zero-sequence current generated by the total current flowing through the distribution line consisting of a combination of single phase and single phase is detected.

例えば、全配電線U%■、Wと一括して後述のごとく磁
気的に鎖交させて零相電流を検出するかまたは各相U、
■、Wに流れる電流の総和から零相電流を検出する。
For example, the zero-sequence current can be detected by magnetically linking all the distribution lines U% and W together as described later, or by detecting the zero-sequence current of each phase U,
(2) Detect the zero-sequence current from the sum of the currents flowing through W.

第2図は変流器4の一例を示し、この変流器4は、本体
5と分割鉄心6とトリが7とを備えて成る。分割鉄心6
はその上部略中央切断位置8において、磁路6Aおよび
磁路6Bが開閉する。配電線U、V、Wにはこのクラン
プ型変流器4を順次移動させる。零相電流の検出は、こ
の変流器4トリが7を操作することにより、各相U%V
、Wに磁気的に鎖交させて行うことができる。
FIG. 2 shows an example of a current transformer 4, which includes a main body 5, a split core 6, and a bird 7. Split core 6
The magnetic path 6A and the magnetic path 6B open and close at the upper center cutting position 8 thereof. The clamp type current transformers 4 are sequentially moved to the distribution lines U, V, and W. The zero-phase current is detected by operating the four current transformers 7 to detect each phase U%V.
, W can be magnetically linked to each other.

本体5の下部には、後述する探査装置と接続するための
導線9が引出されている。
A conductive wire 9 is drawn out from the lower part of the main body 5 for connection to an exploration device to be described later.

一方、第1図に示すように、接地線にも任意の個数の変
流器10を設置する。第1図では、接地線2Bと接地線
2Cに設置している例を示す。この変流器10は接地線
に固設する。この変流器IOは、多重接地3A〜3Dに
流れる電流(帰路電流)を検出する。
On the other hand, as shown in FIG. 1, an arbitrary number of current transformers 10 are also installed on the ground wire. FIG. 1 shows an example in which the wires are installed on the ground wire 2B and the ground wire 2C. This current transformer 10 is fixed to the ground wire. This current transformer IO detects the current (return current) flowing through multiple earths 3A to 3D.

この帰路電流検出変流器(以下補助変流器という)10
は、前記変流器4と同様の構造より成っており、同様の
クランプ形変流器である。
This return current detection current transformer (hereinafter referred to as auxiliary current transformer) 10
has the same structure as the current transformer 4, and is a similar clamp type current transformer.

これら変流器4や補助変流器10には、事故点側、接地
側を示す表示を付すことが好ましい。当該表示は、必ず
しもこれら変流器4.10のL側、KIIillに特定
されることはないが、探査装置との極性の関係でいずれ
かに特定する。
It is preferable that the current transformer 4 and the auxiliary current transformer 10 be labeled to indicate the fault point side and the ground side. The display is not necessarily specified to the L side or KIIll of these current transformers 4.10, but is specified to either side depending on the polarity with the exploration device.

当該表示としては1例えば、事故点側なる文字表示を変
流器表面に直接書くとか、あるいは、ラベルを貼着する
とか、さらには赤の塗装による矢印を付すとかが例示さ
れる。表示11は変流器4.10の本体5の見易い部分
に付すことが好ましい。
Examples of such indications include, for example, writing letters indicating the accident point side directly on the surface of the current transformer, pasting a label on the current transformer, or attaching an arrow painted in red. Preferably, the display 11 is placed on an easily visible part of the body 5 of the current transformer 4.10.

変流器4および補助変流器lOの端部から引出された導
線9に、第1図に例示するように探査装置12を接続す
る。
An exploration device 12 is connected to the conductive wire 9 drawn out from the ends of the current transformer 4 and the auxiliary current transformer IO, as illustrated in FIG.

探査装置12は、これら変流器4、lOの電流の位相関
係を弁別できる限り、ブラウン管オシロなどであっても
よいが、装置が大形となるため小形にできる次の如き弁
別装置によることが好ましい。
The exploration device 12 may be a cathode ray tube oscilloscope or the like as long as it can discriminate the phase relationship between the currents of the current transformers 4 and 1O, but since the device is large, it is preferable to use the following discrimination device which can be made small. preferable.

第3図は当該位相弁別装置12の系統図である。FIG. 3 is a system diagram of the phase discrimination device 12.

該位相弁別装置12の補助変流器10用入力端子13か
らは、補助変流器10の出力(検出帰路電流)が入力さ
れる。また、変流器4用入力端子14からは、変流器4
の出力(検出零相電流)が入力される。
The output of the auxiliary current transformer 10 (detected return current) is input from the input terminal 13 for the auxiliary current transformer 10 of the phase discriminator 12 . In addition, from the input terminal 14 for the current transformer 4, the current transformer 4
The output (detected zero-sequence current) is input.

各出力は、それぞれの増幅回路15.16を経て1次の
波形成形回路に入力する際に波形歪のない様に増幅され
、それぞれ波形成形回路17.18にて波形成形される
Each output is amplified so that there is no waveform distortion when inputted to the primary waveform shaping circuit via the respective amplifier circuits 15 and 16, and is waveform-shaped by the respective waveform shaping circuits 17 and 18.

波形成形された出力は、共に、NAND回路19に入力
される。
Both waveform-shaped outputs are input to a NAND circuit 19.

NAND回路19はカウンタ20に接続される。NAND circuit 19 is connected to counter 20 .

カウンタ20には1発振器21から適宜パルス信号が送
出され、適宜該パルス信号をカウントする。
Appropriate pulse signals are sent to the counter 20 from the 1 oscillator 21, and the pulse signals are appropriately counted.

カウンタ20と置数器22との間には、これらの内容を
比較する比較器23が接続されており、該比較器23は
表示部24に接続しており、この表示部24.では事故
点の方向の判定が誤りであるなどの必要な表示をデイス
プレィする。
A comparator 23 is connected between the counter 20 and the digit register 22 to compare the contents thereof, and the comparator 23 is connected to a display section 24, and the display section 24. Then, necessary indications such as the fact that the direction of the accident point has been incorrectly determined are displayed.

事故点Mの探査方法の例をこれら図に従い説明するに、
事故点Mを探査するに先立ち、仮想事故点を仮に定め、
一つの事故方向を推定する。
An example of how to search for the accident point M will be explained according to these figures.
Prior to exploring the accident point M, a virtual accident point is temporarily determined,
Estimate one accident direction.

変流器4および補助変流器10をそれぞれ、配電線U、
V、Wおよび接地線2B(2C)に設置する。このとき
、変流器4の事故点側表示を仮想事故点の方向に、また
、補助変流器10の接地側(表示)を接地1i12B 
(2C) (7)接地点3B(3C)に向くようにする
。換言すれば、これら変流器4.10の極性を固定する
ようにする。
The current transformer 4 and the auxiliary current transformer 10 are respectively connected to the distribution line U,
Install on V, W and ground wire 2B (2C). At this time, the fault point side display of the current transformer 4 is directed toward the virtual fault point, and the ground side (display) of the auxiliary current transformer 10 is grounded 1i12B.
(2C) (7) Make sure to face the grounding point 3B (3C). In other words, the polarity of these current transformers 4.10 is fixed.

仮想事故点方向を変更せずに、変流器4の位置を、それ
ぞれ位置X、Y、Zに移動する。
The current transformer 4 is moved to positions X, Y, and Z without changing the direction of the virtual fault point.

各位置X、Y、Zにて変流器4の検出した零相電流の位
相と、補助変流器10の検出した接地電流の位相を比較
するのであるが、今、事故が大地gと生じたとき、地絡
事故電流1gは、配電線Vから大地gに流れ、接地3A
〜3D、接地線2A〜2Dを経て配電線U、V、Wに帰
路する。
The phase of the zero-sequence current detected by current transformer 4 and the phase of the ground current detected by auxiliary current transformer 10 are compared at each position X, Y, and Z. At this time, a ground fault current of 1 g flows from the distribution line V to the ground g, and the ground fault current is 3 A.
~3D, and return to distribution lines U, V, and W via grounding wires 2A to 2D.

すなわち、事故電流1g、帰路電流IA〜IDは全て事
故点Mの方向に帰り、この事故点Mに電流源を挿入した
ことと同じとなる。
That is, the fault current 1g and the return currents IA to ID all return in the direction of the fault point M, which is equivalent to inserting a current source at the fault point M.

位置Xに設置した変流器4xに流れる電流は上記からI
Aでその2次電流の位相はIBと同相となり、位置Yに
移動した変流器4Yに流れる電流は、Ig−(ID+I
C)でその2次電流の位相はIBと同相である。位置Z
に移動した変流器4Zに流れる電流はID+ICでその
2次電流の位相はIcと逆相となる。
From the above, the current flowing through the current transformer 4x installed at position X is I
The phase of the secondary current at A is in phase with that of IB, and the current flowing through current transformer 4Y moved to position Y is Ig-(ID+I
In C), the phase of the secondary current is in phase with IB. Position Z
The current flowing through the current transformer 4Z that has been moved to is ID+IC, and the phase of the secondary current is opposite to Ic.

従って、変流器位置X、Yにおいて、事故点Mの方向を
図示の右側と見て変流器4xを設置し、それを位置Yに
移動していった場合、変流器4x、4Yに誘起される2
次電流の極性は、補助変流器10に誘起される2次電流
の極性と同極性であり、変流器4x、4Yと補助変流器
10の極性が同極性のときには、変流器4Yの事故点側
を示す表示方向に事故点Mがあることが判断されるので
、順次、変流器を位置Zに移動して行くと1位rIIZ
では逆相となり当該極性が異なってくるので、これらの
中間箇所において事故点Mがあることが判る。
Therefore, if current transformer 4x is installed at current transformer positions X and Y with the direction of fault point M being on the right side of the diagram, and it is moved to position Y, current transformers 4x and 4Y induced 2
The polarity of the secondary current is the same as the polarity of the secondary current induced in the auxiliary current transformer 10, and when the polarities of the current transformers 4x, 4Y and the auxiliary current transformer 10 are the same, the current transformer 4Y Since it is determined that the fault point M is in the display direction indicating the fault point side of
Since the phase is reversed and the polarity is different, it can be seen that there is a fault point M at an intermediate point between these two points.

前記位相弁別装置12を、位置X、Y、Zにおいて、変
流器4と補助変流器10とに接続し、上記のごとき、位
相関係を判断するのであるが、この位相弁別装置12の
入力端子13.14には、これら変流器4、lOの検出
交流電流に比例する電圧信号が入力される。
The phase discriminator 12 is connected to the current transformer 4 and the auxiliary current transformer 10 at positions X, Y, and Z to determine the phase relationship as described above. A voltage signal proportional to the detected alternating current of the current transformers 4 and 10 is input to the terminals 13 and 14.

増幅回路(増幅器)15.16は、この端子13.14
に入力する電圧信号を増幅する。その際のそれぞれの出
力波形は第4図のa、bで示されるように正弦波である
The amplifier circuit (amplifier) 15.16 connects to this terminal 13.14.
Amplify the voltage signal input to the The respective output waveforms at this time are sine waves as shown by a and b in FIG.

波形成形回路(波形成形器)17.18は、入力交流信
号a、bの零クロスを検出し、この零クロス点で反転す
る論理矩形波信号c、dに変換する(第4図)。
Waveform shaping circuits (waveform shapers) 17 and 18 detect zero-crossings of input AC signals a and b, and convert them into logical rectangular wave signals c and d that are inverted at the zero-crossing points (FIG. 4).

NAND回路19は、入力矩形波信号c、dの両方が存
在するときのみ、カウンタ20のリセット信号を送出せ
ず、カウンタ20の計数窓を開放する。
The NAND circuit 19 does not send out a reset signal for the counter 20 and opens the counting window of the counter 20 only when both input rectangular wave signals c and d are present.

カウンタ20はリセット信号の送出かない時間中1発振
器21の送出するパルス信号をカウントする。
The counter 20 counts the pulse signals sent by the first oscillator 21 during the time when the reset signal is not sent.

第4図にて示すタイミングチャート図において、e出力
とは上記NAND回路19からの出力を示し、また、T
1.T2とはカウンタの計数時間を示す。同タイミング
チャート図から、波形成形回路17.18へのa入力と
b入力の位相差がない場合が、カウンタの計数時間が一
番長いことが判る。その際、位相差が大きくなるにした
がって計数時間は短くなる。180°の位相差では計数
時間は零となる。
In the timing chart shown in FIG. 4, e output indicates the output from the NAND circuit 19, and T
1. T2 indicates the counting time of the counter. From the same timing chart, it can be seen that the counting time of the counter is the longest when there is no phase difference between the a input and the b input to the waveform shaping circuits 17 and 18. At this time, the counting time becomes shorter as the phase difference becomes larger. At a phase difference of 180°, the counting time becomes zero.

NAND回路19の入力信号C,dのうちいずれかがな
くなると、NAND回路19は、カウンタ20をリセッ
トし、カウンタ20はカウントを停止する。このときの
カウンタ20の内容と置数器22の内容とを比較する。
When either of the input signals C and d of the NAND circuit 19 disappears, the NAND circuit 19 resets the counter 20, and the counter 20 stops counting. The contents of the counter 20 and the contents of the digit register 22 at this time are compared.

変流器4を位置X、Y、Zと移動させて行き。Move current transformer 4 to positions X, Y, and Z.

地絡事故方向を弁別して行くと、位置X、Yでは、変流
器4x、4Yと補助変流器lOの二次誘起電圧の極性は
等しく、はぼ同相となり、カウンタ20の計数値は大き
くなる。このため、カウンタ20の内容は、置数器22
の内容より大きく、表示部24において、方向が誤りで
あることをデイスプレィしない。
Discriminating the direction of the ground fault fault, at positions X and Y, the polarities of the secondary induced voltages of current transformers 4x and 4Y and auxiliary current transformer lO are equal and almost in phase, and the count value of counter 20 is large. Become. Therefore, the contents of the counter 20 are
is larger than the content of , and the display unit 24 does not display that the direction is incorrect.

波形成形回路18には、第3図に示すように、極性切替
用スイッチ25を接続しておくとよい。
As shown in FIG. 3, it is preferable to connect a polarity switching switch 25 to the waveform shaping circuit 18.

このスイッチ25は、波形成形器18の出力波形dを正
負反転させる。位相弁別装置12が、正常に作動してい
るか否かを確認することができる。
This switch 25 inverts the output waveform d of the waveform shaper 18. It is possible to check whether the phase discrimination device 12 is operating normally.

そこで、この正常動作確認用スイッチ25を押圧すると
、波形成形回路18の出力波形dは正負反転し、表示部
24の表示灯が点灯するので1位相弁別装置12が正常
に作動していることを確認することができる。
Therefore, when this normal operation confirmation switch 25 is pressed, the output waveform d of the waveform shaping circuit 18 is reversed, and the indicator light on the display section 24 lights up, indicating that the 1-phase discriminator 12 is operating normally. It can be confirmed.

変流器を位置2に移動すると、配電線U、V、Wに帰路
する電流ID+ICは、変流器4zを図示布から左に事
故点Mの方向に流れ、変流器4zの2次誘起電流の極性
と補助変流器lOの2次誘起電流の極性がほぼ180°
位相差を生ずる。このため、カウンタ20の内容は置数
器22の内容より小さくなり、比較器23は表示器24
を駆動して推定方向が誤りであることを表示し、前述の
ごとくして、事故点Mを特定することができる。
When the current transformer is moved to position 2, the current ID+IC returning to the distribution lines U, V, and W flows through the current transformer 4z from the illustrated cloth to the left in the direction of the fault point M, resulting in the secondary induction of the current transformer 4z. The polarity of the current and the polarity of the secondary induced current of the auxiliary current transformer lO are approximately 180°
Produces a phase difference. Therefore, the contents of the counter 20 are smaller than the contents of the digit register 22, and the comparator 23 is
is driven to display that the estimated direction is incorrect, and the accident point M can be identified as described above.

上記誤り表示の際にも、スイッチ25を抑圧(投入)す
ることによりその動作が正常に行われているかどうかの
確認をすることができる。
Even in the case of the above-mentioned error display, by suppressing (turning on) the switch 25, it can be confirmed whether the operation is being performed normally.

以上の実施例では当該第3図に示す探査装置により位相
弁別する方法を述べたが、当該第3図に示す探査装置よ
りも一層簡略化された装置で位相弁別する方法を本発明
者らの鋭意検討の結果可能としたので2次に、当該装置
について第5図および第6図を参照しつつ説明する。
In the above embodiments, a method of phase discrimination using the exploration device shown in FIG. Since this has been made possible as a result of intensive study, the device will now be explained with reference to FIGS. 5 and 6.

当該探査装置+2”は、第5図に示すように、零相電流
検出変流器(変流器)4からの入力信号を増幅する増幅
回路26と、当該増幅後の出力信号から高調波成分を除
去するフィルター27と、前記零相電流検出変流器4か
らのフィルター出力の位相を転相させる転相回路28と
、当該転相された出力を波形成形する波形成形回路29
と、 帰路電流検出変流器(補助変流器)10からの人力信号
を増幅する増幅回路20と、 該増幅後の出力信号から高調波成分を除去するフィルタ
ー31と、 帰路電流検出変流器lOからのフィルター出力を波形成
形する波形成形回路32と、 上記各波形成形回路29.32の出力をフリップフロッ
プするフリップフロップ回路33とを備えて成る。
As shown in FIG. 5, the exploration device +2'' includes an amplifier circuit 26 that amplifies the input signal from the zero-phase current detection current transformer (current transformer) 4, and extracts harmonic components from the amplified output signal. a filter 27 for removing the current, a phase inversion circuit 28 for inverting the phase of the filter output from the zero-phase current detection current transformer 4, and a waveform shaping circuit 29 for shaping the phase of the phase-inverted output.
, an amplifier circuit 20 that amplifies the human input signal from the return current detection current transformer (auxiliary current transformer) 10, a filter 31 that removes harmonic components from the amplified output signal, and a return current detection current transformer. It comprises a waveform shaping circuit 32 that shapes the filter output from the IO, and a flip-flop circuit 33 that flip-flops the outputs of the waveform shaping circuits 29 and 32.

この探査装置+2’による作用を説明するに、各変流器
4.10の出力をそれぞれ増幅回路26.30で増幅し
、それぞれフィルター27.31にて高調波成分を除去
する。
To explain the operation of this exploration device +2', the output of each current transformer 4.10 is amplified by an amplifier circuit 26.30, and harmonic components are removed by a filter 27.31.

フィルター27からの出力は、転相回路28で90@位
相を遅らせる。
The output from the filter 27 is delayed in phase by 90@ in the phase inversion circuit 28.

フィルター31および転相回路28の出力をそれぞれ波
形成形回路29.32にて正の半波(または負の半波)
のときだけ[H]  (High)となる方形波に成形
し、次いで、D型フリップフロップ回路(以下F、F回
路と称す)33に入力する。
The outputs of the filter 31 and phase inversion circuit 28 are converted into positive half waves (or negative half waves) by waveform shaping circuits 29 and 32, respectively.
The signal is shaped into a square wave that becomes [H] (High) only when , and is then input to a D-type flip-flop circuit (hereinafter referred to as F, F circuit) 33.

同相(補助変流器10側の出力に対し変流器4側の出力
が進み90°〜遅れ90°とのとき)の場合には、FF
回路33の0人力が[H]のときに、cp人力が[L]
  (Low)から[I]]になるので、出力Qは[H
]となる。
In the case of the same phase (when the output on the current transformer 4 side leads and lags 90 degrees with respect to the output on the auxiliary current transformer 10 side), the FF
When the 0 human power of circuit 33 is [H], the cp human power is [L]
(Low) to [I]], the output Q becomes [H
].

同相でない場合はD入力が[L]のとき、CP大入力[
L]から[H]となり、Q出力は[L]となる。
If they are not in phase, when the D input is [L], the CP large input [
[L] becomes [H], and the Q output becomes [L].

このようにしてFF回路33の出力により位相生別を行
なうことができる。
In this way, phase discrimination can be performed based on the output of the FF circuit 33.

この探査装置12′により、前記探査装置12と同様に
して漏電箇所の探査が可能である。
This exploration device 12' enables exploration of electrical leakage locations in the same manner as the exploration device 12 described above.

第6図(イ)〜(へ)にそれぞれ、当該探査装置12′
における各品出力のタイミングチャート図を示す。
Fig. 6 (a) to (f) respectively show the exploration device 12'.
A timing chart diagram of each product output is shown.

[発明の効果] 以上本発明によれば漏電箇所の探査が簡単にでき、探査
時間が短縮され、装置的にも省力化された形での探査を
行なうことのできる技術を提供することができた。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a technique that allows easy exploration of an earth leakage point, shortens the exploration time, and allows exploration to be performed in a manner that saves labor in terms of equipment. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す原理図、第2図は本発明
に使用される変流器の一例構成図、第3図は本発明の実
施例を示す探査装置の系統図、第4図は本発明の実施例
を示す波形図、第5図は本発明の他の実施例を示す探査
装置の系統図、第6図は同装置における出力のタイミン
グチャート図である。 l・・・変圧器、  2A〜2D・・・接地線、3A〜
3 f)・・・多重接地、 4・・・零相電流検出変流
器、 5・・・本体、 6・・・分割鉄心、 7−・・
トリガ、  10・・・帰路電流検出変流器、11・・
・表示、   12.12′・・・探査装置、  13
.14・・・入力端子、15.16・・・増幅器、  
17.18・・・波形成形回路、  19・・・NAN
D回路、 2゜・・・カウンタ、 21・・・発振器、
 22・・・置数器、 23・・・比較器、 24・・
・表示器、26・・・増幅回路、27・・・フィルター
、28・・・転相回路、29・・・波形成形回路、30
・・・増幅回路、31・・・フィルター、32・・・波
形成形回路、33・自フリップフロップ回路。
Fig. 1 is a principle diagram showing an embodiment of the present invention, Fig. 2 is a configuration diagram of an example of a current transformer used in the present invention, Fig. 3 is a system diagram of an exploration device showing an embodiment of the present invention, FIG. 4 is a waveform diagram showing an embodiment of the present invention, FIG. 5 is a system diagram of an exploration device showing another embodiment of the invention, and FIG. 6 is a timing chart of output in the same device. l...Transformer, 2A~2D...Grounding wire, 3A~
3 f)...multiple grounding, 4...zero-phase current detection current transformer, 5...main body, 6...divided iron core, 7-...
Trigger, 10...Return current detection current transformer, 11...
・Display, 12.12'...Exploration device, 13
.. 14...Input terminal, 15.16...Amplifier,
17.18...Waveform shaping circuit, 19...NAN
D circuit, 2゜... counter, 21... oscillator,
22... digit register, 23... comparator, 24...
・Display device, 26... Amplification circuit, 27... Filter, 28... Phase inversion circuit, 29... Waveform shaping circuit, 30
...Amplification circuit, 31.. Filter, 32.. Waveform shaping circuit, 33. Self-flip-flop circuit.

Claims (1)

【特許請求の範囲】 1、多重接地配電線の適宜個数の接地点を境界として事
故点方向を判別しつつ事故点の探査を行う方法において
、当該配電線に、該配電線に流れる零相電流を検出する
零相電流検出変流器を設置し、当該接地線に、該接地線
を流れる帰路電流を検出する帰路電流検出変流器を設置
し、かつ、両変流器が検出する電流の極性を比較する探
査装置を設け、最初に一の事故点方向を推定して、前記
零相電流検出変流器を、その極性を固定して前記配電線
に設置し、当該零相電流検出変流器の2次電流の極性と
、その極性を定めて前記接地線のうちの一つに固定設置
した前記帰路電流検出変流器の2次電流の極性とを比較
して事故点方向を判別し、次いで、前記零相電流検出変
流器の極性を固定したまま次の事故点方向判別位置に当
該変流器を移動させ、該変流器の2次電流の極性と、前
記帰路電流検出変流器の2次電流の極性とを順次比較し
て事故点方向を判別しつつ事故点の探査を行うことを特
徴とする多重接地配電線の事故点探査方法。 2、零相電流検出変流器が、分割鉄心と本体とトリガと
を備えて成るクランプ形変流器で、当該トリガを操作す
ることにより配電線の各相と磁気的に鎖交して零相電流
を検出する変流器である、特許請求の範囲第1項記載の
多重接地配電線の事故点探査方法。 3、零相電流検出変流器が、その本体に事故点側なる文
字表示を付して成る、特許請求の範囲第2項記載の探査
方法。 4、帰路電流検出変流器が、分割鉄心と本体とトリガと
を備えて成るクランプ形変流器である、特許請求の範囲
第1項記載の探査方法。 5、帰路電流検出変流器が、その本体に接地側なる文字
表示を付して成る、特許請求の範囲第4項記載の探査方
法。 6、探査装置が、零相電流検出変流器および帰路電流検
出変流器からそれぞれの入力信号を増幅する増幅回路と
、当該増幅後の出力をそれぞれ波形成形する波形成形回
路と、該波形成形回路に接続した論理回路と、該論理回
路に接続したカウンタと、該カウンタにパルス信号を送
出する発振器と、当該カウンタの内容と後述する置数器
の内容とを比較する比較器と、置数器と、表示部とを備
えて成る、特許請求の範囲第1項記載の探査方法。 7、探査装置が、零相電流検出変流器からの入力信号を
増幅する増幅回路と、当該増幅後の出力信号から高調波
成分を除去するフィルターと、当該フィルター出力の位
相を転相させる転相回路と、当該転相された出力を波形
成形する波形成形回路と、 帰路電流検出変流器からの入力信号を増幅する増幅回路
と、当該増幅後の出力信号から高調波成分を除去するフ
ィルターと、当該フィルター出力を波形成形する波形成
形回路と、 上記各波形成形回路の出力をフリップフロップするフリ
ップフロップ回路と を備えて成る、特許請求の範囲第1項記載の探査方法。
[Claims] 1. In a method of searching for a fault point while determining the direction of the fault point using an appropriate number of grounding points of a multi-grounded distribution line as boundaries, a zero-sequence current flowing in the distribution line is provided. A zero-sequence current detection current transformer is installed to detect the zero-phase current, and a return current detection current transformer is installed on the ground wire to detect the return current flowing through the ground wire, and the current detected by both current transformers is A detection device for comparing polarities is provided, the direction of one fault point is estimated first, the zero-sequence current detection current transformer is installed on the distribution line with its polarity fixed, and the zero-sequence current detection current transformer is installed on the distribution line with its polarity fixed. The direction of the fault point is determined by comparing the polarity of the secondary current of the current transformer with the polarity of the secondary current of the return current detection current transformer whose polarity is determined and fixedly installed on one of the grounding wires. Then, with the polarity of the zero-sequence current detection current transformer fixed, the current transformer is moved to the next fault point direction determination position, and the polarity of the secondary current of the current transformer and the return path current detection are determined. A fault point detection method for a multi-grounded distribution line, characterized in that the fault point is searched while determining the direction of the fault point by sequentially comparing the polarity of the secondary current of a current transformer. 2. The zero-phase current detection current transformer is a clamp-type current transformer that includes a split core, a main body, and a trigger, and by operating the trigger, it magnetically links each phase of the distribution line and generates a zero-phase current. The fault point detection method for a multi-grounded distribution line according to claim 1, which is a current transformer for detecting phase current. 3. The exploration method according to claim 2, wherein the zero-sequence current detection current transformer has a character display indicating the fault point side on its main body. 4. The exploration method according to claim 1, wherein the return current detection current transformer is a clamp type current transformer comprising a split core, a main body, and a trigger. 5. The exploration method according to claim 4, wherein the return current detecting current transformer has a character indicating the ground side on its main body. 6. The exploration device includes an amplifier circuit that amplifies the respective input signals from the zero-sequence current detection current transformer and the return current detection current transformer, a waveform shaping circuit that shapes the respective outputs after the amplification, and the waveform shaping circuit. A logic circuit connected to the circuit, a counter connected to the logic circuit, an oscillator that sends a pulse signal to the counter, a comparator that compares the contents of the counter with the contents of a digitizer described later, and a digitizer. The exploration method according to claim 1, comprising a container and a display section. 7. The exploration device includes an amplifier circuit that amplifies the input signal from the zero-phase current detection current transformer, a filter that removes harmonic components from the amplified output signal, and an inverter that inverts the phase of the filter output. A phase circuit, a waveform shaping circuit that shapes the phase-inverted output, an amplifier circuit that amplifies the input signal from the return current detection current transformer, and a filter that removes harmonic components from the amplified output signal. 2. The exploration method according to claim 1, comprising: a waveform shaping circuit that shapes the filter output into a waveform; and a flip-flop circuit that flip-flops the output of each of the waveform shaping circuits.
JP31227387A 1987-12-11 1987-12-11 Fault detection method for multiple grounded distribution lines Expired - Lifetime JP2627754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31227387A JP2627754B2 (en) 1987-12-11 1987-12-11 Fault detection method for multiple grounded distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31227387A JP2627754B2 (en) 1987-12-11 1987-12-11 Fault detection method for multiple grounded distribution lines

Publications (2)

Publication Number Publication Date
JPH01153976A true JPH01153976A (en) 1989-06-16
JP2627754B2 JP2627754B2 (en) 1997-07-09

Family

ID=18027255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31227387A Expired - Lifetime JP2627754B2 (en) 1987-12-11 1987-12-11 Fault detection method for multiple grounded distribution lines

Country Status (1)

Country Link
JP (1) JP2627754B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271610A (en) * 2006-03-06 2007-10-18 Kansai Electric Power Co Inc:The Method and apparatus for identifying ground-fault bank
JP2009092417A (en) * 2007-10-04 2009-04-30 Kansai Electric Power Co Inc:The Method and device for investigating bank generating ground-fault
JP5529300B1 (en) * 2013-01-23 2014-06-25 一般財団法人 関西電気保安協会 High voltage insulation monitoring method and high voltage insulation monitoring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271610A (en) * 2006-03-06 2007-10-18 Kansai Electric Power Co Inc:The Method and apparatus for identifying ground-fault bank
JP2009092417A (en) * 2007-10-04 2009-04-30 Kansai Electric Power Co Inc:The Method and device for investigating bank generating ground-fault
JP5529300B1 (en) * 2013-01-23 2014-06-25 一般財団法人 関西電気保安協会 High voltage insulation monitoring method and high voltage insulation monitoring device
JP2014142230A (en) * 2013-01-23 2014-08-07 Kansai Electrical Safety Inspection Association High voltage insulation monitoring method and high voltage insulation monitoring device

Also Published As

Publication number Publication date
JP2627754B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
US5903155A (en) Method of measurement for fault-distance determination on a HVDC power transmission line having at least two lines connected in parallel
US3626281A (en) Method for the selective detection of the defective conduit or or conductors in a three-phase system
CN100501429C (en) Wiring identifying device and method
EP3304115B1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
CN202975229U (en) Multipoint earthing detection locator for secondary circuits of transformer substations
JPS5826522A (en) Ground detector for ac generator
EP3304099B1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
CN109596934B (en) Secondary circuit multipoint grounding double-clamp meter measuring method
JPH01153976A (en) Investigating method for accident point of multiple earth distribution line
JPH10282175A (en) Wiring path searching apparatus
JP3206945B2 (en) Ground fault detection method and apparatus for electric circuit
CN207717911U (en) A kind of detecting fault line for un-ground neutral power system
JPH01153977A (en) Investigating method for accident point of multiple earth distribution line
Ma et al. A novel method for discrimination of internal faults and inrush currents by using waveform singularity factor
JP2654792B2 (en) Partial discharge detection device
CN205003219U (en) Quick testing arrangement of three -phase low pressure ac circuit
CN206281967U (en) A kind of device for detecting arc suppression coil device route selection function
JPH02296162A (en) Method for detecting partial discharge of cable
JPH0715491B2 (en) Indoor wiring tester
SU1626217A1 (en) Device for locating fault on cable line and device thereof
JP2654795B2 (en) Partial discharge detection device
JPH02234073A (en) Searching device for electricity leakage
KR910005700B1 (en) Wire phase detector of super high earth wire
JPH0454466A (en) Device for discriminating neutral line and earth line of single phase power source provided with earth line
CN116466260A (en) Fault recording device, method and storage medium